что такое процесс полимеризации
Полимеризация
Полезное
Смотреть что такое «Полимеризация» в других словарях:
ПОЛИМЕРИЗАЦИЯ — ПОЛИМЕРИЗАЦИЯ, метод синтеза ПОЛИМЕРОВ. Они образуются в процессе химического соединения нескольких простых молекул и представляют собой молекулы с открытой цепью, гигантские разветвленные или сетчатые молекулы, или сочетание и тех, и других.… … Научно-технический энциклопедический словарь
Полимеризация — – процесс синтеза высокомолекулярного вещества путем последовательного присоединения молекул низкомолекулярного вещества к активному центру, находящемуся на конце растущей цепи. Элементный состав (молекулярные формулы) мономера и полимера… … Нефтегазовая микроэнциклопедия
ПОЛИМЕРИЗАЦИЯ — метод синтеза полимеров, при котором взаимодействие молекул мономера (или мономеров) не сопровождается обычно выделением побочных низкомолекулярных соединений. Используется в промышленности для получения полиолефинов, полистирола, полиакрилатов,… … Большой Энциклопедический словарь
ПОЛИМЕРИЗАЦИЯ — органов (или органелл у простейших), процесс увеличения в филогенезе числа равноценных гомологичных образований в организме. Принцип П. выдвинут в 1929 В. А. Догелем. П. обеспечивает множественность элементов данной биол. системы, повышая… … Биологический энциклопедический словарь
полимеризация — сущ., кол во синонимов: 8 • автополимеризация (1) • биополимеризация (1) • … Словарь синонимов
ПОЛИМЕРИЗАЦИЯ — ПОЛИМЕРИЗАЦИЯ, процесс образования полимеров (см. Полимерия) как переход от малостойкой формы вещества к более стойкой, является экзотермическим процессом. Выделение тепла при П. обычно значительно; напр. при П. трех молекул ацетальдегида в… … Большая медицинская энциклопедия
полимеризация — Образование высокомолекулярного соединения, протекающее по механизму присоединения молекул исходного низкомолекулярного соединения и не сопровождающееся выделением простейших веществ. [ГОСТ 27244 93] Тематики волокна химические … Справочник технического переводчика
Полимеризация — * полімерызацыя * polymerization образование полимера (см.) из мономерных молекул, при котором не происходит выделения побочных низкомолекулярных соединений … Генетика. Энциклопедический словарь
ПОЛИМЕРИЗАЦИЯ — хим. реакция синтеза (см.), при которой одинаковые молекулы звенья (мономеры) соединяются в огромные молекулы цепочки. Процессы получения высокомолекулярных соединений (см.) называют цепными реакциями … Большая политехническая энциклопедия
Полимеризация — Анионная полимеризация этиленоксида в полиэтиленгликоль Полимеризация (др. греч … Википедия
ПОЛИМЕРИЗАЦИЯ — (от греч. polymeres состоящий из многих частей), процесс получения высокомолекулярных соединений, при к ром молекула полимера (макромолекула )образуется путем последоват. присоединения молекул низ комол. в ва ( мономера )к активному центру,… … Химическая энциклопедия
Что такое полимеризация?
Слово «полимеризация» в переводе с древнегреческого означает состоящее из множества частей.
В наше время полимеризацией называется процесс, в результате которого образуется полимер (высокомолекулярное соединение). Процесс протекает в результате присоединения молекул, имеющих малую молекулярную массу к активным центрам в возникающей молекуле полимера, причем этот процесс многократно повторяется.
Звено, которое повторяется называют мономерным или структурным.
Если рассмотреть молекулярный состав мономера и полимера, то он примерно, одинаковый. Как правило мономерами являются соединения, которые имеют способность открываться, вставать реакционноспособными и образовывать новые связи с другими соединениями, это обеспечивает рост цепи. Такими соединениями являются молекулы, содержащие кратные связи или ароматическое кольцо.
Немного истории
Процесс полимеризации был открыт учеными в середине 19 века. В это же время были получены первые мономеры, способные полимеризоваться – это стирол, изопрен и т.п. Но открытие процесса было условным, так как полное представление, что это за процесс, какие реакции и по какому механизму протекают было получено лишь в двадцатые годы 20 века благодаря Российским ученым. А в 1922 году химик Штаудингер представил доказательства, что полимеры – это соединения, которые состоят из больших молекул, связь между атомами которых обусловлена ковалентными связями.
Полимерная классификация
Есть несколько признаков, которые могут лежать в основе классификации.
Если в реакции «создания длинной цепи» принимает участие только один мономер, то такой процесс синтеза носит название «гомополимеризацией».
Если же в реакции принимают участвуют два мономера, то ее принято называть «сополимеризация».
Рост цепи, в ходе протекания реакции полимеризации проходит с присоединением мономера к активному центру. Если данный центр является радикальным, то и реакция полимеризации будет радикальной. Если активным центром выступает ион – то реакция ионная. Она в свою очередь делиться по типу иона на катионную и анионную.
Также в дополнении существует стереоспецифическая полимеризация. Для нее характерно получение полимеров с упорядоченной структурой.
Еще полимеризацию можно классифицировать по агрегатному состоянию веществ:
При ступенчатой полимеризации протекает реакция между двумя молекулами мономера, поэтому макроцепь образуется через стадии формирования димеров, тримеров и т.п. Реакция роста полимера протекает медленно.
При цепной полимеризации рост происходит в результате взаимодействия мономера и активного центра, расположенного на конце цепи. Полимеры, полученные по данному типу полимеризации имеют большую молекулярную массу.
В нашем научном мире принято под полимеризацией понимать как раз цепной тип.
По ЮПАК выделяют четыре вида:
Описание механизма цепного типа полимеризации
Цепная полимеризация протекает через четыре основные стадии:
Промышленная полимеризация
В промышленном процессе полимеризации ее проводят четырьмя основными способами: объемным методом, в растворе, в суспензии или в эмульсии.
Наибольшее распространение получила объёмная полимеризация. Особенно это касается процессов, в результате которых необходимо получить конечный продукт в твердой фазе. Данный метод синтеза позволяет получать продукт, содержащий минимальное количество примесей. Как и любой другой способ получения, объемная полимеризация не лишена минусов.
Если полимеризация протекает в растворе, то проблемы с перемешиванием не возникают, реактор не пачкается. Но, с другой стороны, эффективность синтеза низкая, требуется дополнительно стадия выделение полимера. Плюс, существует проблемы с организацией производства, так как применяемые растворители огнеопасны и токсичны.
В суспензированной полимеризации применяется смесь с низкой вязкостью, в ней теплоперенос протекает более эффективно. Но, к сожалению, данное производство сложно провести в крупнотоннажном размере. А еще существует проблема, связанная с тем, что требуются большие затраты на утилизацию отработанной воды.
Эмульсированная полимеризация дает возможность получить конечный продукт в виде эмульсии (латекс). Данный вид полимеризации имеет преимущества: низкую степень вязкости и хорошее распределение тепла. А минусами процесса является необходимость выделения полимера, наличие загрязняющих продукт примесей.
Открытие процесса полимеризации, понимание протекания ее реакций произвело революцию во всем мире. Полимеризация позволила получить пластик, синтетические ткани, сверхпрочные, огнеупорные материалы, медицинское оборудование и множество «искусственных» органов, тканей, что позволило спасти жизнь миллионов людей.
Продукты полимеризации применяются плотно вошли в нашу жизнь с 20 века. Теперь они окружают нас во всем – одежде, быте, работе. Во всех сферах жизни применяются высокомолекулярные соединения: корпуса телефонов и бытовой техники, строительные материалы, лаки и краски, одежда, спецодежда, парники, пленки и многое-многое другое. Полимеры сделали нашу жизнь комфортабельнее, безопаснее, но и мы не должны забывать, что несмотря на то, что в природе существуют «врожденные», созданные ею самой полимеры, но искусственно созданное вещество, попадая в землю, воду может принести вред окружающей среде. От пакетов погибают рыбы, от сжигания пластика отравляется воздух, отравления почвы приводит к тому, что на ней произрастают «отравленные» растения, которые используют в пищу животные и люди. Поэтому, пользуясь полимерами, всегда нужно помнить о правильности их утилизации, чтобы сохранить окружающий мир для наших детей. Сейчас данному вопросу экологической безопасности уделяется особое внимание. Спустя два века человечество стало плотно задумываться о том, как безопасно избавиться, от искусственно созданного. Все больше технологий утилизации полимеров разрабатывается, была введена программа разделения отходов, сдача отдельно особо опасных. Мы все должны заботиться об окружающем мире и беречь его.
Полимеризация
Полимериза́ция (др.-греч. πολυμερής — состоящий из многих частей) — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера. Молекула мономера, входящая в состав полимера, образует т.наз. мономерное (структурное) звено. Элементный состав (молекулярные формулы) мономера и полимера приблизительно одинаков.
Обычно мономерами являются соединения, содержащие кратные связи, которые способны, раскрываясь, образовывать новые связи с другими молекулами, обеспечивая рост цепей.
Механизм полимеризации обычно включает в себя ряд связанных стадий:
Виды полимеризации
В основу классификации полимеризации могут быть положены различные признаки:
В основе химических превращений полимеров лежит замена одних функциональных групп на другие, что проходит без изменения степени полимеризации.
Исторические данные
Полимеризация была открыта ещё в середине XIX века, практически одновременно с выделением первых способных к полимеризации мономеров (стирола, изопрена, винилхлорида, метакриловой кислоты и др.). Однако суть полимеризации как цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20—30-е гг. XX века благодаря работам Г. Штаудингера, С. В. Лебедева, Б. В. Бызова, К. Циглера. В 1922 химик Штаудингер доказал, что полимеры представляют собой соединения, состоящие из больших молекул, атомы которых связаны между собой ковалентными связями.
ПОЛИМЕРИЗАЦИЯ
(от греч. polymeres-состоящий из многих частей), процесс получения высокомолекулярных соединений, при к-ром молекула полимера (макромолекула )образуется путем последоват. присоединения молекул низ-комол. в-ва ( мономера )к активному центру, находящемуся на конце растущей цепи. По числу участвующих в р-ции мономеров П. разделяют на гомополимеризацию (один мономер) и сополимеризацию (два и более), в зависимости от природы активного центра-на радикальную полимеризацию, в к-рой активным центром является своб. радикал ( макрорадикал), и ионную П., где активные центры-ионы, ионные пары или поляризов. молекулы (см. Анионная полимеризация, Катионная полимеризация, Координационно-ионная полимеризация). Важный вид П.-стереоспецифиче-ская полимеризация, при к-рой образуются полимеры с упорядоченной пространств. структурой ( стереорегулярные полимеры).
П.-особый тип цепных реакции; в ней развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Процесс включает неск. осн. стадий, т. наз. элементарных актов: инициирование-превращ. небольшой доли молекул мономера в активные центры под действием специально вводимых в-в (инициаторы радикальные и катализаторы полимеризации), излучения высоких энергий ( радиационная полимеризация), света (фотополимеризация )или электрич. тока; рост цепи-последоват. присоединение молекул мономера (M) к активному центру (M*):
Вид кинетич. ур-ний П. зависит от механизма конкретных процессов. При их выводе принимают, что активность растущих макромолекул не зависит от их длины и что общая скорость равна скорости р-ции роста цепи (р-ция обычно бимолекулярна):
, где [M]
В р-ции роста, обрыва и передачи цепи может с определенной вероятностью вступить растущая цепь любой длины, поэтому степень П. (число мономерных звеньев в макромолекуле) и молекулярная масса полимеров являются ста-тистич. величинами; их средние значения и характер моле-кулярно-массового распределения определяются механизмом П. и могут быть вычислены, если известна кинетич. схема процесса.
П. может быть осуществлена разл. способами, различающимися по агрегатному состоянию системы. Наиб. распространены блочная полимеризация мономера, полимеризация в растворе, П. в водных дисперсиях (эмульсионная или суспензионная полимеризация), П. газообразного мономера под действием ионизирующего излучения или на пов-сти твердых катализаторов ( газофазная полимеризация), а также твердофазная полимеризация (П. твердого мономера под действием ионизир. излучения или света). Известна полимеризация на наполнителях.
Методами П. получают ок. 3 / 4 общего мирового выпуска синтетич. полимеров, в т. ч. такие наиб. крупнотоннажные, как полиолефины, полистирол, поливинилхлорид, а также осн. массу CK (см. Каучуки синтетические).
На П. (сначала как на побочную р-цию) было указано еще в сер. 19 в., практически одновременно с выделением первых способных к ней в-в (винилхлорида, стирола, изопрена), однако ее хим. сущность и тесная связь с цепными р-циями были поняты лишь в 20-30-е гг. 20 в. благодаря работам С. В. Лебедева, Г. Штаудингера, С. С. Медведева, Г. Марка, К. Циглера и др.
Лит.: Бреслер С. E., Ерусалимский Б. Л., Физика и химия макромолекул, M.-Л., 1965; Энциклопедия полимеров, т. 1-3, M., 1972-77; Берлин Ал. Ал., Вольфсон С. А., Кинетический метод в синтезе полимеров, M., 1973; Оудиап Дж., Основы химии полимеров, пер. с англ., M., 1974; Encyclopedia of polymer science and technology, v. 1-16, N. Y, 1964-72; Suppl. 1-2, N. Y., 1976-77. А. А. Арест-Якубович.
Для всех реакций полимеризации основным условием является наличие мономера, способного, вследствие химического взаимодействия, создавать связи с другими молекулами мономера. Такая способность называется «функциональностью». Различные мономеры имеют возможность образовывать химические связи по различным механизмам. На различии этих механизмов основаны системы классификации реакций полимеризации.
Существует четыре основных типа реакций полимеризации: полиприсоединение, поликонденсация, цепная полимеризация и ступенчатая полимеризация. Рассмотрим эти реакции подробнее.
Реакции присоединения vs поликонденсация
Реакцию полимеризации можно отнести к реакции присоединения в случае, когда весь мономер целиком становится частью образующейся макромолекулы. Таким образом, химическая формула каждого отдельно взятого звена полимера будет совпадать со структурой использованного мономера. Например, когда этилен полимеризуется в полиэтилен, каждая молекула этилена становится частью макромолекулы полиэтилена. Мономеры присоединяются к активному центру макромолекулы.
Как видно на схеме, мономер обладает двумя атомами углерода и четырьмя атомами водорода, простейшее звено полимерной цепи имеет ту же структуру, в отличие от продуктов реакций поликонденсации.
К реакциям поликондесации относятся такие процессы полимеризации, вследствие которых часть молекулы мономера отбрасывается, что позволяет этой молекуле образовать химическую связь. Чаще всего в реакциях поликонденсации основному продукту сопутствуют такие продукты как вода или соляная кислота.
Типичным примером реакции поликонденсации является образование нейлона, в качестве продукта взаимодействия адипоилхлорида с гексаметилендиамином.
Как видно из схемы, атомы хлора и водорода отсоединяются от мономеров и образуют побочный продукт реакции – соляную кислоту. Так как конечная масса полимерной молекулы меньше чем суммарная масса мономеров, вступивших в химическое взаимодействие говорят, что масса полимера сократилась (condensed), отсюда название реакции – конденсация.
Цепная полимеризация vs ступенчатая полимеризация
Второй важной группой рассматриваемого процесса являются реакции цепной и ступенчатой полимеризации.
При цепном механизме реакций полимеризации, молекулы мономеров по одной присоединяются к растущей полимерной макромолекуле. Рассмотрим механизм реакции цепной полимеризации на примере анионной полимеризации стирола:
Как следует из схем реакции выше, в процессе полимеризации стирола, только мономеры стирола могут присоединяться (1) к растущей цепи полистирола. Две растущие цепи (2) не вступают во взаимодействие. Это основная особенность реакции цепной полимеризации, которая отличает данный процесс от ступенчатой полимеризации.
Ступенчатая полимеризация представляет из себя несколько более сложный процесс.
Рассмотрим процесс ступенчатой полимеризации на примере взаимодействия двух мономеров: терефталоилхлорида и этиленгликоля. Взаимодействие этих двух компонентов приводит к образованию полиэфира, который называется полиэтилентерефталат.
На первой стадии процесса две молекулы мономеров реагируют с образованием димера:
Далее процесс может пойти по одному из нескольких путей: третий мономер может присоединиться к димеру с образованием тримера, затем четвертый с образованием тетрамера и так далее.
В то же самое время, димер может прореагировать с еще одной молекулой этиленгликоля.
Или же димер может провзаимодействовать с другим димером с образованием тетрамера:
С ростом олигомерной цепи процесс усложняется – мономеры, димеры, тирмеры, пентамеры и т.д. взаимодействуют друг с другом в случайном порядке до тех пор, пока олигомерная молекула не разрастается в большую полимерную макромолекулу и пока объемные, стерические, химические и прочие факторы не замедлят рост цепи.
Таким образом, главным отличием цепной полимеризации от ступенчатой является: в ступенчатом процессе растущие молекулы могут взаимодействовать друг с другом с образованием еще более длинных цепей. В цепном процессе, напротив, только лишь мономеры могут поочередно присоединяться к активном центру растущей макромолекулы.
Можно заметить, что приведенная выше реакция синтеза полиэтилетерефталата характеризуется выбросом небольшого количества соляной кислоты, что позволяет классифицировать ее также как реакцию поликонденсации. А приведенная в качестве примера цепной полимеризации реакция синтеза стирола, является также хорошим примером реакции полиприсоединения. Однако, сделать вывод, что все цепные реакции – реакции присоединения, а ступенчатые – реакции поликонденсации будет неверным. Хорошим примером ступенчатой реакции, при этом относящуюся к процессу полиприсоединения, может послужить процесс образования полиуретанов. Эту реакцию имеет смысл рассмотреть поподробнее.
В самом начале процесса получения полимерных уретанов реагируют два простейших компонента цепи:
Вследствие взаимодействия этих компонентов получается димер:
Уретановый димер имеет две различные функциональные группы на своих концах – изоцианатную с одной и гидроксильную с другой. Это свойство позволяет димеру реагировать как с другими изоцианатами или спиртами с образованием тримера, так и с другими димерами, тримерами и более высокомолекулярными уретановыми олигомерами.
Реакция продолжается до тех пор, пока растущая макромолекула не набирает достаточный молекулярный вес, чтобы быть классифицированной как полиуретан с общей формулой:
При внимательном рассмотрении структуры конечного продукта (полиуретана), структуры мономеров и схемы химического взаимодействия, можно сделать вывод, что структура мономера сохраняется при переходе в полимерное состояние, а также отсутствуют побочные второстепенные продукты. По этим признакам можно заключить, что данная реакция относится к реакциям полиприсоединения. А способность присоединять не только мономеры, но и тримеры и прочие олигомеры позволяют классифицировать химический процесс как ступенчатую полимеризационную реакцию.
Из всего вышесказанного можно сделать вывод: разделение реакций полимеризации на присоединение, конденсацию, ступенчатые и цепные реакции не случайно, и нельзя поставить знаки равенства между ними. Хорошим примером реакции присоединения, которая одновременно относится к реакциям ступенчатой полимеризации является реакция синтеза полиуретанов.