что такое ошибка остатки модели в терминах компонент модели временных рядов
Компоненты временного ряда
Временным рядом называется ряд наблюдаемых значений изучаемого показателя, расположенных в хронологическом порядке или в порядке возрастания времени.
Отдельно взятый временной ряд можно представить как выборочную совокупность из бесконечного ряда значений показателей во времени.
Уровнями временного ряда называются наблюдения yt (t= 1,n ), из которых состоит данный ряд.
Временной ряд называется моментным рядом, если уровень временного ряда фиксирует значение изучаемого показателя на определённый момент времени.
Временной ряд называется интервальным рядом, если уровень временного ряда характеризует значение показателя за определённый период времени.
Временной ряд называется производным рядом, если уровни ряда представлены в виде производных величин (средних или относительных показателей).
Исследование данных, представленных в виде временных рядов, преследует две основные цели:
Достижение поставленных целей возможно с помощью идентификации модели временного ряда.
Идентификацией модели временного ряда называется процесс выявления основных компонент, которые содержит изучаемый временной ряд.
Временные ряды могут содержать два вида компонент – систематическую и случайную составляющие.
Систематическая составляющая временного ряда является результатом воздействия постоянно действующих факторов.
Выделяют три основных систематических компоненты временного ряда:
Трендом называется систематическая линейная или нелинейная компонента, изменяющаяся во времени.
Сезонностью называются периодические колебания уровней временного ряда внутри года.
Цикличностью называются периодические колебания, выходящие за рамки одного года. Промежуток времени между двумя соседними вершинами или впадинами в масштабах года определяют как длину цикла.
Систематические составляющие характеризуются тем, что они могут одновременно присутствовать во временном ряду.
Случайной составляющей называется случайный шум или ошибка, которая воздействует на временной ряд нерегулярно.
К основным причинам, по которым возникает случайный шум, относят факторы резкого и внезапного действия, а также действия текущих факторов.
Катастрофическими колебаниями называется случайный шум, в основе возникновения которого лежат факторы резкого и внезапного действия.
Шум, в основе возникновения которого лежит действие текущих факторов, может быть связан также с ошибками наблюдений.
Отдельный уровень временного ряда обозначается как yt. Его можно представить в виде функции от основных компонент временного ряда следующим образом:
где T – это трендовая компонента,
S – это сезонная компонента,
C – это циклическая компонента,
Существует несколько основных моделей временных рядов, к которым относятся:
70. Компоненты временного ряда
70. Компоненты временного ряда
Временным рядом называется ряд наблюдаемых значений изучаемого показателя, расположенных в хронологическом порядке или в порядке возрастания времени.
Отдельно взятый временной ряд можно представить как выборочную совокупность из бесконечного ряда значений показателей во времени.
Уровнями временного ряда называются наблюдения
из которых состоит данный ряд.
Временной ряд называется моментным рядом, если уровень временного ряда фиксирует значение изучаемого показателя на определённый момент времени.
Временной ряд называется интервальным рядом, если уровень временного ряда характеризует значение показателя за определённый период времени.
Временной ряд называется производным рядом, если уровни ряда представлены в виде производных величин (средних или относительных показателей).
Исследование данных, представленных в виде временных рядов, преследует две основные цели:
1) характеристика структуры временного ряда;
2) прогнозирование будущих уровней временного ряда на основании прошлых и настоящих уровней.
Достижение поставленных целей возможно с помощью идентификации модели временного ряда.
Идентификацией модели временного ряда называется процесс выявления основных компонент, которые содержит изучаемый временной ряд.
Временные ряды могут содержать два вида компонент – систематическую и случайную составляющие.
Систематическая составляющая временного ряда является результатом воздействия постоянно действующих факторов.
Выделяют три основных систематических компоненты временного ряда:
Трендом называется систематическая линейная или нелинейная компонента, изменяющаяся во времени.
Сезонностью называются периодические колебания уровней временного ряда внутри года.
Цикличностью называются периодические колебания, выходящие за рамки одного года. Промежуток времени между двумя соседними вершинами или впадинами в масштабах года определяют как длину цикла.
Систематические составляющие характеризуются тем, что они могут одновременно присутствовать во временном ряду.
Случайной составляющей называется случайный шум или ошибка, которая воздействует на временной ряд нерегулярно.
К основным причинам, по которым возникает случайный шум, относят факторы резкого и внезапного действия, а также действия текущих факторов.
Катастрофическими колебаниями называется случайный шум, в основе возникновения которого лежат факторы резкого и внезапного действия.
Шум, в основе возникновения которого лежит действие текущих факторов, может быть связан также с ошибками наблюдений.
Отдельный уровень временного ряда обозначается как yt. Его можно представить в виде функции от основных компонент временного ряда следующим образом:
где T – это трендовая компонента,
S – это сезонная компонента,
C – это циклическая компонента,
Существует несколько основных моделей временных рядов, к которым относятся:
1) аддитивная модель временного ряда, в которой компоненты представляют собой слагаемые:
2) мультипликативная модель временного ряда, в которой компоненты представляют собой сомножители:
3) комбинированная модель временного ряда:
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Основные модификации модельного ряда
Основные модификации модельного ряда Ну как, сходили? Понравилось? Только честно, понравилось или нет? Ладно, верю, верю. Хотя смотрите, может еще не поздно все остановить? В конце концов, вокруг так много симпатичных парней. Да шучу я, шучу, немного их, на самом-то деле. Ну,
3. Движение с перестроением из ряда в ряд
3. Движение с перестроением из ряда в ряд Данный маневр требует от водителя повышенного внимания. При этом должны быть выполнены два условия. Надо:* Уступить дорогу транспортному средству, движущемуся в своем ряду. * Подать предупредительный сигнал. Рассмотрим несколько
Строительство временного жилища
Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после
Строительство временного жилища
Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после
Изоляторы временного содержания
Изоляторы временного содержания ИЗОЛЯТОРЫ ВРЕМЕННОГО СОДЕРЖАНИЯ — места, предназначенные для содержания под стражей задержанных по подозрению в совершении преступлений. В И.в.с. в случаях, предусмотренных законодательством, могут временно содержаться подозреваемые и
Склады временного хранения
Склады временного хранения см. Временное хранение.
76. Сезонные и циклические компоненты временного ряда
76. Сезонные и циклические компоненты временного ряда Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:1) метод
79. Методы фильтрации временного ряда
79. Методы фильтрации временного ряда Методы фильтрации временных рядов предназначены на решение проблем, возникающих при исследовании взаимосвязи между двумя и более временными рядами, с помощью исключения из них трендовой и сезонной компонент.К проблемам, которые
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды
82. Линейные модели стационарного временного ряда
82. Линейные модели стационарного временного ряда Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.К основным линейным моделям стационарных временных
Пребывание в изоляторе временного содержания (ИВС)
Пребывание в изоляторе временного содержания (ИВС) Переступив порог камеры, помните: вы теперь один, и рассчитывать теперь вам придется только на себя, поэтому мобилизуйтесь. Не удивляйтесь и не паникуйте, что в течение нескольких ближайших дней вас не вызывают
Метазаконы, или законы высшего ряда
Метазаконы, или законы высшего ряда ВСЯКОЕ ОБОБЩЕНИЕ ЛОЖНО, ВКЛЮЧАЯ И ЭТО.«Первая аксиома формальной логики»АБСОЛЮТНОЙ ИСТИНЫ НЕ СУЩЕСТВУЕТ – ТАКОВА АБСОЛЮТНАЯ ИСТИНА.Дэвид ДжерролдМОЖНО БЫТЬ УВЕРЕННЫМ ЛИШЬ В ТОМ, ЧТО НИ В ЧЕМ НЕЛЬЗЯ БЫТЬ УВЕРЕННЫМ.Плиний
Анализ временных рядов
Временные ряды — это актуальный инструмент, применимый во множестве решений, от предсказания цен на акции, прогнозов погоды, планирования бизнеса, до распределения ресурсов. Несмотря на то, что прогнозирование может быть сведено к построению контролируемой регрессии, существуют особенности, связанные с временным характером наблюдений, которые необходимо учитывать, используя специальные инструменты.
Содержание
Временной ряд [ править ]
Определение: |
Временно́й ряд (или ряд динамики) — собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом. Во временном ряде для каждого отсчёта должно быть указано время измерения или номер измерения по порядку. |
Как и большинство других видов анализа, анализ временных рядов предполагает, что данные содержат систематическую составляющую (обычно включающую несколько компонент) и случайный шум (ошибку), который затрудняет обнаружение регулярных компонент. Большинство методов исследования временных рядов включает различные способы фильтрации шума, позволяющие увидеть регулярную составляющую более отчетливо. Большинство регулярных составляющих временных рядов принадлежит к двум классам: они являются либо трендом, либо сезонной составляющей. Тренд представляет собой общую систематическую линейную или нелинейную компоненту, которая может изменяться во времени. Сезонная составляющая — это периодически повторяющаяся компонента. Оба эти вида регулярных компонент часто присутствуют в ряде одновременно.
Валидирование и тестирование модели временного ряда [ править ]
Данные упорядочены относительно неслучайных моментов времени, и, значит, в отличие от случайных выборок, могут содержать в себе дополнительную информацию, поэтому нельзя пользоваться обычными способами валидации. Чтобы избежать смещения оценки необходимо удостовериться, что обучающие наборы данных содержат только наблюдения, которые произошли до событий из валидирующиx наборов.
Возможным способом преодоления данной проблемы будет использование скользящего окна, как описано здесь. Эта процедура называется кросс-валидацией временного ряда и может быть вкратце описана следующей картинкой (рис. 1), в которой синие точки обозначают тренировочный набор данных, а красные соответствующие валидационные наборы данных.
Краткое исследование данных [ править ]
В данной части используется несколько разных моделей для предсказания изменений в промышленном производстве,
которые для примера будем оценивать численно, как количество электрооборудования, произведённого в зоне Евро (рис. 2, 3).
Набор данных описывает ежемесячное производство электрооборудования (компьютеры электрические и оптические приборы) в зоне евро (17 стран) в период с января 1996 по март 2012 года (см. график ниже). Последние два года будем использовать при тестировании.
Модели прогнозирования временных рядов [ править ]
Наивное предсказание [ править ]
Такие предскания предполагают, что стохастическая [2] модель генерирует случайное блуждание.
Разделение по сезонам + любая модель [ править ]
Если данные показывают, что они восприимчивы к периодическим (сезонным) изменениям (ежедневно, еженедельно, ежеквартально, ежегодно), то будет полезным разложить исходный временной ряд на сумму трёх компонентов.
Классическое разложение можно расширить несколькими способами.
Расширение позволяет использовать данный метод при:
Обзор методов разложений ряда можно увидеть по ссылке. Используется реализация из стандартной библиотеки (рис. 6).
На следующем графике показаны сезонные индексы ряда с учётом сезонности (рис. 7).
Следующий график показывает расчёты для 2007 года с использованием декомпозиции и наивной модели (рис. 8) для сезонно-изменяемого временного ряда.
Экспоненциальное сглаживание [ править ]
Также как и экспоненциальное сглаживание, интегрированная модель авторегрессии скользящего среднего (англ. autoregressive integrated moving average, ARIMA) также часто используются для прогноза временных рядов.
Определение: | ||||
Процесс авторегрессии — последовательная зависимость элементов временного ряда, выразается следующим уравнением:
|