что такое промежуточные клетки каковы их функции
Что такое промежуточные клетки каковы их функции
Подробное решение Параграф стр. 35 по биологии для учащихся 8 класса, авторов Н.И. Сонин, В.Б. Захаров 2014
Класс Гидроидные, Класс Сцифоидные, Класс Коралловые полипы
Вопрос 1. Охарактеризуйте особенности внешнего строения и внутренней организации гидры.
Гидра представляет собой полип мешковидной вытянутой формы, достигающий 1,5 см в длину. К субстрату она прикрепляется подошвой, расположенной на одном конце тела. На другом конце находится ротовое отверстие, окруженное венчиком щупалец. Стенка тела гидры образована двумя слоями клеток: наружным — эктодермой и внутренним — энтодермой.
Стенка тела гидры образована двумя слоями клеток: наружным (эктодермой) и внутренним (энтодермой), между которыми находится базальная мембрана. Внутри расположена пищеварительная полость, заходящая также в щупальца. В эктодерме можно различить клетки нескольких типов. Основная масса представлена эпителиально-мускульными клетками, имеющими отростки, в которых сконцентрированы сократительные элементы. Кроме этих клеток, в эктодерме находятся чувствительные, нервные, железистые и стрекательные клетки.
Вопрос 2. Как устроена эктодерма кишечнополостных? Каково строение стрекательной клетки гидры?
В эктодерме можно различить клетки нескольких типов. Основная масса представлена эпителиально-мускульными клетками, имеющими отростки, в которых сконцентрированы сократительные элементы. Также в эктодерме находятся чувствительные, нервные, железистые, стрекательные и промежуточные клетки.
Чувствительные клетки расположены так же, как и эпителиально-мускульные, т. е. одним концом обращены наружу, а другим примыкают к базальной мембране. Нервные клетки лежат между сократительными отростками на базальной мембране. Промежуточные клетки — это недифференцированные клетки, из которых впоследствии развиваются специализированные клетки, кроме этого, они участвуют в регенерации. В эктодерме образуются половые клетки.
Стрекательные (крапивные) клетки – отличительный признак кишечнополостных – распределены по всей эктодерме, но особенно много их на щупальцах и вокруг рта. Стрекательная клетка имеет капсулу, похожую на пузырёк, внутри которой находится свёрнутая спиралью полая нить. На поверхности клетки расположен чувствительный шипик, воспринимающий внешние воздействия. В ответ на раздражение стрекательная капсула выбрасывает содержащуюся в ней нить, которая выворачивается, как палец перчатки. Вместе с нитью выделяется обжигающее или ядовитое содержимое. Таким образом гидроидные могут обездвижить (парализовать) довольно крупную добычу, например циклопов или дафний, а также нанести существенные повреждения врагам.
Вопрос 3. Каким типом нервной системы обладают кишечнополостные?
Кишечнополостные имеют диффузный тип нервной системы. Чувствительные клетки расположены так же, как и эпителиально-мускульные, т. е. одним концом обращены наружу, а другим примыкают к базальной мембране. Нервные клетки лежат между сократительными отростками на базальной мембране. Если дотронуться до гидры, то возникшее в первичных клетках возбуждение быстро распространяется по всей нервной сети и животное отвечает на раздражение сокращением отростков эпителиально-мускульных клеток.
Вопрос 4. Охарактеризуйте клетки внутреннего слоя гидры.
Клеточные элементы энтодермы представлены эпителиально-мускульными и железистыми клетками. Эпителиально-мускульные клетки часто имеют жгутики и выросты, напоминающие псевдоподии. Железистые клетки выделяют в пищеварительную полость пищеварительные ферменты: наибольшее количество таких клеток располагается около рта.
Вопрос 5. Расскажите о питании гидры. Как осуществляется процесс пищеварения у гидры?
Гидра — хищник. Питается планктоном — инфузориями, мелкими ракообразными (циклопами и дафниями). Стрекательные нити опутывают добычу и парализуют ее. Затем гидра захватывает ее щупальцами и направляет в ротовое отверстие.
Пищеварение у гидр комбинированное (внутриполостное и внутриклеточное). Проглоченная пища попадает в пищеварительную полость. Сначала пища обрабатывается ферментами и измельчается в пищеварительной полости. Затем пищевые частицы фагоцитируются эпителиально-мускульными клетками и в них перевариваются. Питательные вещества диффузно распределяются между всеми клетками организма. Из клеток продукты обмена выделяются в пищеварительную полость, откуда вместе с непереваренными остатками пищи выбрасываются в окружающую среду через ротовое отверстие.
Вопрос 6. Что такое промежуточные клетки, каковы их функции?
Промежуточные клетки — это недифференцированные клетки, которые дают начало всем другим типам клеток экто- и энтодермы. Эти клетки обеспечивают восстановление частей тела при повреждении — регенерацию.
Вопрос 7. Как размножается и развивается гидра? Что такое гермафродитизм? Что такое планула?
Размножается гидра бесполым и половым путем.
При бесполом размножении, которое происходит в благоприятный для жизни период, на теле материнского организма образуются одна или несколько почек, которые подрастают, у них прорывается рот и образуются щупальца. Дочерние особи отделяются от материнской. Настоящих колоний гидры не образуют.
Половое размножение происходит осенью. В основном гидры раздельнополы, но есть и гермафродиты. Половые клетки образуются в эктодерме. В этих местах эктодерма вздувается в виде бугорков, в которых образуются или многочисленные сперматозоиды, или одна амебовидная яйцеклетка. Сперматозоиды, снабженные жгутиками, выделяются в окружающую среду и током воды доставляются к яйцеклеткам. После оплодотворения зигота образует оболочку, превращаясь в яйцо. Материнский организм погибает, а покрытое оболочкой яйцо перезимовывает и весной начинает развитие. Эмбриональный период включает два этапа: дробление и гаструляцию. После этого молодая гидра покидает яйцевые оболочки и выходит наружу.
Гермафродитизм — одновременное наличие у одного организма органов как мужского, так и женского пола (от греч. Hermaphroditos — сын Гермеса и Афродиты, мифическое обоеполое существо).
Вопрос 8. Как вы думаете, почему гидромедузы и собственно медузы относят к разным группам кишечнополостных?
Гидромедузы — свободноплавающие половые особи у некоторых представителей класса гидроидных, они образуются почкованием. У них формируются специальные половые железы, продуцирующие половые клетки. Оплодотворение и развитие яйца протекают вне материнского организма. Из яйца выходит личинка, покрытая ресничками, – планула, которая в дальнейшем прикрепляется к подводным предметам и даёт начало новому полипу.
Сцифоидные медузы представлены видами, обитающими только в морях. Они значительно крупнее гидромедуз; зонтик цианеи, например, может достигать 2 м в диаметре, а длина щупалец – 30 м. Поэтому их относят к разным группам кишечнополостных.
Вопрос 9. Почему кишечнополостные получили такое название?
Название кишечнополостные получили в связи с имеющейся кишечной, или гастральной, полостью.
Вопрос 10. Каковы географические и климатические условия распространения различных кишечнополостных?
Кишечнополостным относятся более 9 тысяч видов ведущих исключительно вводный, преимущественно морской образ жизни.
Гидроидные широко распространены по пресным водоёмам всего мира. Пресноводные гидры часто встречаются на водной растительности в медленно текущих водоёмах. Значительное количество видов гидроидных обитает в морях, где возникают их небольшие колонии.
Все медузы – хищники, однако глубоководные виды питаются также погибшими организмами. В зонтиках крупных медуз иногда находят приют мальки рыб. В Японии и Китае мезоглею некоторых медуз, например аурелии и рапиллемы, употребляют в пищу. Аурелия – одна из самых распространённых сцифомедуз. Она обитает почти во всех морях, кроме Каспийского и Аральского. Обычно после откладки яиц медузы отмирают и иногда в массе выбрасываются волнами на берег в виде студенистых полупрозрачных дисков.
Коралловые полипы распространены почти по всему Мировому океану. Как правило, они обитают на небольших глубинах, однако известны виды, живущие на глубине свыше 1 км, а отдельные виды могут опускаться до 5–8 км.
Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.
Что такое промежуточные клетки каковы их функции
Основные положения:
• Клетка образуется только из предсуществующей клетки
• Каждая клетка несет генетическую информацию, реализация которой позволяет ей производить все необходимые компоненты
• Плазматическая мембрана состоит из липидного бислоя, отделяющего клетку от окружающей среды
В основе всего многообразия живых организмов лежит одна основная структурная единица: клетка. Основное положение биологии, утвердившееся с момента разработки клеточной теории в XIX веке, состоит в том, что каждая клетка образуется в результате деления предсуществующей.
Простейшие представляют собой одноклеточные организмы: их клетка сама по себе является самостоятельной биологической единицей, способной к воспроизведению многих себе подобных копий. Для того чтобы выжить, одноклеточные организмы могут приспосабливаться к самым различным типам окружающей среды, от крайне низких до крайне высоких температур, могут существовать в аэробных или анаэробных условиях, или даже в атмосфере метана. Некоторые из них живут в других организмах.
Клетки также могут образовывать многоклеточные организмы. В этом случае различные клетки специализируются для выполнения различных функций. В многоклеточном организме клетки взаимодействуют друг с другом, тем самым обеспечивая его функционирование как целого.
Многоклеточные организмы обладают способностью к размножению, однако их индивидуальные клетки могут проявлять или не проявлять такую способность. Клетки организма, для которых размножение обычно нехарактерно, могут приобрести способность к неограниченному делению, что может послужить причиной развития рака.
Размеры и форма клеток сильно варьируют, что иллюстрирует рисунок ниже. Самые мелкие клетки представлены одноклеточными организмами, которые имеют сферическую форму с диаметром, не превышающим 0,2 мкм. К числу одной из наиболее крупных клеток относится нейрон (нервная клетка) гигантского кальмара, диаметр которого в 5000 раз больше и составляет 1 мм. От тела нейрона отходят отростки (аксоны) диаметром 20 мкм (в 100 раз больше, чем размеры мельчайшей клетки), которые в длину могут достигать 10 см!
Клетки человека и других млекопитающих по величине занимают среднее положение, и обычно их диаметр составляет 3—20 мкм.
Клетки могут не очень сильно различаться по форме. Так, клетки сферической формы обычно существуют в жидкой среде. Иногда они могут обладать более определенной формой, как, например, нейрон, с характерными длинными отростками, или клетки эпителия, которые имеют выраженную апикальную и базолатеральную поверхности, выполняющие различные функции. Клетка может свободно существовать в жидкой среде либо быть прикрепленной к поверхности или к другим клеткам.
Клетки могут взаимодействовать друг с другом или атаковать другие клетки.
Клетки сильно различаются по своим размерам и форме. Некоторые клетки обладают сферической формой, другие имеют протяженные выросты.
Остальные по форме занимают промежуточное положение. На фотографиях представлена микоплазма (Тим Питцкер, Ульмский университет), дрожжи (Фред Уинстон, Гарвардская медицинская школа),
фибробласт (Цзюнзо Десаки, Медицинская школа Университета Эхиме), нейрон (Джералд Дж. Обермайр Бернгардт Е. Флухер, Медицинский университет Инсбрука), растительная клетка (Мин X. Чен, Университет в Альберте)
Однако, несмотря на столь различные формы клеток, в основе их строения лежат несколько общих принципов.
• Внутреннее содержимое клетки отделено от внешней среды мембраной, которая называется плазматической мембраной.
• Плазматическая мембрана содержит системы, контролирующие вход и выход из нее различных метаболитов.
• Необходимые для клетки метаболиты образуются из компонентов пищи при участии внутренних энергетических систем.
• Генетический материал содержит всю информацию, необходимую для образования всех компонентов клетки.
• Генетическая информация реализуется при экспрессии генов.
• Индивидуальные белки кодируются соответствующими генами и после синтеза могут собираться в более крупные структуры.
Клетка ограничена мембраной, состоящей из двойного слоя липидов. На рисунке ниже представлены свойства липидного бислоя. Он являет собой макромолекулярную структуру, состоящую из липидов. Основное свойство липидов заключается в том, что их молекулы являются амфипатичными, т. е. на одном конце молекулы находится гидрофильная «головка», а на другом гидрофобный «хвост».
Каждый из слоев липидного бислоя, с одной стороны, содержит множество гидрофильных головок, а с другой стороны, гидрофобные хвосты. В водном окружении гидрофобные хвосты агрегируют, и, таким образом, гидрофобные поверхности каждого слоя могут соединяться, образуя неионный центр, подобно масляной капле на поверхности воды. С каждой стороны липидного бислоя гидрофильные головки обращены в сторону среды, содержащей ионы. Липидный бислой обладает важным свойством текучести. Это позволяет ему сплавляться с другими мембранами, образовывать новые при разделении, и служить в качестве растворителя для белков, которые присутствуют в бислое и мигрируют в его пределах.
Липидный бислой в определенной степени пропускает молекулы воды, но непроницаем для ионов, мелких заряженных молекул, а также для всех крупных молекул. В результате различного ионного окружения по обеим сторонам мембраны создается осмотическое давление, под действием которого молекулы воды проходят через мембрану и понижают концентрацию ионов с одной или с другой стороны мембраны, в зависимости от их концентрации.
Плазматическая мембрана разграничивает содержимое клетки и внешнюю среду. Для одноклеточных организмов понятие «внешняя среда» означает окружающая среда; для многоклеточных это одновременно окружающая среда и внутреннее окружение, создаваемое другими клетками организма (например, клетками, образующими стенки кровеносных сосудов). Плазматическая мембрана не обладает опорной функцией; фактически она довольно хрупкая и легко повреждается. Поэтому для поддержания целостности клетки обычно плазматическая мембрана должна быть укреплена структурами, которые играют опорную роль и обладают большей эластичностью.
Большинство процессов в клетке катализируются ферментами, константы связывания которых с субстратами и другие свойства определяют допустимый, совместимый с жизнедеятельностью уровень изменений содержания различных метаболитов во внутри- и внеклеточной среде. Однако организмы приспособились к различным условиям существования, и у тех из них, которые существуют в экстремальном окружении, присутствуют ферменты, способные функционировать в таких условиях, которые для более «нормальных» организмов оказались бы летальными.
Для обеспечения правильной работы всех систем, клетке необходимо регулировать свойства своей внутренней среды. Особый контроль необходим за ионным составом и величиной pH. Непроницаемость мембраны создает необходимость функционирования в ней специальных систем, обеспечивающих прохождение ионов.
Липидный бислой мембраны состоит,
главным образом, из амфипатических фосфолипидов.
Клетка должна усваивать метаболиты из окружающей среды. В первую очередь это источники энергии (являющиеся субстратами метаболических процессов) и небольшие молекулы, которые служат предшественниками компонентов, в дальнейшем образующих более крупные молекулы и структуры. Жирные кислоты используются для синтеза липидов, аминокислоты для синтеза белков, а из нуклеотидов образуются РНК и ДНК
Поскольку все клетки должны усваивать метаболиты из окружающей среды, они также должны обладать способностью выводить их. Клетки выводят в окружающую среду различные ионы, небольшие молекулы, и даже белки. Процессы экспорта, и в значительной степени импорта, являются строго специфичными: они должны с высокой селективностью удалять из клетки (или пропускать в нее) необходимые метаболиты.
Для выживания и воспроизводства клетка должна получать источники энергии из окружающей среды и использовать эту энергию для синтеза необходимых компонентов. В качестве источника энергии могут служить вещества, захваченные клеткой из внешней среды. Обычно это смесь простых и сложных соединений углерода. В качестве источника энергии клетка может использовать свет. Способы расходования энергии для разных типов клеток различны.
Поскольку образование новых клеток предполагает деление существующих, клетка должна располагать информацией о воспроизведении всех ее компонентов. Эта информация содержится в универсальном типе генетического материала — ДНК, которая кодирует все белки, содержащиеся в клетке. В свою очередь, белки могут собираться в большие структуры или участвовать в метаболических процессах в качестве катализаторов. Аппарат считывания генетического кода во всех клетках включает одни и те же компоненты.
Поскольку клетка постоянно испытывает различные воздействия со стороны окружающей среды, для обеспечения ее существования необходимы системы репарации повреждений, возникающих в генетическом материале.
Клетки поддерживают свое существование за счет процесса деления. Специальный механизм предназначен для обеспечения способности к делению, при котором образуются две дочерних клетки, каждая из которых идентична родительской по содержанию генетического материала и также содержит примерно половину других структур (за некоторыми исключениями, В процессе дифференцировки образуются различные специализированные клетки, включая терминально дифференцированные).
На представлены минимальные условия, необходимые для образования клетки. Резюмируя, мембрана отделяет внутреннее содержимое клетки от окружающей среды, и многие основные пути взаимодействия клеток с окружением определяются ее свойствами. Для формирования клетки необходим источник энергии, которая используется при создании более сложных компонентов из небольших метаболитов. Генетический материал содержит информацию, необходимую для воспроизведения всех характерных особенностей той или иной клетки, и все клетки обладают системами, позволяющими эту информацию использовать.
Клетка содержит геном, кодирующий строение всех структур,
аппарат для экспрессии генетической информации, систему использования энергии и плазматическую мембрану,
контролирующую взаимодействие клетки с окружающей средой.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021