что такое основание позиционной системы счисления

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Источник

Позиционные системы счисления

Позиционной называют систему счисления, в которой положение (позиция) цифры определяет вес числа. Основные виды позиционных систем:

Немного истории

Первыми в истории человечества позиционную систему счисления применяли индейцы майя примерно 500 лет до нашей эры. Она использовалась для составления календарей и имела в основании число 20.

Современная позиционная система счисления уходит корнями в Индию, в V век нашей эры. И несмотря на то, что в ней используются арабские цифры, именно индусы стали ее основоположниками. А за счет удобных форм записи и выполнения арифметических действий, создание позиционной системы дало мощный толчок развитию математики.

Основание и алфавит

Например, с помощью трех цифр 0, 1 и 2 можно составить троичную систему счисления. Все правила построения чисел будут при этом соответствовать другим позиционным системам: двоичной, десятичной и так далее. А ее основание будет равно трем:

Разряд числа

Разряд — это место, позиция цифры в записи числа. Например, в 125: цифра 5 относится к разряду единиц, 2 — к разряду десятков, 5 — к разряду сотен. Данное число можно также представить в виде суммы 100 + 20 + 5 и выделить основание системы в каждом слагаемом в той или иной степени:

12510 = 1 ∙ 100 + 2 ∙ 10 + 5 ∙ 1 = 1 ∙ 10 2 + 2 ∙ 10 1 + 5 ∙ 10 0

Если обратить внимание на показатели степени, то наблюдается закономерность — соответствие порядковому номеру цифры слева направо, начиная с нуля:

Цифра125
Порядковый номер слева направо210
Показатель степени основания210

Развернутая форма записи числа

Данный способ записи числа действует и для любой другой позиционной системы счисления и называется развернутой формой:

где A — число, q — основание системы счисления, а n — количество разрядов числа. При этом свернутой формой будет запись вида:

Например, развернутая форма числа 753 в восьмеричной системе счисления будет иметь следующий вид:

7538 = 7 ∙ 8 2 + 5 ∙ 8 1 + 3 ∙ 8 0

Представление дробей

Если же необходимо представить в развернутой форме дробь, то формула будет следующей:

где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа. Свернутой формой, соответственно, является запись вида:

Например, для 1001,101 в двоичной системе счисления развернутая форма будет выглядеть так:

Плюсы и минусы позиционных систем

Главным удобством позиционной системы счисления является то, что запись больших чисел имеет краткую и удобную форму. Это также стало причиной их использования в программировании: большие числа занимают в данной форме меньшее количество памяти ЭВМ.

Источник

Системы счисления. Основные понятия.

Запись числа в некоторой системе счисления называется кодом числа.

Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.

Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся

на однородные и смешанные.

Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не

зависит от позиции (разряда).

Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости

от её места в строке, соответствует только 1 предмет.

Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.

Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.

Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению

50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)

одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,

(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может

отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде

В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в

числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции

Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда

меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.

Самая первая система счисления — единичная (непозиционная).

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в

последовательности цифр, которые изображают число.

Каждая позиционная система характеризуется своим основанием.

Основание позиционной системы счисления – это количество разных знаков либо символов, которые

используются для изображения цифр в этой системе.

множество позиционных систем.

Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.

Таблица соответствия цифр в различных системах счисления.

Источник

Информатика

Системы счисления

Основные понятия

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Непозиционные системы счисления

Позиционные системы счисления

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Примеры:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Примеры:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Системы счисления с кратными основаниями

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )

Арифметика

Сложение

(перенос)
10011011
1001110
11101001
76543210(номера разрядов)

Вычитание

(перенос)
10011011
1001110
1001101
76543210(номера разрядов)

1. Системы счисления

Основные понятия

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Непозиционные системы счисления

Позиционные системы счисления

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Примеры:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Примеры:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Системы счисления с кратными основаниями

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )

Источник

Что такое основание позиционной системы счисления

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Системы счисления»

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Символы, при помощи которых записывается число, называются цифрами.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные.

Позиционные системы счисления

Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).

Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.

Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:

IVXLСDМ
1510501005001000

С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).

Правила записи чисел в римской системе счисления:

Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.

Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:

Алфавит и основание системы счисления

Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:

Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.

Развёрнутая форма представления числа

Системы счисления, используемые в вычислительной технике

Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.

Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.

Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.

Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.

Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:

Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.

Решение задач

1. Какое число записано с помощью римских цифр: CLVI

Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1

Решение: Пользуемся формулой:

a1 = 3; a2 = B; a3 = F; a4 = A

Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160

3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0

Решение: Пользуемся формулой:

Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478

Алгоритмы перевода в системы счисления по разным основаниям

Алгоритм перевода чисел из любой системы счисления в десятичную

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую

Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую

Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую

Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n

Решение задач

1. Переведём в 10-ую с.с. число: 0,1235

Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:

Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410

Ответ: 0,1235 = 0,30410

2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.

Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.

4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:

Переводим целую и дробную часть:

что такое основание позиционной системы счисления. Смотреть фото что такое основание позиционной системы счисления. Смотреть картинку что такое основание позиционной системы счисления. Картинка про что такое основание позиционной системы счисления. Фото что такое основание позиционной системы счисления

Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16

5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления

Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *