Что такое условие теоремы и заключение теоремы
Что такое аксиома, теорема и доказательство теоремы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие аксиомы
Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.
Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.
Синоним аксиомы — постулат. Антоним — гипотеза.
Основные аксиомы евклидовой геометрии
Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.
А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.
Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:
Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
У этой аксиомы два следствия:
Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:
Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.
На картинке можно увидеть, как это выглядит:
Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!
Доказательство через синтез
Рассмотрим пример синтетического способа доказательства.
Теорема: сумма углов треугольника равна двум прямым.
Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.
Доказательство:
Проведем прямую DE, так чтобы она была параллельна AC.
Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.
Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.
Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.
Доказательство через анализ
Рассмотрим пример аналитического способа доказательства.
Теорема: диагонали параллелограмма пересекаются пополам.
Дан параллелограмм: ABCD.
Доказательство:
Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.
Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.
Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.
Теоремы без доказательств
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:
Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:
где a, b и c — стороны плоского треугольника,
α — угол напротив стороны а.
Следствия из теоремы косинусов:
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.
Реферат. Теорема. Виды теорем. Методика работы над теоремой
НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ИНСТИТУТ ДИСТАНЦИОННОГО ПОВЫШЕНИЯ КВАЛИФИКАЦИИ
Теорема. Виды теорем. Методика работы над теоремой
слушатель _3.30.1__ курса
Крупко Елена Александровна
к. психол. наук, доц. Шелепанова Н.В.
ПРЯМЫЕ ПРИЁМЫ ДОКАЗАТЕЛЬСТВА 8
КОСВЕННЫЕ ПРИЁМЫ ПОИСКА 8
МЕТОДЫ ДОКАЗАТЕЛЬСТВА, ВЫДЕЛЕННЫЕ ПО ИСПОЛЬЗУЕМОМУ МАТЕМАТИЧЕСКОМУ АППАРАТУ 8
ЭТАПЫ ИЗУЧЕНИЯ ТЕОРЕМЫ 8
МЕТОДОЛОГИЧЕСКИЕ ПРИЁМЫ МОТИВИРОВКИ НЕОБХОДИМОСТИ ИЗУЧЕНИЯ ТЕОРЕМ 9
ЗАДАНИЯ, СПОСОБСТВУЮЩИЕ УСВОЕНИЮ ТЕОРЕМ 9
Теорема – математическое предложение, истинность которого устанавливается посредством доказательства.
Виды формулирования теоремы: импликативная и категорическая.
Условие теоремы – при каких условиях рассматривается в ней тот или иной объект.
Заключение теоремы – что об этом объекте утверждается.
Основные типы теорем:
4. Контрапозитивная (обратная противоположной).
Доказательство – рассуждение с целью обоснования истинности какого-либо утверждения.
Тезис – математическое предложение, в котором выражается главная цель доказательства. Форма выражения тезиса – суждение.
Аргументы доказательства – положения, на которые опирается доказательство и из которых при условии их истинности необходимо следует истинность доказываемого тезиса. Форма выражения аргументов – суждения.
Демонстрация – логический процесс взаимосвязи суждений, в результате которого осуществляется переход от аргументов к тезису.
Метод доказательства – способ связи аргументов при переходе от условия к заключению суждения.
Методы доказательства, выделенные по тому, как строится обоснование тезиса: прямые и косвенные .
Рассмотрим, например, теорему «если четырехугольник является прямоугольником, то в нем диагонали равны». Построим предложение, обратное данному: «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником». Это ложное высказывание, в чем легко убедиться (в равнобедренной трапеции диагонали равны, но трапеция не является прямоугольником).
Рассмотрим теорему «в равнобедренном треугольнике углы при основании равны». Обратное ей предложение таково: «если в треугольнике углы при основании равны, то этот треугольник – равнобедренный». Это истинное предложение и потому является теоремой. Ее называют теоремой, обратной данной.
Вообще, для какой бы теоремы мы ни формулировали предложение, обратное противоположному, оно всегда будет теоремой, потому что имеется следующая равносильность: ( АВ) (ВА).
Эту равносильность называют законом контрапозиции.
Теоремы АВ и ВА – взаимообратные, а АВ и
– взаимопротивоположные.
