в какой системе счисления нет цифры для нуля римская
Системы счисления. Непозиционные системы счисления.
В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например, чтобы цифры располагались по убыванию.
Существуют такие непозиционные системы счисления:
— Единичная система счисления,
— Пятеричная система счисления (Счёт на пятки́),
— Древнеегипетская система счисления,
— Вавилонская система счисления,
— Алфавитные системы счисления,
— Еврейская система счисления,
— Греческая система счисления,
— Римская система счисления,
— Система счисления майя,
Рассмотрим некоторые из, приведенных выше, систем счисления.
Единичная система счисления.
С первых попыток научиться считать у людей возникла необходимость записи чисел. Сначала это было легко — зарубка либо черточка на любой поверхности отвечала за один предмет. Таким образом возникла первая система счисления — единичная.
Число в единичной системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
В более позднее время для упрощения восприятия больших чисел, эти знаки стали группировать по три или по пять. Далее равнообъёмные группы знаков начали заменять новым знаком — так возникли прообразы современных цифр.
У данной системы есть значительные недостатки — чем больше число, тем длиннее строка из палочек. Кроме того, существует большая вероятность в записи числа, пропустив или случайно дописав палочку.
Изначально в счете использовали пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система счисления.
В Древнем Египте использовали свои символы (цифры) для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них:
Почему мы ее называем десятичной? Как указано выше — люди начали группировать символы. В Египте — решили группировать по 10, оставив без изменений цифру “1”. Здесь, число 10 называется основанием десятичной системы счисления, а все символы — представление числа 10 в определенной степени.
Числа в древнеегипетской системе счисления записывали, в виде комбинаций таких символов, и все они повторялись не больше 9 раз. Результатом было сумма элементов числа. Этот метод получения значения свойственен каждой непозиционной системе счисления. Для примера посмотрите на запись числа 345:
Вавилонская шестидесятеричная система счисления.
В вавилонской системе счисления использовали только 2 символа: “прямой” клин — для единиц и “лежащий” — для десятков. Для определения значения числа нужно изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. Для примера посмотрим на число 32:
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной системы счисления.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а значения больше 59 — в позиционной с основанием 60. Например, число 92:
Запись числа была не конкретной, так как не было цифры, которая обозначала бы нуль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа они ввели новый символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Значит, число 3632 записывают так:
Шестидесятеричная вавилонская система — первая система счисления, которая частично основана на позиционном принципе. Эту систему счисления используют и сейчас, например, для определения времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система счисления.
Римская система счисления немного похожа с египетской. Здесь для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используют заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.
Способы определения значения числа:
Римская система счисления Ⅷ
Здравствуйте, на этой странице разберем римскую систему счисления. Здесь мы поговорим про основные определения, её значение в информатике и других науках, рассмотрим сферы, где она применяется на данный момент. Поговорим про её перевод в десятичную систему.
Краткий исторический экскурс
Первые достоверные упоминания о римской системе счисления датируются от пятисотых годов до нашей эры. Точных обстоятельств, при которых возникла нотация, никто не знает. Однако мы можем опираться на несколько версий.
Например, вот одна из них: цифры от 1 до 3 записывались с помощью палочек (I, II, III). Это говорит, что Римская нумерация берет свое начало от унарной (единичной системы). Она является простейшей и примитивнейшей нумерацией, в ней был только один знак, который обозначал единицу. Однако тогда было непонятно, как возникли другие символы. На этот счет есть более интересная версия.
Некоторые считают, что формат появился благодаря методам пальцевого счета. Так значения от одного до четырех отображались пальцами от указательного до мизинца. Число 5 же (V) – угол между указательным и большим пальцем, а десять соответствует двум рукам, с помощью которых показывается знак X.
Но и с этой версией не все так гладко. В ней считается, что римляне переняли обозначения у древних этрусков. Однако те, в свою очередь, читали свои записи справа налево, в то время как жители Рима читали их слева направо. Так что история происхождения исчисления и по сей день остается неразгаданной. Перейдем к понятиям.
Основные положения
Римское исчисление – является непозиционной системой счисления, в которой для отображения чисел используются буквы латинского алфавита, такие как I, V, X, L, M, C, D. Чтобы понять, что значит каждая из них, приведем ниже небольшую табличку.
Перевод десятичных чисел в римскую систему счисления и обратно
Чтобы осуществить перевод необходимо усвоить несколько простых правил, после изучения которых, Вы сможете с легкостью перевести любое значение. Вот что вам необходимо усвоить:
Калькулятор в РСС
Введите величину в дес.формате
Сгенерировать случайную
Достоинства и недостатки в сравнении с позиционными отображениями
К плюсу римской нотации можно отнести, что с помощью неё легко производить арифметические действия с маленькими значениями. Минусов же у неё намного больше, ими являются все недостатки непозиционных форматов, такие как:
Все эти минусы привели к тому, что на данный момент главенствующим является более совершенный позиционный формат (например, позиционный двоичный или десятеричный способ отображения количественных величин). Именно он используется в точных науках – математике и информатике. Однако нотация кое-где применяется и сейчас.
Где применяется
Заключение
Вот и всё, Вы познакомились с непозиционной римской системой счисления. Теперь Вы знаете основные положения, её историю происхождения, значение в информатике, а так же как осуществлять перевод значений в десятичном формате. Тема достаточно интересная, при возникновении вопросов – задавайте их в комментариях.
eponim2008
Жизнь замечательных имен
Короткие истории о вещах и о людях, давших им свое имя
Где находится ноль у римских цифр?
Ответ на этот вопрос очень прост – в римской системе счисления не было нуля. Потому что римская система была не позиционная. Определенными знаками обозначались числа 1, 5, 10, 50, 100, 500 и 1000 (это были латинские буквы I, V, X, L, C, D и M соответственно). Все остальные числа составлялись из этих знаков с помощью операций сложения или вычитания по следующему алгоритму.
1. Запись числа читается так же, как буквенные надписи, слева направо. Сначала идут римские цифры, соответствующие максимальным числам, потом меньшим и так по убыванию. Римские цифры I, X, C и M можно повторять до трех раз. Например, MDCCLIX – правильная запись, а записи CDM и CLLX – неправильные. В первом случае цифра M стоит на неправильном месте, во втором случае рядом стоят две цифры L.
2. Перед любой цифрой кроме I может находиться одна цифра меньшего разряда (перед V и X может стоять I, перед L и C – X, перед D и M – C). В этом случае бóльшее число модифицируется, из него вычитается меньшее число. IV=5-1=4, XC=100-10=90.
3. После того, как произведены все вычитания, модифицированные и не модифицированные цифры складываются. Например, XXXIX=3*10+(10-1)=39, XLVII=(50-10)+5+2*1=47.
Нелегко, правда? Складывать и вычитать римские числа еще труднее. Попробуйте сложить XVII и XIX. Ответ: XXXVI.
Такая сложная с нашей точки зрения система счисления была связана с тем, что римляне фактически записывали результаты счета на пальцах. Отсюда появление в качестве основания системы счисления чисел 5, 50 и 500.
Небольшое отступление. Некоторые из Вас, дорогие читатели, вероятно, видели часы, на которых число 4, которое должно бы писаться так: IV, пишется в виде IIII. Совершенно не по правилам! В чем дело? Дело в культуре. Имя верховного бога древних римлян, Юпитера, писалось по-латински Ivupiter. Это – древнее написание, еще до того, как в латинском языке появились буквы U и J и имя громовержца стали писать Jupiter. Запрет на произнесение или написание имени божества без нужды («Не произноси имя божье всуе») был в ходу у многих народов тогдашнего мира. Римляне тоже уважительно относились к этому предрассудку. Поэтому две первые буквы имени Юпитера они предпочитали не писать. Отсюда IV=IIII.
Как видим, ноль в такой системе записи чисел не нужен. Ноль ведь – отсутствие числа, а зачем записывать то, чего нет? Цифра ноль была придумана более 2 тысяч лет назад в Индии, тогда же, когда была придумана позиционная система счисления. Иногда еще ее называют поместной нумерацией. О том, что это такое, и чем позиционная система счисления лучше непозиционной, уже писалось в статье от 22.08.2013.
Надо сказать, что древние римляне более всего проявили себя в положительных областях деятельности: в строительстве, в военном деле, в юриспруденции и в управлении. Философскими же вопросами они, в отличие от древних же греков, заниматься не любили. Римской философии, развитой и разветвленной, как у древних греков, не существует.
Более того, римляне не страдали от этого комплексом неполноценности. Они совершенно чистосердечно считали, что поставлены богами для того, чтобы повелевать другими народами. Лучше всего этот взгляд на роль римлян выразил в эпической поэме «Энеида» великий поэт Вергилий.
Герой поэмы, Эней, предок римлян, встречается в подземном царстве мёртвых, куда он попал в ходе своего путешествия из Трои в Италию, своего отца, Анхиза. Анхиз, поскольку он уже умер и приобщен к тайнам мира, через Энея обращается к своим далеким потомкам и провозглашает назначение будущего народа.
Смогут другие создать изваянья живые из бронзы
Или обличье мужей повторить во мраморе лучше,
Тяжбы лучше вести и движенья неба искусней
Вычислят иль назовут восходящие звёзды, — не спорю:
Римлянин! Ты научись народами править державно —
В этом искусство твоё! — налагать условия мира,
Милость покорным являть и смирять войною надменных
Неплохо, правда? А вы говорите про какой-то там ноль!
Основы систем счисления
Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.
Введение
Система счисления — это способ записи (представления) чисел.
Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки
Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.
Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.
Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.
Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.
Непозиционные системы
Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.
Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система
Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.
Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:
Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Теперь число 3632 следует записывать, как:
Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.
Позиционные системы счисления
Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.
Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.
Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.
Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.
Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.
Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.
Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?
Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.
Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.
Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.
Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная
Позиционные системы подразделяются на однородные и смешанные.
Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”
Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева
Перевод из одной системы счисления в другую
Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510
Преобразование из десятичной системы счисления в другие
Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.
Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118
Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.
Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.
Для примера рассмотрим число 458: 45 = (100) (101) = 1001012
Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.
Преобразование дробной части любой системы счисления в десятичную
Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.
Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.
Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28
Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.
Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012