Что такое упругая деформация
Упругая деформация
Упругая деформация — деформация, исчезающая после прекращения действий внешних сил. При этом тело принимает первоначальные размеры и форму.
Область физики, изучающая упругие деформации, называется теорией упругости.
При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.
Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.
Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.
Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.
См. также
Полезное
Смотреть что такое «Упругая деформация» в других словарях:
УПРУГАЯ ДЕФОРМАЦИЯ — (см. ДЕФОРМАЦИЯ МЕХАНИЧЕСКАЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
УПРУГАЯ ДЕФОРМАЦИЯ — деформация тела, которая после прекращения действия внешней силы исчезает без остатка. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
упругая деформация — Обратимая деформация, исчез. после снятия вызвавшей ее внеш. нагрузки. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN elastic strain … Справочник технического переводчика
УПРУГАЯ ДЕФОРМАЦИЯ — см … Большая политехническая энциклопедия
УПРУГАЯ ДЕФОРМАЦИЯ — изменение формы и размеров элемента конструкции, возникающее под действием нагрузки и исчезающее после ее снятия. В материалах инженерных конструкций (металл, дерево, бетон, железобетон, камень) У. д. получаются, если напряжения в элементах… … Технический железнодорожный словарь
Упругая деформация — Anelastic deformation Упругая деформация. Величина общей деформации тела, которая является функцией от времени при приложении нагрузки и которая исчезает полностью в течение некоторого периода времени, после снятия нагрузки. (Источник: «Металлы и … Словарь металлургических терминов
упругая деформация — tamprioji deformacija statusas T sritis radioelektronika atitikmenys: angl. elastic deformation vok. elastische Verformung, f rus. упругая деформация, f pranc. déformation élastique, f … Radioelektronikos terminų žodynas
упругая деформация — tamprioji deformacija statusas T sritis Standartizacija ir metrologija apibrėžtis Deformacija, greitai išnykstanti pašalinus jos priežastį. atitikmenys: angl. elastic deformation vok. elastische Verformung, f rus. упругая деформация, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
упругая деформация — tamprioji deformacija statusas T sritis chemija apibrėžtis Deformacija, greitai išnykstanti pašalinus jos priežastį. atitikmenys: angl. elastic deformation rus. упругая деформация … Chemijos terminų aiškinamasis žodynas
Упругая деформация
Область физики, изучающая упругие деформации, называется теорией упругости.
При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.
Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.
Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.
Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость.
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.
Магнитосопротивление (магниторезистивный эффект) — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Теория гидродинамической устойчивости — раздел гидродинамики и теории устойчивости, изучающий условия, при которых теряется устойчивость различных состояний и течений жидкости.
Что такое упругая деформация
Код ОГЭ 1.12. Деформация тела. Упругие и неупругие деформации. Закон упругой деформации (закон Гука).
Деформация – изменение формы или объёма тела под действием внешних сил. Деформация может быть упругая или неупругая.
Упругая деформация – деформация, при которой после прекращения действия силы размеры и форма тела полностью восстанавливаются.
Изменение длины тела Δl = l – l0, где l0 – начальная длина недеформированного тела, l – длина деформированного тела, принято называть величиной деформации.
Величина деформации – это скалярная физическая величина, которая может быть и положительной (тело растягивается), и отрицательной (тело сжимается).
Сила упругости направлена против смещения частей тела при деформации, возникает в деформируемом теле, но приложена к тому объекту, действием которого вызвана деформация.
Закон Гука : Для малых деформаций модуль силы упругости прямо пропорционален величине деформации: Fупр = k |Δl|, где коэффициент пропорциональности k называется жёсткостью.
Единица измерения жёсткости в системе СИ: Н/м. Жёсткость зависит от материала, формы и размеров деформируемого тела.
Внимание! Если тело отсчёта выбранной ИСО расположить у свободного конца деформируемого тела, то при его деформации координата этого конца тела равна величине деформации. Тогда формула закона Гука, записанного для проекции силы упругости, принимает вид: Fупр.x = –kх. Знак «минус» в этом случае указывает на то, что сила упругости направлена в сторону, противоположную смещению частей тела при деформации.
Величины деформаций, для которых справедлив закон Гука, определяются экспериментально для каждого деформируемого тела.
Внимание! Линейная зависимость между модулем силы упругости и удлинением пружины (закон Гука) лежит в основе способа измерения силы с помощью динамометра.
При этом модуль измеряемой силы равен силе упругости пружины, которая, в свою очередь, рассчитывается по величине деформации. Для правильного измерения силы, растягивающей пружину динамометра, необходимо, чтобы во время измерения динамометр находился в покое или двигался прямолинейно и равномерно! Только в этом случае модуль измеряемой силы и модуль силы упругости равны друг другу.
Частные случаи силы упругости:
Внимание! При решении задач часто используется физическая модель «невесомая нерастяжимая нить». Если нить невесома, то она не рассматривается в качестве отдельного тела, для неё не пишется уравнение движения. Условие невесомости приводит также к тому, что силы упругости, возникающие в нити и приложенные к двум связанным телам, равны по модулю (исключение могут составлять задачи, в которых нить перекинута через весомый блок). Нерастяжимость нити приводит к тому, что связанные ею тела движутся с одинаковым по модулю ускорением.
Конспект урока «Деформация тела».
Учебные материалы
Деформацией называется изменение формы и размеров тела под действием приложенных сил.
Внешние и внутренние силы приводят к возникновению в сечении тела напряжений.
Напряжением называется сила, приходящаяся на единицу площади сечения тела.
Под действием осевых растягивающих сил Р (рисунке 13) в плоскости m-n действуют нормальные растягивающие напряжения:
В произвольно выбранной плоскости mi-ni площадь сечения Fa=F/Сos a, действующая сила в этом сечении Рa=Р × Cos a, нормальные напряжения
σ a = Pa / Fa = σ × Cos 2 a, касательные напряжения τ a=1/2 × σ × Sin 2 a.
Касательные напряжения τ a, обращаясь в нуль в продольных и поперечных сечениях, имеют наибольшее значение на площадях, наклоненных под углом 45 0 к оси растянутого стержня: τ max = σ /2.
Рисунок 13 — Схема образования растягивающих нормальных ( σ ) и касательных ( τ ) напряжений
Деформация металла под действием напряжений может быть упругой и пластической.
Упругой называется деформация, полностью исчезающая после прекращения действия вызвавших ее напряжений.
Она не вызывает заметных остаточных изменений в структуре и свойствах металла, происходит незначительное по величине и обратимое изменение расстояний между атомами в кристаллической решетке металла (рисунке 14). С увеличением межатомных расстояний значительно возрастают силы взаимного притяжения атомов. При снятии напряжений под действием сил притяжения атомы возвращаются в исходное положение и упругая деформация исчезнет. Нормальные напряжения могут вызвать только упругую деформацию.
Если нормальные напряжения достигают величины сил межатомной связи, то произойдет хрупкое разрушение путем отрыва.
Пластической, или остаточной, называется деформация, остающаяся после прекращения действия сил, вызвавших ее.
В кристаллической решетке металла (рисунок 15) происходит необратимое перемещение атомов. После снятия напряжений в теле наблюдается остаточное изменение формы и размеров, причем сплошность тела не нарушается.
Необратимое смещение атомов на параметр решетки происходит под действием касательных напряжений. В кристаллической решетке сдвиг (скольжение) происходит по плоскостям и в направлениях с наиболее плотной упаковкой атомов. Эти плоскости называются плоскостями сдвига, или скольжения. Чем больше элементов сдвига в решетке, тем выше пластичность металла. Наиболее легкий сдвиг по этим плоскостям и направлениям объясняется тем, что при этом величина перемещения атомов из одного устойчивого равновесного положения в узле решетки в другое такое же положение будет минимальной, а следовательно, необходимое касательное напряжение — наименьшим. В результате развития пластической деформации происходит разрушение путем среза.
Для одновременного перемещения атомов в плоскости сдвига требуется очень большое напряжение, которое в сотни и тысячи раз превышает реальное сопротивление сдвигу (таблица 1).
Таблица 1 — Теоретическое и реальное сопротивление сдвигу для пластической деформации некоторых металлов
Металл | Сопротивление сдвигу, МПа | |
теоретическое | реальное | |
Железо Алюминий Медь | 2300 1900 1540 | 29 1,2…2,4 1,0 |
Расхождения между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено дислокационным механизмом пластической деформации. Для перемещения дислокаций (рисунок 16) требуется лишь незначительное перемещение атомов, и пластическая деформация совершается при небольшой величине касательных напряжений, что и соответствует экспериментальным данным.
При выходе дислокации на поверхность металла она перестает существовать, но процесс пластической деформации сопровождается не только движением дислокаций, но и их зарождением. Источниками новых дислокаций могут быть вакансии, дислоцированные атомы, границы блоков и зерен, сами дислокации, не способные перемещаться.
Пластическая деформация поликристалла принципиально идет по тому же механизму, что и рассмотренного выше монокристалла, но имеет некоторую особенность. В поликристаллическом металле зерна, а следовательно, и плоскости легкого скольжения имеют разную ориентировку.
Вследствие влияния соседних зерен деформирование каждого зерна не может совершаться свободно и начнется, когда напряжения превысят предел упругости. Сначала пластическая деформация может происходить лишь в отдельных зернах, у которых плоскости легкого скольжения совпадают с направлением максимальных касательных напряжений (под углом 450 к направлению приложенных сил). Кроме сдвига происходит и поворот частей зерна. При повороте плоскостей сдвиг облегчается. Смещение и поворот зерна приводит к повороту других зерен, в которых начинается процесс пластической деформации (рисунок 17).
В результате сдвигов и поворота плоскостей скольжения зерно (рис. 18, а) постепенно вытягивается в направлении растягивающих сил и образуется характерная ориентированная волнистая структура (рисунок 18, б), которая называется текстурой. В этом состоянии металл имеет резко выраженную анизотропию свойств, т.е. неоднородность свойств вдоль и поперек волокон. Так, вдоль волокон металл прочнее, чем в поперечном направлении.
Рисунок 17 — Схема возможных направлений плоскостей сдвига в зернах металла а — до деформации; б — после формации
13. Упругая и пластическая деформация металлов
13. Упругая и пластическая деформация металлов
Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.
Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.
При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.
Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.
Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.
Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.
Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.
Физическая природа деформации металлов
Под действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.
Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.
С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.
Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.
При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.
При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.
Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.
Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.
Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
БИЧ МЕТАЛЛОВ
БИЧ МЕТАЛЛОВ В мире нет ничего вечного — эту нехитрую истину все знают давно. То, что кажется навеки незыблемым — горы, гранитные глыбы, целые материки, — со временем разрушаются, рассыпаются в пыль, уходят под воду, проваливаются в глубины. Исчезают целые культуры, народы
Свойства металлов и сплавов
Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к
1. Строение металлов
1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот. Для того чтобы
1. Деформация и разрушение
1. Деформация и разрушение Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении некоторого напряжения деформация (частично)
2. Механические свойства металлов
3. Способы упрочнения металлов и сплавов
3. Способы упрочнения металлов и сплавов Поверхностное упрочнение металлов и сплавов широко применяется во многих отраслях промышленности, в частности в современном машиностроении. Оно позволяет получить высокую твердость и износостойкость поверхностного слоя при
ЛЕКЦИЯ № 8. Способы обработки металлов
ЛЕКЦИЯ № 8. Способы обработки металлов 1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах,
ЛЕКЦИЯ № 11. Сплавы цветных металлов
ЛЕКЦИЯ № 11. Сплавы цветных металлов 1. Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы
32. Деформация в движущейся вязкой жидкости
32. Деформация в движущейся вязкой жидкости В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.Если вспомнить из механики закон Гука, то
§ 23. Коррозия и эрозия металлов
§ 23. Коррозия и эрозия металлов Коррозией металлов называется их разрушение вследствие химического или электрохимического взаимодействия с внешней средой.Химической коррозией называется процесс разрушения металлов без электрического тока, происходящий в среде сухих
4.16. Химическое окрашивание металлов
4.16. Химическое окрашивание металлов Старинные рецепты. (См. «Наука и жизнь», № 9, 1980).Применяя из старинных журналов некоторые рецепты окрашивания металлов, предупреждаем сразу тех, кто пожелает воспользоваться при работе с такими едкими и ядовитыми веществами, как
7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ
7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.Металлы, имеющие
7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ
7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ Разработано и широко применяется несколько методов анодной обработки металлов: электрополирование, анодное оксидирование и размерная обработка.Электрохимическое полирование было открыто русским химиком Е.И. Шпитальским в 1910 г. Процесс
17. Теплоемкость и теплопроводность металлов и сплавов
17. Теплоемкость и теплопроводность металлов и сплавов Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины