что такое разбавленный раствор
Раствор
Из Википедии — свободной энциклопедии
Раство́р — однородная (гомогенная) система, в состав которой входят молекулы (атомы, ионы) двух или более типов, причём доля частиц каждого типа может непрерывно меняться в определённых пределах. От механической смеси раствор отличается однородностью, от химического соединения — непостоянством состава.
Растворитель — это компонент, агрегатное состояние которого не изменяется при образовании раствора, а при одинаковом агрегатном состоянии компонентов находится в избытке.
В зависимости от агрегатного состояния раствор может быть газовым (то же, что смесь газов), жидким или твёрдым. Обычно, говоря о растворе, имеют в виду жидкий раствор.
Также существуют молекулярные растворы (неэлектролитов) и растворы электролитов.
По содержанию процентной концентрации различают разбавленные (с небольшим содержанием) и концентрированные растворы (с большим содержанием растворенного вещества). Это одни из основных видов растворов по содержанию концентрированного вещества.
Химическое взаимодействие растворенного вещества с растворителем в некоторых случаях приводит к диссоциации. Частицы (как ионы, образовавшиеся в результате диссоциации, так и недиссоциированные молекулы) часто взаимодействуют с растворителем, с образованием структур, которые называются сольватами (гидратами, если речь о водных растворах). Этот процесс называют сольватацией (гидратацией). Гидратную теорию растворов предложил русский учёный Д. И. Менделеев.
Лекция по теме: Растворы
Лекция по теме: «Растворы»
Понятие о дисперсных системах.
Дисперсными системами называются системы, в которых одно вещество, находясь в мелкораздробленном состоянии (дисперсная фаза), равномерно распределено в другом (дисперсная среда).
В зависимости от размеров частиц дисперсной фазы различают следующие дисперсные системы:
Грубодисперсные системы, размер частиц велик (эмульсии, суспензии). Примером может служить раствор глины в воде.
По агрегатному состоянию фаз Вильгельм Фридрих Оствальд предложил ставшую весьма распространенной классификацию:
Коллоидные растворы (т/ж)
Глина, зубная паста, губная помада.
Раствор яичного белка, плазма крови, спиртовая вытяжка хлорофилла, кремниевая кислота.
Растворы солей, щелочей, сахара.
Твердые растворы (т/т)
Сплавы, минералы, цветные стекла.
Туман, облака, моросящий дождь, струя из аэрозольного баллончика.
Истинные растворы (ж/ж)
Молоко, масло, майонез, крем, мази, эмульсионные краски.
Нисшие спирты +вода, ацетон + вода.
Твердая эмульсия (ж/т)
Дисперсной системы не образуется
Пена газированной воды, мыльная пена, взбитые сливки, взбитый крем, пастила.
Пенопласт, пенобетон, пеностекло, пемза, лава.
Растворы — гомогенные (однородные) системы переменного состава, которые содержат два или несколько компонентов.
По агрегатному состоянию растворы подразделяются:
Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых):
Жидкие растворы могут быть водные и неводные. Водные растворы — это растворы, в которых растворителем является вода. Неводные растворы — это растворы, в которых растворителями являются другие жидкости (бензол, спирт, эфир и т. д.).
На практике чаще применяются водные растворы.
Растворение веществ (образование растворов).
Растворение — сложный физико-химический процесс, который включает несколько стадий:
1. Разрушение кристаллической решетки растворенного вещества.
Рассмотрим растворение хлорида калия в воде.
Причиной этого являются собственные колебательные движения частиц и притяжение со стороны молекул растворителя.
2. Постепенный переход частиц, образующих кристалл, в раствор.
3. Распределение частиц, перешедших в раствор, по всему объему растворителя.
Растворы, компонентами которых являются ионы, называются ионными (растворы электролитов, так как они проводят электрический ток). Растворы, компонентами которых являются электро-нейтральные частицы, называются молекулярными (растворы неэлектролитов).
Долгое время считалось, что растворитель — это среда, химически инертная по отношению к растворенному веществу. То есть между частицами растворителя и частицами растворенного вещества отсутствует межмолекулярное взаимодействие, как и в обычных механических смесях.
Впоследствии оказалось, что физическая теория применима лишь к небольшой группе так называемых идеальных растворов. Примерами идеальных растворов являются многие газовые растворы (газовые смеси), образованные из не реагирующих между собой газов. Как и отдельные газы, такие газовые растворы подчиняются газовым законам. Физические свойства таких смесей (плотность, давление и др.) вычисляются как аддитивные (от лат. – сложение), т. е. из свойств компонентов, составляющих смесь. Например, общее давление газовой смеси равно сумме парциальных давлений14 ее компонентов (закон Дальтона, 1800 г.).
1. Химическое (донорно-акцепторное взаимодействие) взаимодействие, между растворителем и растворенным веществом. Например, хлор, растворяясь, взаимодействует с водой с образованием хлорной воды:
2. Ион-дипольное взаимодействие (при растворении веществ с ионной кристаллической решеткой). Например, в случае растворения хлорида натрия образуются ионы натрия и хлора, вокруг которых за счет сил электростатического притяжения удерживаются молекулы воды.
3. Диполь-дипольное взаимодействие (при растворении веществ с молекулярной кристаллической решеткой).
Доказательством физико-химического характера процесса растворения являются тепловые эффекты при растворении, т. е. выделение или поглощение теплоты.
Тепловой эффект растворения равен сумме тепловых эффектов физического и химического процессов. Физический процесс протекает с поглощением теплоты, химический — с выделением.
Если для разрушения структуры вещества необходимо больше теплоты, чем ее образуется при гидратации, то растворение — эндотермический процесс. Это происходит например, при растворении в воде NaNO 3 ; КС l ; K 2 SO 4 ; KNO 2 ; NH 4 Cl и др.
Итак, разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя — это физический процесс. Одновременно происходит взаимодействие молекул растворителя с частицами растворенного вещества, т. е. химический процесс. В результате этого взаимодействия образуются сольваты.
Сольваты — продукты переменного состава, которые образуются при химическом взаимодействии частиц растворенного вещества с молекулами растворителя.
Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией. Процесс образования гидратов называется гидратацией. Гидраты некоторых веществ можно выделить в кристаллическом виде при выпаривании растворов. Например:
При растворении в воде сульфата меди (II) происходит его диссоциация на ионы:
Образующиеся ионы взаимодействуют с молекулами воды:
Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами.
Вода, входящая в их состав, называется кристаллизационной водой. Примеры
В спокойном состоянии они могут годами оставаться без изменения.
Но стоит бросить в раствор кристаллик того вещества, которое в нем растворено, как вокруг него начинают расти другие кристаллы и через некоторое время весь избыток растворенного вещества выкристаллизовывается. Иногда кристаллизация начинается от простого сотрясения раствора или от трения стеклянной палочкой о стенки сосуда, в котором находится раствор. При кристаллизации выделяется значительное количество теплоты, вследствие чего сосуд с раствором заметно нагревается. Очень легко образуют пересыщенные растворы глауберова соль, бура, тиосульфат натрия.
В итоге, пересыщенные растворы являются неустойчивыми системами. Они Способны к существованию только при отсутствии в системе твердых частиц растворенного вещества.
Количественной характеристикой растворимости является коэффициент растворимости.
Коэффициент растворимости показывает, какая максимальная масса вещества может раствориться в 1000 мл растворителя при данной температуре. Растворимость выражают в граммах на литр (г/л).
По растворимости в воде вещества делят на 3 группы:
Растворимость веществ зависит от природы растворителя, от природы растворенного вещества, температуры, давления (для газов). Растворимость газов при повышении температуры уменьшается, при повышении давления — увеличивается.
По кривым растворимости можно определить:
1) коэффициент растворимости веществ при различных температурах;
2 ) массу растворенного вещества, которое выпадает в осадок при охлаждении раствора от t 1 °С до t 2 ° С.
Процесс выделения вещества путем испарения или охлаждения его насыщенного раствора называется перекристаллизацией. Перекристаллизация используется для очистки веществ.
Важной характеристикой любого раствора является его состав.
Количественная характеристика состава растворов
Для качественной характеристики растворов используют понятия «разбавленный раствор» (содержит мало растворенного вещества) и «концентрированный раствор» (содержит много растворенного вещества). Но границы между ними условны.
При работе с растворами необходимо знать их количественный состав. Количественный состав растворов выражается различными способами. Мы изучим два способа: массовая доля растворенного вещества и молярная концентрация (молярность).
Массовая доля растворенного вещества
Массовой долей растворенного вещества называется отношение массы растворенного вещества к массе раствора:
ω — массовая доля растворенного вещества, выраженная и долях единицы;
m (в-ва) — масса растворенного вещества, г;
m (р-ра) — масса раствора, г.
Массовую долю можно выражать также в процентах (%):
Массовую долю растворенного вещества в процентах (%) часто называют процентной концентрацией раствора.
Молярная концентрация показывает число молей растворенного вещества в одном литре раствора.
Молярную концентрацию можно рассчитать по формуле
На практике часто переходят от одного способа выражения концентрации к другому по известной плотности раствора, применяя формулу т = ρ • V.
Что такое разбавленный раствор
§7.6. Растворы. Как происходит растворение. Насыщенные растворы
Растворы не отстаиваются и сохраняются все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцовокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул или ионов.
Растворами называются гомогенные (т.е. однородные) смеси переменного состава из двух или более веществ. Наиболее распространенное агрегатное состояние растворов – жидкое.
Под переменным составом раствора понимают то простое обстоятельство, что соотношение смешанных друг с другом веществ может непрерывно изменяться в определенных пределах. Например, раствор соли можно разбавлять чистой водой или, наоборот, упаривать, но полученные при этом жидкости в любом случае будут называться растворами соли. Приведнное выше определение не охватывает всех свойств растворов, поэтому в конце параграфа мы его уточним.
Любой раствор состоит из растворителя и растворенного вещества:
Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.
Не всегда обязательно вода является растворителем – существуют и неводные растворы. Однако когда речь идет о водных растворах, воду считают растворителем и в тех случаях, когда ее меньше. Например, говорят о 96%-ном растворе этилового спирта в воде, а не о 4 %-ном растворе воды в спирте.
** Существуют растворы не только жидкие, но и твердые. В твердых растворах частицы одного вещества хаотично распределены среди частиц какого-нибудь другого, но обязательно твердого вещества. Например, водород охотно растворяется в некоторых металлах (платине, палладии), и это пример твердого раствора. Смеси газов (например, воздух) не называют растворами. Дело в том, что важным свойством растворов является заметное взаимодействие между частицами растворителя и растворенных веществ, а в газах такое взаимодействие практически отсутствует.
Давайте разберемся в том, как происходит растворение веществ. Для этого понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.
Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды межмолекулярные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 7-2).
Рис. 7-2. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки). Между молекулами сахара и воды возникают межмолекулярные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.
Растворение веществ можно сравнить с перетаскиванием мебели. Представьте, что на время ремонта школьные столы (или парты) составили в спортзале в строгом порядке аккуратным штабелем. Этот упорядоченный штабель является моделью кристаллического вещества, а каждый стол – как бы «молекулой» такого вещества. После окончания ремонта учеников попросили помочь перетащить столы. В спортзал вбежала ватага учеников (эта ватага не что иное, как растворитель, а каждый ученик – молекула растворителя), кто-то залез наверх, кто-то тянет столы снизу – короче, работа закипела. Очень скоро столы, каждый из которых несут где двое, а где четверо ребят, оказываются в разных концах школы, а от штабеля в спортзале не остается и следа.
Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него – идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается.
Раствор, в котором данное вещество при данной температуре уже больше не растворяется, называется НАСЫЩЕННЫМ.
В насыщенном растворе при данной температуре содержится максимально возможное количество растворенного вещества.
** Если вернуться к примеру со школьными столами, то там тоже возможно образование «насыщенного раствора». Это может произойти в том случае, если столов окажется слишком много и для них в классах уже не будет хватать места. В этом случае часть учеников будет просто-напросто вынуждена вернуться и поставить столы в тот же штабель, откуда они были взяты. Таким образом, количество мебели в спортзале перестанет уменьшаться. Разумеется, ученики гораздо умнее молекул воды и не станут дальше делать бесполезную работу. В реальном растворе, где есть тепловое движение молекул, молекулы продолжают “трудиться”, транспортируя частицы растворенного вещества из кристалла в раствор и обратно.
Такая ситуация называется ДИНАМИЧЕСКИМ равновесием (равновесием в движении). В связи с этим можно дополнить определение насыщенного раствора:
Насыщенным называется такой раствор, который находится в динамическом равновесии с избытком растворенного вещества.
Следовательно, никакое самое сильное перемешивание не помогает растворить в насыщенном растворе дополнительные порции вещества. Однако, если повысить температуру, то раствор вновь может стать ненасыщенным и растворить еще определенную порцию кристаллов.
Мы говорим: «сахар растворяется в воде хорошо» или «мел плохо растворяется в воде». Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества.
РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.
В целом растворимость разных веществ определяется многими сложными причинами, некоторые из которых до сих пор не ясны. Поэтому трудно предсказать растворимость какого-либо вещества по его химической формуле или агрегатному состоянию.
В качестве примера приведем растворимость (в граммах вещества на 100 г воды при комнатной температуре) нескольких веществ: твердых, жидких и газообразных, среди которых многие имеют похожие химические формулы (таблица 7-2).
Таблица 7-2. Растворимость некоторых веществ в воде при комнатной температуре.
Рекомендации по приготовлению растворов в лаборатории
Содержание
Приготовление растворов из твердых веществ
Количество твердого вещества, которое можно растворить в данном количестве воды, имеет предел, зависящий от свойств взятых веществ и от тех условий, в которых происходит растворение. Когда этот предел достигнут, получается насыщенный раствор. Концентрация насыщенного раствора называется растворимостью.
Следовательно, насыщение раствора каким-либо веществом зависит от его растворимости в данном растворителе при данных условиях. Таким образом, совершенно не обязательно, чтобы концентрация насыщенного раствора была бы высокой.
Растворимость твердого вещества можно повысить, если раствор нагревать. Однако некоторые соли не подчиняются этому правилу. Растворимость их или понижается с повышением температуры или повышается только до определенной температуры, выше которой растворимость уменьшается. Скорость растворения твердого вещества зависит от размера его частиц. Чем крупнее куски, тем медленнее идет растворение; наоборот, чем мельче отдельные частицы твердого вещества, тем скорее переходит оно в раствор. Поэтому перед растворением твердого вещества его всегда следует измельчить в ступке и отвешивать для растворения только измельченное вещество. Сказанное не относится к гигроскопичным веществам, так как последние в измельченном виде очень легко поглощают влагу из воздуха вследствие большого увеличения поверхности. Поэтому гигроскопичные вещества растворяют, не измельчая, разве только быстро разбив большие куски.
Иногда при растворении твердых веществ, например кристаллических, их помещают в колбу. При неправильном введении таких веществ (особенно крупных кусков или кристаллов) случается, что колба разбивается. Чтобы не разбить колбу, поступают так: наклоняют ее под углом не больше 45° (лучше меньше) и опускают твердое вещество, чтобы оно скатывалось по горлу и стенке шара колбы. Удобнее сначала налить в колбу часть рассчитанного количества растворителя, например воды, а затем вводить твердое вещество, как описано выше, иногда встряхивая колбу. Оставшуюся часть растворителя вводят после того, как будет пересыпано все количество твердого вещества, предназначенного для растворения.
Приготовление растворов щелочей и кислот
При растворении щелочей в воде происходит сильное разогревание, поэтому для приготовления таких растворов следует пользоваться не стеклянными, а фарфоровыми сосудами. Раствор перемешивают стеклянной палочкой. Нужно следить, чтобы брызги раствора ни в коем случае не попали в глаза, на кожу и одежду.
Концентрированные растворы щелочей выщелачивают стекло, поэтому лучше хранить эти растворы в полиэтиленовой посуде или в стеклянной бутыли, внутренние стенки которой предварительно покрывают парафином.
При разбавлении кислот необходимо приливать кислоту к воде, а не наоборот. Смешивание кислоты с водой сопровождается сильным разогреванием, поэтому при добавлении воды в кислоту происходит разбрызгивание кислоты, что очень опасно. Если кислота попала на кожу или одежду, необходимо смыть ее большим количеством воды, а затем нейтрализовать раствором щелочи.
Рис. 1. Техника безопасности при приготовлении растворов концентрированных кислот
1 – нельзя добавлять воду в кислоту; 2 – при смешивании кислоты и воды происходит выделение большого количества тепла; 3 – раствор может вскипеть и выплеснуться из емкости; 4 – приливайте кислоту к воде при постоянном перемешивании.
Растворы кислот хранят в плотно закрытых сосудах.
Приготовление растворов из фиксаналов
Для быстрого приготовления точных растворов пользуются фиксаналами.
Фиксанал – точно взвешенное количество реактива, необходимое для приготовления 1 литра 0,1 н или 0,01 н растворов, содержащееся в запаянной стеклянной ампуле. Количество вещества в ампуле соответствует определенному числу грамм-эквивалентов данного вещества, и при растворении его образуется раствор известной нормальности. Фиксанал может быть в виде навески твердого вещества или в виде точно отмеренного объема раствора.
Для приготовления раствора из фиксанала содержимое ампулы количественно переносят в мерную колбу и раствор разбавляют дистиллированной водой, доводят его объем до метки:
1. Ампулу обмывают сначала теплой, а затем холодной дистиллированной водой, чтобы смыть этикетку и возможные загрязнения.
3. Воронку вместе с бойком вставляют в чистую мерную колбу.
4. Ампулу переворачивают дном книзу и, ударяя ее нижним углублением по бойку в воронке, разбивают дно ампулы. Не изменяя положения ампулы над воронкой, вторым бойком пробиваю верхнее углубление на ней. Содержимое ампулы при этом выливается или высыпается в мерную колбу.
5. Ампулу держат в том же положении и в образовавшееся верхнее отверстие вставляют конец трубки промывалки и сильной струей воды из промывалки хорошо промывают наружную поверхность ампулы и воронку с бойком, после чего воронку вынимают из колбы.
6. Уровень жидкости в колбе доводят до метки. Колбу плотно закрывают пробкой и тщательно перемешивают раствор.
Рис. 2. Перенос содержимого ампулы фиксанала в мерную колбу
1 – ампула с точной навеской вещества; 2 – крестовидный боек; 3 – боек для стенки ампулы.
Подробнее о способах приготовления растворов по точной и приблизительной навеске, расчете концентрации полученного раствора и установке титра читайте в статье «Способы приготовления растворов».
Способы приготовления растворов
Содержание
Существует несколько способов приготовления растворов. По способу приготовления различают первичные и вторичные стандартные растворы.
Приготовление раствора по точной навеске
По точной навеске готовят первичные стандартные растворы, растворы стандартных установочных веществ, которые должны удовлетворять следующим требованиям:
а) состав их должен строго соответствовать химической формуле;
б) вещества должны быть устойчивыми при хранении в растворе и в сухом виде (не окисляться, не поглощать диоксид углерода, воду, не терять кристаллизационную воду);
в) величина молярной массы эквивалента должна быть по возможности наибольшей для уменьшения погрешности взвешивания и титрования.
При приготовлении растворов по точной навеске задаются концентрацией раствора и его объемом.
Основные этапы работы:
Приготовление раствора по приблизительной навеске
По приблизительной навеске готовят растворы нестандартных веществ или растворы приблизительной концентрации. Этапы работы такие же, как и при приготовлении растворов по точной навеске, но навеску рассчитывают с точностью не более, чем до 0,01 г и берут ее на технических весах. Точную концентрацию такого раствора устанавливают титрованием (часто растворами первичных стандартов) и рассчитывают по закону эквивалентов:
Приготовленные таким образом растворы с точно установленной концентрацией называются вторичными стандартами или титрованными.
Приготовление раствора из фиксанала
Из фиксанала (норма-дозы, стандарт-титра) готовят первичные стандартные растворы точной концентрации. Фиксанал – стеклянная ампула, в которой содержится точно известное количество вещества (nэкв) в кристаллическом виде или в виде раствора. Содержимое фиксанала количественно переносят в мерную колбу, доводят уровень раствора до метки, раствор перемешивают. Концентрация раствора должна быть задана, а вместимость мерной колбы рассчитывают, используя формулу:
Приготовление раствора разбавлением концентрированного раствора
Разбавлением концентрированных растворов готовят растворы многих веществ. В этом случае должны быть заданы объем разбавленного раствора, его концентрация и концентрация концентрированного раствора. Рассчитывают необходимый для разбавления объем концентрированного раствора, затем измеряют рассчитанный объем, переносят в мерную колбу или в мерный стакан, доводят уровень жидкости до метки дистиллированной водой и перемешивают. Если исходный раствор имел точную концентрацию и при его разбавлении использовали точную мерную посуду, то получают раствор точной концентрации. В противном случае получают раствор приблизительной концентрации.
Все расчеты ведут с точностью не более чем до 0,01. Точную концентрацию устанавливают титрованием.
Установка титра
Установка титра – одна из важных операций лабораторной техники. От правильности приготовления титрованного раствора зависит и результат анализа. Так как каждый анализ почти всегда сопровождается титрованием, каждый работник лаборатории должен хорошо освоить технику проведения этой операции. Нужно помнить несколько правил, относящихся к титрованным растворам.
1. Титрованные растворы должны быть по возможности свежими. Длительное хранение их не должно допускаться. Для каждого раствора есть свой предельный срок хранения.
2. Титрованные растворы при стоянии изменяют свой титр, поэтому их следует иногда проверять. Если же делают особенно ответственный анализ, проверка титра раствора обязательна.
3. При приготовлении растворов марганцовокислого калия титр их следует устанавливать не ранее, чем через 3—4 дня после приготовления. То же относится ко всём другим растворам, способным изменяться со временем или при соприкосновении с воздухом, стеклом и пр.
4. Титрованные растворы щелочей лучше хранить в бутылях, покрытых внутри парафином, а также защищать их от действия двуокиси углерода воздуха (хлоркальциевая трубка с натронной известью или аскаритом).
5. Все бутыли с титрованными растворами должны иметь четкую надпись с указанием вещества, нормальности, поправки, времени изготовления раствора и даты проверки титра.
Во время титрования колбу нужно держать левой рукой, а правой рукой управлять краном бюретки, давая стекать жидкости равномерно. При титровании очень большое значение имеет скорость, поэтому, при повторном титровании одного и того же раствора, нужно, чтобы скорость добавления раствора из бюретки была по возможности одинаковой, т. е. в одно и то же время вытекало бы определенное количество жидкости. Для перемешивания титруемого раствора очень удобно применять магнитные мешалки. В этом случае титрование можно вести как в обычной конической колбе, так и в специальных, приспособленных для титрования темноокрашенных жидкостей.
Общие рекомендации
Подведем итог сказанному о приготовлении растворов.
1. Все водные растворы следует готовить только на дистиллированной воде. При приготовлении водных растворов солей заданной концентрации нужно учитывать также кристаллизационную воду.
2. Приготовляя точные растворы, нельзя наливать в мерную колбу сразу все нужное количество воды.
3. Мерные колбы калиброваны на определенный объем лишь при температуре, указанной на колбе. Поэтому точный объем жидкости можно получить только при стандартной температуре.
4. Так как приготовить растворы точно заданной концентрации трудно, то, прежде чем пользоваться раствором, надо установить его концентрацию или поправку на нормальность.
5. Необходимо наклеивать этикетки (или делать надпись специальным карандашом) на сосудах с растворами.
6. Все растворы следует готовить только в хорошо вымытой посуде. Надо заботиться о том, чтобы приготовленные растворы не загрязнялись каким-либо образом. Нельзя путать пробки от посуды, содержащей растворы разных веществ.
7. Растворы, которые могут портиться от действия света, такие, как марганцовокислый калий, азотнокислое серебро и др., нужно хранить только в темных склянках. Для некоторых веществ можно употреблять желтые склянки, для других же сосуды необходимо оклеивать черной бумагой, но не покрывать стекло черным лаком: лаковая пленка всегда немного пропускает свет. Если черной бумаги нет, бутыль или другой сосуд следует оклеить плотной бумагой и бумагу покрыть черным лаком.
8. Растворы щелочей нужно хранить так, чтобы на них не действовала двуокись углерода. Для этого в пробку вставляют хлоркальциевую трубку, наполненную натронной известью или другим твердым поглотителем двуокиси углерода.
9. Растворы щелочей следует готовить вначале очень концентрированными и разбавлять их до нужной концентрации только после отстаивания и фильтрования.
10. Надо быть осторожным с растворами, которые могут вредно действовать на кожу рук, одежду или обувь.
11. Все растворы нужно проверять. Точные растворы – путем установки титра, приблизительные – по плотности или иным путем.
12. Растворы (за исключением точных) после приготовления следует обязательно профильтровывать. Это относится одинаково и к водным растворам, и к растворам в органических жидкостях.
13. При приготовлении растворов в органических жидкостях надо применять только чистые растворители и, когда нужно, – безводные. Если растворитель чем-либо загрязнен, его следует перегнать или очистить от примесей каким-либо другим способом.