1. В следующих теоремах выделим условие и заключение: а) «Для того чтобы разность двух чисел делилась на 2, достаточно, чтобы на 2 делилось уменьшаемое и вычитаемое»;
б) «Для того чтобы четырехугольник был квадратом, необходимо, чтобы хоты бы один из его углов был прямым».
Решение: а) Слово достаточно относится к предложению «уменьшаемое и вычитаемое делится на 2», следовательно, это предложение и является условием теоремы. Тогда заключение теоремы – «разность двух чисел делится на 2».
б) В данной теореме есть слово «необходимо», которое относится к предложению «чтобы четырехугольник был квадратом». Значит, это и будет условием данной теоремы. А ее заключением в таком случае будет предложение «один из углов четырехугольника прямой».
2. Сформулируем следующие теоремы в виде «если …, то …»:
а) «Перпендикуляр к одной из двух параллельных прямых также перпендикуляр к другой»; б) «Всякий параллелограмм имеет центр симметрии».
Решение: а) Выделим условие и заключение теоремы: «Перпендикуляр к одной из двух параллельных прямых» – условие, «перпендикуляр к другой» – заключение. Тогда теорема примет вид: «Если есть перпендикуляр к одной из двух параллельных прямых, то он является также перпендикуляром к другой прямой».
б) Условие теоремы – «всякий параллелограмм», заключение – «имеет центр симметрии». Нашу теорему тогда можно переформулировать следующим образом: «Если фигура параллелограмм, то она имеет центр симметрии».
3. Дана теорема: «Если в четырехугольнике две противоположные стороны равны и параллельны, то четырехугольник параллелограмм». Сформулируем предложения, являющиеся обратным, противоположным и обратно противоположным.
Решение: Выделим условие и заключение данной теоремы. Условие: «в четырехугольнике две противоположные стороны равны и параллельны». Заключение: «четырехугольник – параллелограмм».
Поменяв местами условие и заключение, получим теорему, обратную данной: «Если четырехугольник – параллелограмм, то две противоположные стороны равны и параллельны», так как данное предложение истинно.
Заменяя условие и заключение исходной теоремы их отрицаниями, получим теорему, противоположную данной: «Если в четырехугольнике две противоположные стороны не равны или не параллельны, то четырехугольник – не параллелограмм». Это предложение также истинно.
Меняя местами отрицание условия и отрицание заключения, получим истинное предложение, которое является обратно противоположной теоремой: «Если четырехугольник – не параллелограмм, то две противоположные стороны не равны или не параллельны».
ПРЯМЫЕ ПРИЁМЫ ДОКАЗАТЕЛЬСТВА
— синтетический – преобразование условия суждения;
— восходящий анализ – отыскание достаточных оснований справедливости заключения;
— нисходящий анализ – отыскание необходимых признаков справедливости суждения с последующей проверкой обратимости рассуждений;
— последовательное преобразование то условия, то заключения суждения.
КОСВЕННЫЕ ПРИЁМЫ ПОИСКА
— метод от противного – метод, при котором истинность доказываемого тезиса устанавливается посредством опровержения противоречащего ему суждения;
— разделительный метод (метод разделения условий или метод исключения) – метод, при котором тезис рассматривается как один из возможных вариантов предположений, когда все предположения опровергаются, кроме одного.
МЕТОДЫ ДОКАЗАТЕЛЬСТВА, ВЫДЕЛЕННЫЕ ПО ИСПОЛЬЗУЕМОМУ МАТЕМАТИЧЕСКОМУ АППАРАТУ
— Метод геометрических преобразований – метод, используемый как средство обоснования некоторых отношений между элементами евклидовой геометрии.
— Алгебраические методы – методы доказательства теорем с помощью уравнений, неравенств, тождественных преобразований.
— Векторный метод – метод, использующий аппарат векторной алгебры.
— Координатный метод – метод, позволяющий устанавливать переход от геометрических отношений к аналитическим.
ЭТАПЫ ИЗУЧЕНИЯ ТЕОРЕМЫ
— мотивация изучения теоремы и раскрытие ее содержания;
— работа над структурой теоремы;
— мотивация необходимости доказательства теоремы;
— построение чертежа и краткая запись содержания теоремы;
— поиск доказательства, доказательство и его запись;
МЕТОДОЛОГИЧЕСКИЕ ПРИЁМЫ МОТИВИРОВКИ НЕОБХОДИМОСТИ ИЗУЧЕНИЯ ТЕОРЕМ
1. Обобщение наблюдаемых в жизни фактов и явлений и перевод их на математический язык.
2. Показ необходимости знания той или иной теоремы для решения практических задач.
3. Показ необходимости знания той или иной теоремы для решения задач и доказательства других теорем.
4. Показ, как решалась данная проблема в истории науки.
ЗАДАНИЯ, СПОСОБСТВУЮЩИЕ УСВОЕНИЮ ТЕОРЕМ
1) Сформулируйте теорему.
2) Выделите условие и заключение теоремы. К каким фигурам применима теорема?
3) Сформулируйте теорему со словами «Если…то…».
4) Сформулируйте предложение, обратное теореме.
5) Воспроизведите доказательство теоремы по новому чертежу, изменив его положение и обозначение элементов.
6) Составьте план доказательства.
7) Назовите аргументы, которые использовались при доказательстве.
8) Докажите теорему другим способом.
9) Решите задачи на применение теоремы.
В отличие от других наук, в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами. В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее, все эти средства используются учёными только при поиске доказательств, сами доказательства не могут основываться на таких средствах.
Доказательства, написанные на естественных языках, могут быть не очень подробными в расчёте на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).
Лернер И.Я. Дидактические основы методов обучения. – М.: Педагогика, 1981. 185 с.
Саранцев Г.И. Теоретические основы методики упражнений по математике в средней школе: Автореф. дисс. … доктора пед. наук.- Л.: Изд-во Ленинградского педуниверситета, 1987. – 36 с.
Саранцев Г.И. Упражнения в обучении математике, т.4. – М.: Просвещение, 1995. – 240 с.
Лекция 8. Теоремы
1. Отношения следования и равносильности между предложениями
2. Структура теоремы. Виды теорем
3. Необходимые и достаточные условия. Рассуждения от противного. Правильные и неправильные рассуждения.
Рассмотрим две высказывательные формы: «число х кратно 4» и «число х кратно 2», заданные на множестве N натуральных чисел.
Как связаны между собой эти два предложения?
Можно сказать так: из того, что число х кратно 4, следует, что х кратно 2. Это мы можем утверждать, потому что знаем – при всех значениях х, при которых истинно предложение «число х кратно 4», будет истинно и предложение «число х кратно 2». В этом случае говорят, что данные предложения находятся в отношении логического следования.
Определение. Высказывательная форма В(х) следует из высказывательной формы А(х), если В(х) обращается в истинное высказывание при всех тех значениях х, при которых А(х) истинна.
Если А и В – высказывания, тогда говорят, что из А следует В, если всякий раз, когда А истинно, истинно и В.
Для обозначения отношения логического следования используется знак ⇒. Соединяя две высказывательные формы А(х) и В(х) таким знаком, мы получаем высказывание А(х) ⇒ В(х), прочитать которое можно по разному:
1) Из А(х) следует В(х).
2) Всякое А(х) есть В(х).
4) В(х) есть следствие А(х).
5) А(х) есть достаточное условие для В(х).
6) В(х) есть необходимое условие для А(х).
Например, утверждение о том, что из предложения «число х кратно 4», следует предложение «число х кратно 2», можно сформулировать еще так:
— Всякое число, которое кратно 4, кратно и 2.
— Если число кратно 4, то оно кратно и 2.
— Кратность число 2 есть следствие кратности его 4.
— Кратность числа 4 есть достаточное условие для его кратности 2.
— Кратность числа 2 есть необходимое условие для его кратности 4.
Последние два предложения часто формулируют в следующей форме:
— Для того чтобы число было кратно 2, достаточно, чтобы оно было кратно 4.
— Для того чтобы число было кратно 4, необходимо, чтобы оно было кратно 2
Так как одно и то же утверждение «из А(х) следует В(х)» можно прочитать по-разному, надо уметь переходить от одной его формулировки к другой, не меняя смысла.
Задача 1. Данные предложения переформулируйте, используя различные способы прочтения утверждения А(х) ⇒ В(х):
Всякий квадрат является прямоугольником.
А(х) – «четырехугольник – квадрат» и В(х) – «четырехугольник – прямоугольник».
1) Из того, что четырехугольник – квадрат, следует, что он прямоугольник.
2) Если четырехугольник – квадрат, то он прямоугольник
3) Четырехугольник является прямоугольником – это следствие того, что четырехугольник – квадрат.
4) Для того чтобы четырехугольник был прямоугольником, достаточно, чтобы он был квадратом.
5) Для того чтобы четырехугольник был квадратом, необходимо, чтобы он был прямоугольником.
Как и любое высказывание, предложение А(х) ⇒ В(х) может быть истинным или ложным. Но так как оно может быть сформулировано в виде «всякое А(х) есть В(х)», то его истинность устанавливается путем доказательства, а с помощью контрпримера – что оно ложно.
Определение. Предложения А(х) и В(х) равносильны, если из предложения А(х) следует предложение В(х), а из предложения В(х) следует предложение А(х).
Для обозначения отношения равносильности используется знак ⇔. Соединяя две высказывательные формы А(х) и В(х) таким знаком, мы получаем высказывание А(х) ⇔ В(х), прочитать которое можно по-разному:
1) А(х) равносильно В(х).
2) А(х) тогда и только тогда, когда В(х).
3) А(х) – необходимо и достаточное условие для В(х).
Например, утверждение о том, что предложение «число делится на 3» и «сумма цифр в записи числа делится на 3» равносильны, можно сформулировать еще так:
— Число делится на 3 тогда и только тогда, когда сумма цифр в его записи делится на 3.
— Для того чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр в его записи делилась на 3.
С теоретико-множественной точки зрения высказывание А(х) ⇔ В(х) означает, что если ТА – множество истинности высказывательной формы А(х), а ТВ – множество истинности высказывательной формы В(х), то ТА = ТВ.
Например, уравнения 3х(х-2) = 0 и 3х(х-2)(х+3) = 0 равносильны на множестве целых неотрицательных чисел, потому что множество их решений <0, 2>.
Заметим, что мы рассматриваем понятия логического следования и равносильности для одноместных высказывательных форм. Для предложений, содержащих две и более переменных, эти понятия определяются аналогично.
Отметим также, что знак ⇔ мы использовали раньше, в частности, рассматривая логическую структуру явных определений понятий. Мы установили, что ее можно представить в виде а⇔ в. Определение порождает два равносильных предложения.
Знак ⇔ используют в записи правил построения отрицания высказываний. Например, А∧В⇔ А∨В. В этом случае речь идет о равносильности высказываний определенной формы. При этом считают, что предложения равносильны, если они одновременно истинны, либо одновременно ложны. Другими словами, если их значения истинности совпадают при одинаковых наборах значений высказываний А и В.
Понятие логического следования позволяет уточнить ряд вопросов, связанных с предложениями, которые в математике называют теоремами.
Теорема– это высказывание, истинность которого устанавливается посредством рассуждения (доказательства).
С логической точки зрения теорема представляет собой высказывание вида А ⇒ В, где А и В – высказывательные формы с одной или несколькими переменными. Предложение А называют условием теоремы, а предложение В – ее заключением.
Например, условием теоремы «если четырехугольник является прямоугольником, то в нем диагонали раны» является предложение «четырехугольник – прямоугольник, а заключением – предложение «в таком четырехугольнике диагонали равны».
В рассмотренном примере теорема была сформулирована с помощью слов «если …, то …». Но, как нам известно, утверждение А ⇒ В можно сформулировать и по-другому. Например, рассмотренную теорему можно сформулировать так: «во всяком прямоугольнике диагонали равны» или «для того, чтобы четырехугольник был прямоугольником, необходимо, чтобы его диагонали были равны». Есть и другие способы, но удобнее теорему формулировать в виде «если …, то …», поскольку сразу видно ее условие (что дано) и заключение (что надо доказать).
В математике кроме теорем используются предложения, называемые правилами и формулами. Выясним, чем они отличаются от теоремы.
Рассмотрим, например, такую теорему из школьного курса алгебры: «если а – любое число и k, n – натуральные число, то справедливо равенство аⁿ•аʰ = аⁿ⁺ʰ». Для того чтобы этой теоремой удобнее было пользоваться, при выполнении различных преобразований ее формулируют в виде правила: «при умножении степеней с одинаковыми основаниями показатели складываются» или записывают только формулу.
Учитель должен уметь разворачивать изучаемые в начальной школе правила (формулы) и формулировать соответствующие им теоремы. Например, правило деления суммы на число: «для того чтобы разделить сумму на число, можно разделить на это число каждое из слагаемых и полученные результаты сложить». К этой формулировке иногда добавляют формулу: (а + b): с = а : с + b: с. Так как этот материал изучают в начальной школе, то надо отчетливо понимать, что числа могут быть только целыми неотрицательными, причем с ≠ 0. Кроме того, воспользоваться правой частью этого равенства можно при условии, что а кратно с и b кратно с.
Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если В, то А», которое называют обратным данному. Однако не всегда это предложение является теоремой. Рассмотрим, например, теорему: «если четырехугольник является прямоугольником, то в нем диагонали равны». Построим предложение, обратное данному: «если в четырехугольнике диагонали равны, то четырехугольник является прямоугольником». Это высказывание ложное, в чем можно убедиться, приведя контрпример: в равнобедренной трапеции диагонали равны, но трапеция не является прямоугольником.
Рассмотрим теперь теорему «в равнобедренном треугольнике углы при основании равны». Обратное ей предложение таково: «если в треугольнике углы при основании равны, то этот треугольник – равнобедренный». Оно, как известно, истинное и поэтому является теоремой. Ее называют теоремой, обратной данной.
Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если не А, то не В», которое называют противоположным. Но не всегда это предложение является теоремой. Например, предложение, противоположное теореме «если четырехугольник является прямоугольником, то в нем диагонали равны», будет ложным: «если четырехугольник не является прямоугольником, то в нем диагонали не равны».
В том случае, если предложение, противоположное данному, будет истинно, его называют теоремой, противоположной данной.
Таким образом, если для теоремы А ⇒ В сформулировать обратное или противоположное предложения, то их надо доказывать (и тогда их можно называть соответственно обратной и противоположной теоремами) или опровергать.
Для всякой теоремы вида «если А, то В» можно сформулировать предложение «если не В, то не А», которое называют обратным противоположному. Например, для теоремы «если четырехугольник является прямоугольником, то в нем диагонали равны» предложение, обратное противоположному, будет таким: «если в четырехугольнике диагонали не равны, то он не является прямоугольником». Это, как известно, предложение истинное и, следовательно, является теоремой. Ее называют обратно противоположной данной.
Вообще для какой бы теоремы мы ни формулировали предложение, обратное противоположному, оно всегда будет теоремой, потому что имеется следующая равносильность: (А ⇒ В) ⇔ (В ⇒А).
Эту равносильность называют законом контрапозиции. Мы принимаем его без доказательства. Согласно этому закону, предложение, обратно противоположное какой-либо теореме, также является теоремой, и, значит, вместо данной теоремы можно доказывать теорему, обратно противоположную данной.
Кроме того, из закона контрапозиции следует, что предложение, обратное данному, и предложение, противоположное данному, одновременно истинны либо одновременно ложны. Поэтому, рассматривая их, достаточно доказать (или опровергнуть) какое-нибудь одно; тем самым будет доказано (опровергнуто) другое.
Заметим, что если для данной теоремы А ⇒ В существует обратная В ⇒А, то их можно соединить в одну А ⇔ В, и тогда в формулировке будут использованы слова «необходимо и достаточно», «тогда и только тогда, когда». Например: «треугольник будет равнобедренным тогда и только тогда, когда в нем углы при основании равны».
С другой стороны, если теорема имеет вид А ⇔ В, то это значит, что она состоит из двух взаимно обратных теорем А ⇒ В и В ⇒А и, следовательно, ее доказательство сводится к доказательству двух указанных теорем.
Заметим также, что если условие или заключение данной теоремы представляет собой конъюнкцию или дизъюнкцию, то, чтобы получить предложение, противоположное данному, нужно учитывать правила построения отрицания конъюнкции или дизъюнкции. Например, дана теорема «если число делится на 3 и 4, то оно делится на 12». Предложение, противоположное данному, можно сформулировать так: «если число не делится на 12, то оно не делится на 3 или не делится на 4».
Основные понятия: высказывание, значение истинности высказывания, высказывательная форма, область определения высказывательной формы, множество истинности высказывательной формы, элементарные высказывания, логические связки, составные высказывания, конъюнкция высказываний и высказывательных форм, дизъюнкция высказываний и высказывательных форм, квантор общности, квантор существования, отрицание высказываний и высказывательных форм, отношение логического следования между предложениями, отношение равносильности между предложениями.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет