что такое осциллограмма звука
Особенности звукового сигнала
Обычно для тестирования усилителей используется синусоидальный сигнал. Он же зачастую применяется и для измерения максимальной выходной мощности. Реальный музыкальный (и вообще звуковой) сигнал имеет одно важное отличие: он очень динамичный. На рис. 31 показаны осциллограммы синусоидального (слева) и музыкального (справа) сигналов. Хорошо видно, что музыкальный сигнал большую часть времени имеет маленькое значение, зато в некоторые моменты времени проходит большой импульс напряжения. Показанный на рисунке сигнал – самый настоящий. На самом деле он был специально выбран именно из-за его такой хорошей наглядности. У других музыкальных сигналов осциллограмма другая, но принцип и основные параметры такие же. Важный момент – этот музыкальный фрагмент имеет одинаковую (максимальную) громкость. Обычно громкость музыки максимальна не все время, поэтому то, что я про нее сейчас расскажу, проявляется в еще большей степени. На первый взгляд даже не очень верится, что средний уровень музыкального сигнала так мал. Но это потому, что осциллограмма сильно сжата по горизонтали. Если ее растянуть (рис. 31 внизу), то становится хорошо видно, что амплитуда почти все время «болтается» около нуля. Если бы можно было изобразить в таком растянутом виде весь сигнал, то он почти все время имел бы маленькую амплитуду с довольно редкими всплесками.
Общего у этих синусоидального и музыкального сигналов – только масштаб по вертикали на осциллограмме. Причем максимальные значения обоих сигналов совпадают. Почему? Это важное условие и краеугольный камень всей теории. Максимальное значение
– это единственная вещь, зависящая только от усилителя (а не от сигнала). Вы же помните, что максимальное выходное напряжение усилителя ограничено напряжением питания? Вот под это значение выходного напряжения сигнал и масштабирован. Смысл такой: регулятором громкости мы установили максимально возможную громкость (и выходную, а значит и потребляемую усилителем мощность), чтобы не происходило ограничение сигнала.
После того, как уравняли максимальную амплитуду сигналов, сравним их среднеквадратические значения. Среднее значение каждого из сигналов показано на осциллограмме пунктирной линией (для звукового сигнала – на нижнем рисунке, чтобы было лучше видно). Очевидно, что среднее значение звукового сигнала намного меньше, чем синусоидального.
Для оценки таких вот сильно переменных сигналов используется понятие пик-фактора (crest-factor в англоязычной литературе). Это отношение максимального по модулю значения к среднеквадратическому (т.е. действующему). В выпрямителях используется не действующее, а среднее значение, но с допустимой погрешностью для них можно применять пик-фактор, считая его равным отношению максимальной амплитуды к среднему значению. Именно в таком смысле я и буду его использовать.
Для этого музыкального фрагмента пик-фактор равен 16 дБ, что означает, что максимальное значение больше среднего в 6,3 раза.
Децибел – единица измерения соотношения величин, равная 20 lg(X1/X2). Измерение отношений не в «разах», а в децибелах очень удобно – тогда как «разы» перемножаются, децибелы складываются.
И действительно, пик-фактор для музыки лежит в пределах от 8…10 дБ (2,5…3 раза) для «ди-джейской” музыки, до 16…20 дБ (6… 10 раз) для классики. Это для громких мест. А самые тихие места имеют уровень еще в 2…3 (сильно компрессированная поп- и DJ-музыка), а то и в 100 раз (симфоническая классика) меньше!
Возникает искушение сделать музыкальный сигнал погромче, чтобы повысить его средний уровень. А нельзя! Вы еще не забыли, что в нагрузку идет напряжение из источника питания? Поэтому получить в нагрузке напряжение больше, чем он дает, невозможно! Здесь громкость уже установлена максимальная – такая, чтобы в точности воспроизвести пики сигнала. Если прибавим громкость – эти пики обрежутся, так как напряжения источника питания станет недостаточно для их воспроизведения. А обрезание пиков сигнала – это искажения, которые нам вовсе не нужны.
Итак, что же у нас получается? А получается, что средняя мощность музыкального сигнала как минимум в 4…8 раз меньше, чем максимальная, и в 3…6 раз меньше, чем средняя у синусоиды. И это при максимальной громкости! А что будет, если сделать тише? А если еще учесть динамический диапазон музыки – не всегда же она громкая, есть и средние, и тихие места. То есть, кроме пик-фактора, на среднюю выходную, а значит, и потребляемую от источника, мощность влияет и динамический диапазон самой музыки, и уровень громкости, с которым мы ее слушаем. И все это влияет только в одну сторону – в сторону уменьшения потребляемой мощности!
Поэтому работа блока питания, нагруженного на усилитель, принципиально отличается от работы блока питания, нагруженного на резистор. Да и работа усилителя на музыкальном сигнале отличается от усиления синусоиды.
На таком сигнале роли элементов блока питания в формировании просадки несколько перераспределяются. На трансформатор приходится среднее значение тока, и падение напряжение на обмотках в среднем невелико. И соответственно невелики и просадки напряжения на трансформаторе (это по сравнению с усилением синусоиды и по сравнению с нагрузкой блока питания резистором). Как и нагрев обмоток, который в большей степени определяется средним током. А вот роль конденсаторов растет – эти могучие импульсы тока в нагрузке поддерживают именно они. Поэтому энергия, запасаемая в конденсаторах фильтра должна быть достаточной для импульсного питания нагрузки.
И бюджет просадок напряжения на музыкальном сигнале теперь другой (рис. 32). Большие просадки на конденсаторе – это следствие его разряда на пиках громкости. Такая работа конденсатора является нормальной при усилении музыки. А доля трансформатора несколько снизилась.
Кстати, обратите внимание, что потери напряжения на диодах достаточно велики, чтобы имело смысл о них заботиться.
Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.
Что такое осциллограмма звука
Синтез и распознавание речи. Современные решения
© А.В. Фролов, Г.В. Фролов, 2003
Во времена, когда исследователи только приступали к решению проблемы создания речевого интерфейса для компьютеров, им зачастую приходилось самостоятельно изготавливать аппаратуру, позволяющую вводить в компьютер звуковую информацию, а также выводить ее из компьютера. Сегодня такие устройства могут иметь разве лишь исторический интерес, так как современные компьютеры можно легко оснастить устройствами ввода и вывода звука, такими как звуковые адаптеры, микрофоны, головные телефоны и звуковые колонки.
Мы не будем углубляться в детали внутреннего устройства этих приспособлений, но расскажем о том, как они работают, и приведем некоторые рекомендации по выбору звуковых компьютерных приспособлений для работы с системами распознавания и синтеза речи.
Как мы уже говорили в предыдущей главе, звук представляет собой ни что иное, как колебания воздуха, частота которых лежит в диапазоне частот, воспринимаемых человеком. У разных людей точные границы диапазона слышимых частот могут изменяться, однако считается, что звуковые колебания лежат в диапазоне 16-20 000 Гц.
Задача микрофона заключается в преобразовании звуковых колебаний в электрические колебания, которые в дальнейшем могут быть усилены, отфильтрованы для удаления помех и оцифрованы для ввода звуковой информации в компьютер.
По принципу действия наиболее распространенные микрофоны делятся на угольные, электродинамические, конденсаторные и электретные. Некоторые их этих микрофонов для своей работы требуют внешнего источника тока (например, угольные и конденсаторные), другие под воздействием звуковых колебаний способны самостоятельно вырабатывать переменное электрическое напряжение (это электродинамические и электретные микрофоны).
Можно также разделить микрофоны по назначению. Есть студийные микрофоны, которые можно держать в руке или закрепить на подставке, есть радиомикрофоны, которые можно закрепить на одежде, и так далее.
Имеются также микрофоны, предназначенные специально для компьютеров. Такие микрофоны обычно крепятся на подставке, стоящей на поверхности стола. Компьютерные микрофоны могут комбинироваться с головными телефонами, как это показано на рис. 2-1.
Рис. 2-1. Головные телефоны с микрофоном
Как же выбрать из всего многообразия микрофонов тот, что лучше всего подходит для систем распознавания речи?
В принципе, Вы можете экспериментировать с любым имеющимся у Вас микрофоном, если только его можно подключить к звуковому адаптеру компьютера. Однако разработчики систем распознавания речи рекомендуют приобрести такой микрофон, который при работе будет находиться на постоянном расстоянии ото рта говорящего.
Если расстояние между микрофоном и ртом не изменяется, то средний уровень электрического сигнала, поступающего от микрофона, также будет меняться не слишком сильно. Это окажет положительное влияние на качество работы современных систем распознавания речи.
В чем тут проблема?
Человек способен успешно распознавать речь, громкость которой меняется в очень широких пределах. Мозг человека способен отфильтровывать тихую речь от помех, таких, например, как шум машин, проезжающих по улице, посторонние разговоры и музыку.
Что же касается современных систем распознавания речи, то их способности в этой области оставляют желать лучшего. Если микрофон стоит на столе, то при повороте головы или изменении положения тела расстояние между ртом и микрофоном будет изменяться. Это приведет к изменению уровня выходного сигнала микрофона, что, в свою очередь, ухудшит надежность распознавания речи.
Поэтому при работе с системами распознавания речи наилучшие результаты будут достигнуты, если использовать микрофон, прикрепленный к головным телефонам, как это показано на рис. 2-1. При использовании такого микрофона расстояние между ртом и микрофоном будет постоянным.
Обращаем также Ваше внимание, что все эксперименты с системами распознавания речи лучше всего проводить, уединившись в тихой комнате. В этом случае влияние помех будет минимально. Разумеется, если Вам нужно выбрать систему распознавания речи, способную работать в условиях сильных помех, то испытания нужно проводить по-другому. Однако, насколько это известно авторам книги, пока помехозащищенность систем распознавания речи еще очень и очень низка.
Рис. 2-2. Осциллограмма звукового сигнала
Рис. 2-3. Фрагмент осциллограммы звукового сигнала
Обратите внимание, что величина входного сигнала, поступающего от микрофона, изменяется периодически и принимает как положительные, так и отрицательные значения.
Если бы во входном сигнале присутствовала только одна частота (то есть если бы звук был «чистым»), форма сигнала, полученного от микрофона, была бы синусоидальной. Однако, как мы уже говорили, спектр звуков человеческой речи состоит из набора частот, в результате чего форма осциллограммы речевого сигнала далека от синусоидальной.
Чтобы компьютер мог обработать звуковой сигнал, его необходимо перевести из аналоговой формы в цифровую, то есть представить в виде набора числовых значений. Этот процесс называется оцифровкой аналогового сигнала.
Как работает аналогово-цифровой преобразователь?
Он периодически измеряет уровень входного сигнала, и выдает на выходе числовое значение результата измерений. Этот процесс иллюстрируется на рис. 2-4. Здесь прямоугольниками серого цвета отмечены значения входного сигнала, измеренные с некоторым постоянным интервалом времени. Набор таких значений и есть оцифрованное представление входного аналогового сигнала.
Рис. 2-4. Измерения зависимости амплитуды сигнала от времени
Рис. 2-5. Аналого-цифровой преобразователь
Аналого-цифровые преобразователи характеризуются двумя важными параметрами — частотой преобразования и количеством уровней квантования входного сигнала. Правильный выбор этих параметров критически важен для достижения адекватного представления в цифровом виде аналогового сигнала.
Насколько часто нужно измерять значение амплитуды входного аналогового сигнала для того, чтобы в результате оцифровки не была потеряна информация об изменениях входного аналогового сигнала?
Казалось бы, ответ прост — входной сигнал нужно измерять как можно чаще. Действительно, чем чаще аналого-цифровой преобразователь проводит такие измерения, тем лучше будут отслеживаться малейшие изменения амплитуды входного аналогового сигнала.
Однако излишне частые измерения могут привести к неоправданному росту потока цифровых данных и бесполезной трате ресурсов компьютера при обработке сигнала.
К счастью, правильный выбор частоты преобразования (частоты дискретизации) сделать достаточно просто. Для этого достаточно обратиться к теореме Котельникова, известной специалистам в области цифровой обработки сигналов. Теорема гласит, что частота преобразования должна быть в два раза выше максимальной частоты спектра преобразуемого сигнала. Следовательно, для оцифровки без потери качества звукового сигнала, частота которого лежит в диапазоне 16-20 000 Гц, нужно выбрать частоту преобразования, не меньшую, чем 40 000 Гц.
Заметим, однако, что в профессиональной звуковой аппаратуре частота преобразования выбирается в несколько раз большей указанного значения. Это делается для достижения очень высокого качества оцифрованного звука. Для систем распознавания речи такое качество не актуально, поэтому мы не будем заострять на таком выборе Ваше внимание.
А какая частота преобразования нужна для оцифровки звука человеческой речи?
Так как звуки человеческой речи лежать в диапазоне частот 300-4000 Гц, то минимально необходимая частота преобразования составляет 8000 Гц. Однако многие компьютерные программы распознавания речи используют стандартную для обычных звуковых адаптеров частоту преобразования 44 000 Гц. С одной стороны, такая частота преобразования не приводит к чрезмерному увеличению потока цифровых данных, а другой — обеспечивает оцифровку речи с достаточным качеством.
Еще в школе нас учили, что при любых измерениях возникают погрешности, от которых невозможно избавиться полностью. Такие погрешности возникают из-за ограниченной разрешающей способности измерительных приборов, а также из-за того, что сам процесс измерений может внести некоторые изменения в измеряемую величину.
Аналого-цифровой преобразователь представляет входной аналоговый сигнал в виде потока чисел ограниченной разрядности. Обычные звуковые адаптеры содержат 16-разрядные блоки АЦП, способные представлять амплитуду входного сигнала в виде 2 16 =65536 различных значений. Устройства АЦП в звуковой аппаратуре высокого класса могут быть 20-разрядными, обеспечивая большую точность представления амплитуды звукового сигнала.
Вместе с полезным сигналом в микрофон обычно попадают различные шумы — шум с улицы, шум ветра, посторонние разговоры и т.д. Шум оказывает отрицательное воздействие на качество работы систем распознавания речи, поэтому с ним приходится бороться. Один из способов мы уже упоминали — сегодняшними системами распознавания речи лучше всего пользоваться в тихой комнате, оставаясь с компьютером один на один.
Однако идеальные условия удается создать далеко не всегда, поэтому приходится использовать специальные методы, позволяющие избавиться от помех. Для снижения уровня шума применяются специальные ухищрения при конструировании микрофонов и специальные фильтры, удаляющие из спектра аналогового сигнала частоты, не несущие полезную информацию. Кроме того, используется такой прием, как сжатие динамического диапазона уровней входного сигнала.
Расскажем обо всем этом по порядку.
Частотным фильтром называется устройство, преобразующее частотный спектр аналогового сигнала. При этом в процессе преобразования происходит выделение (или поглощение) колебаний тех или иных частот.
Вы можете представить себе это устройство в виде некоего черного ящика с одним входом и одним выходом. Применительно к нашей ситуации, к входу частотного фильтра будет подключен микрофон, а к выходу — аналого-цифровой преобразователь.
Частотные фильтры бывают разные:
· фильтры нижних частот;
· фильтры верхних частот;
· пропускающие полосовые фильтры;
· заграждающие полосовые фильтры.
Так как звуковые сигналы лежат в диапазоне 16-20 000 Гц, то все частоты меньше 16 Гц можно отрезать без ухудшения качества звука. Для распознавания речи важен частотный диапазон 300-4000 Гц, поэтому можно вырезать частоты ниже 300 Гц. При этом из входного сигнала будут вырезаны все помехи, частотный спектр которых лежит ниже 300 Гц, и они не будут мешать процессу распознавания речи.
Человек не слышит звуки с частотой 20 000 Гц и выше, поэтому их можно вырезать из спектра без заметного ухудшения качества звука. Что же касается распознавания речи, то здесь можно вырезать все частоты выше 4000 Гц, что приведет к существенному снижению уровня высокочастотных помех.
Таким образом, для системы распознавания речи удобен пропускающий полосовой фильтр, который задерживает все частоты, кроме частот диапазона 300-4000 Гц.
На рис. 2-6 мы показали подключение пропускающего полосового фильтра.
Рис. 2-6. Фильтрация звукового сигнала перед оцифровкой
Надо сказать, что обычные звуковые адаптеры, установленные в компьютере, имеют в своем составе полосовой фильтр, через который проходит аналоговый сигнал перед оцифровкой. Полоса пропускания такого фильтра обычно соответствует диапазону звуковых сигналов, а именно 16-20 000 Гц (в разных звуковых адаптерах значения верхней и нижней частоты могут изменяться в небольших пределах).
А как добиться более узкой полосы пропускания 300-4000 Гц, соответствующей наиболее информативной части спектра человеческой речи?
Конечно, если у Вас есть склонности к конструированию радиоэлектронной аппаратуры, Вы можете сделать свой фильтр из микросхемы операционного усилителя, резисторов и конденсаторов [9]. Примерно так и поступали первые создатели систем распознавания речи.
Однако промышленные системы распознавания речи должны быть работоспособны на стандартном компьютерном оборудовании, поэтому путь изготовления специального полосового фильтра тут не подходит.
Вместо этого в современных системах обработки речи используются так называемые цифровые частотные фильтры, реализованные программно. Это стало возможным, после того как центральный процессор компьютера стал достаточно мощным.
Цифровой частотный фильтр, реализованный программно, преобразует входной цифровой сигнал в выходной цифровой сигнал. В процессе преобразования программа обрабатывает специальным образом поток числовых значений амплитуды сигнала, поступающий от аналого-цифрового преобразователя. Результатом преобразования при этом также будет поток чисел, однако этот поток будет соответствовать уже отфильтрованному сигналу.
Рассказывая об аналогово-цифровом преобразователе, мы отметили такую его важную характеристику, как количество уровней квантования. Если в звуковом адаптере установлен 16-разрядный аналого-цифровой преобразователь, то после оцифровки уровни звукового сигнала могут быть представлены в виде 2 16 =65536 различных значений.
Если уровней квантования мало, то возникает так называемый шум квантования. Чтобы уменьшить этот шум, в высококачественных системах оцифровки звука следует применять аналого-цифровые преобразователи с максимально доступным количеством уровней квантования.
Однако есть еще один прием, позволяющий снизить влияние шума квантования на качество звукового сигнала, который используется в цифровых системах записи звука. При использовании этого приема перед оцифровкой сигнал пропускается через нелинейный усилитель, подчеркивающий сигналы с малой амплитудой сигнала. Такое устройство усиливает слабые сигналы сильнее, чем сильные.
Это иллюстрируется графиком зависимости амплитуда выходного сигнала от амплитуды входного сигнала, показанным на рис. 2-7.
Рис. 2-7. Нелинейное усиление перед оцифровкой
На этапе обратного преобразования оцифрованного звука в аналоговый (этот этап мы рассмотрим ниже в этой главе) перед выводом на звуковые колонки аналоговый сигнал снова пропускается через нелинейный усилитель. На этот раз используется другой усилитель, который подчеркивает сигналы с большой амплитудой и имеет передаточную характеристику (зависимость амплитуда выходного сигнала от амплитуды входного сигнала), обратную той, что применялась при оцифровке.
Чем все это может помочь создателям систем распознавания речи?
Человек, как известно, достаточно хорошо распознает речь, произнесенную тихим шепотом или достаточно громким голосом. Можно сказать, что динамический диапазон уровней громкости успешно распознаваемой речи для человека достаточно широк.
Сегодняшние компьютерные системы распознавания речи, к сожалению, пока не могут похвастаться этим. Однако с целью некоторого расширения указанного динамического диапазона перед оцифровкой можно пропустить сигнал от микрофона через нелинейный усилитель, передаточная характеристика которого показана на рис. 2-7. Это позволит снизить уровень шума квантования при оцифровке слабых сигналов.
Разработчики систем распознавания речи, опять же, вынуждены ориентироваться в первую очередь на серийно выпускаемые звуковые адаптеры. В них не предусмотрено описанные выше нелинейное преобразование сигнала.
Тем не менее, можно создать программный эквивалент нелинейного усилителя, преобразующего оцифрованный сигнал перед передачей его модулю распознавания речи. И хотя такой программный усилитель не сможет снизить шум квантования, с его помощью можно подчеркнуть те уровни сигнала, которые несут в себе наибольшую речевую информацию. Например, можно уменьшить амплитуду слабых сигналов, избавив таким способом сигнал от шумов.
Физика звука
Акустика — это раздел физики, изучающий возбуждение, распространение, прием звуковых волн, а также их взаимодействие со средой. Особенностью звуковых волн, отличающих их от электромагнитных или гравитационных, является то, что они могут распространяться только в сплошной упругой среде. Звук окружает нас повсюду: в атмосфере, под водой, под землей, в биологических средах и материалах и даже в космосе. Только звук может распространяться в земных структурах и под водой без существенного затухания, поэтому он широко используется в исследованиях природных сред.
Обычно мы называем звуком то, что мы слышим. Принято считать, что диапазон частот слышимого нами звука лежит в пределах от 20 Гц до 20 кГц. Это соответствует 20–20 000 колебаний в секунду. Звуковые волны, частота колебаний которых выходит за этот диапазон, получили свои специальные названия.
Ультразвуком называют звуковые волны, частота колебаний которых выше 20 кГц. Технологически развитый диапазон применения ультразвука лежит в пределах от 20 кГц до 100 МГц. Более высокочастотная область ультразвука получила название гиперзвук. Звуковые волны гиперзвуковых частот могут распространяться только в кристаллах с малым поглощением звука, таких, как монокристаллы кварца, сапфира, ниобата лития, железо-иттриевого граната и др. Гиперзвук используется при обработке больших массивов информации, в том числе оптических изображений, и исследовании строения твердых тел. Этим занимается наука акустоэлектроника. Диапазон, в котором гиперзвук возбуждается искусственным, контролируемым образом, ограничивается частотами порядка 10 ГГЦ, что связано с высоким затуханием. При столь высоких частотах длина волны такого звука будет уже соизмеримой с межатомным расстоянием в кристалле. В таком случае мы уже не можем считать кристалл сплошной средой.
Звуковые волны, частота которых ниже 20 Гц, называют инфразвуком. Затухание инфразвука невелико, и поэтому инфразвуковые волны активно используются для исследования океана и структуры земли. Звуки взрывов вулканов могут обогнуть весь земной шар, низкочастотный подводный звук распространяется через океаны на тысячи километров.
Далее мы обсудим современные идеи и новые акустические технологии исследования и освоения окружающего мира. Часто акустические методы не имеют альтернативы и поэтому оказываются наиболее эффективными для решения той или иной важной задачи.
Звук и инфразвук в исследовании природы
Объяснение этому интересному эффекту дал Л. М. Бреховских — впоследствии академик и лауреат Государственной премии СССР. Он обратил внимание на то, что температура воды быстро падает до глубины 100–200 м, а затем принимает постоянное значение около 4°C. Падение температуры приводит к уменьшению скорости распространения звука, а рост давления с глубиной приводит к увеличению этой скорости. Таким образом, в зависимости скорости распространения звука от глубины оказывается минимум, в котором и концентрируется акустическая энергия. На рисунке 1 видно, что если поместить излучатель на уровень минимума скорости звука, то звуковые лучи, выходящие из излучателя, в результате рефракции будут удерживаться вблизи этого минимума. В итоге часть звуковых лучей, вышедших из источника под не очень крутыми углами, остаются при распространении в слое толщиной в несколько сот метров. Такой слой представляет собой подводный акустический волновод, или подводный звуковой канал.
Рис. 1. Схематическое изображение распространения сигнала в подводном звуковом канале. Слева — профиль скорости звука в зависимости от глубины. Источник и приемник звука расположены на оси канала, соответствующей минимальной скорости звука. Лучи в результате рефракции звука совершают циклические осцилляции. Цифры над лучами указывают угол выхода луча из источника. В нижней части рисунка показаны две серии осциллограмм зарегистрированных сигналов, отличающихся температурными условиями в приповерхностной части канала
Стоит отметить, что эффект акустического волновода использовался средневековыми мастерами при создании «шепчущих» галерей. Такие галереи имеют кривые или замкнутые стены. Если вы вблизи такой стены говорите шепотом, то звуковые лучи концентрируются около нее и на расстоянии в несколько десятков метров можно отчетливо слышать ваш шепот, находясь также около стены. Такие шепчущие галереи есть в соборах Святого Павла в Лондоне и Святого Петра в Риме, в Храме Неба под Пекином и, возможно, где-то еще.
Характер распространения звука в акустическом волноводе аналогичен распространению лазерного излучения в оптическом волноводе. В настоящее время особенности распространения звука в подводном акустическом волноводе используются для термометрии океана.
Океан можно рассматривать как гигантский, занимающий огромную площадь термометр. Следя за изменениями температуры глубинных слоев океана, можно следить за потеплением климата. Дело в том, что масштабные климатические изменения надежно определить чрезвычайно трудно из-за больших флуктуаций во времени и пространстве. Огромные массы воды в океане усредняют эти флуктуации. Определить среднюю температуру глубинных слоев океана на масштабах в несколько тысяч километров можно только акустическими методами, электромагнитные волны в морской воде не распространяются на заметное расстояние.
Скорость распространения звука увеличивается с ростом температуры. На рисунке 1 внизу показаны две серии зарегистрированных акустических импульсов, отличающихся тем, что во второй серии верхние слои океана имели несколько более высокую температуру, чем в первой. Как видно, сигналы, распространяющиеся по красному лучу, который максимально близко подходит к нагретой поверхности океана, приходят несколько раньше, чем сигналы, распространяющиеся по другим лучам. Для дистанции 250 км эти изменения во времени распространения могут составлять доли секунды. По другим лучам изменений во времени распространения нет. Таким образом, из такого опыта можно узнать, на сколько градусов и на какую глубину прогрелась вода в океане. Ясно, что чем больше дистанция распространения звука, тем выше чувствительность этого метода. Звук пробегает 250 км в океане за 167 с, что соответствует скорости распространения около 1500 м/с. Заметим, что первыми приходят наиболее быстрые сигналы, распространяющиеся по наиболее крутым лучам, лежащим в слоях океана с большей скоростью распространения. А наиболее интенсивные сигналы приходят последними по пологим лучам, находящимся в окрестности оси подводного звукового канала, где скорость распространения минимальна.
Такая особенность распространения звука используется для дистанционного мониторинга теплопереноса в океане, что важно для прогнозирования климата. Океан формирует погоду на земле. Северный Ледовитый океан является кухней погоды для Европы и существенной части Азии. Распределенная по всему океану система излучателей и приемников звука может решать самые разнообразные задачи. Среди них можно выделить измерение времени распространения сигналов на протяженных трассах для определения содержания тепла и циркуляции океанических вод как на масштабах всего океана, так и в отдельных его частях; обеспечение подводного позиционирования и навигации подо льдом; мониторинг динамики льда, землетрясений и перемещения морских животных при пассивном прослушивании акватории океана. Все эти процедуры система может выполнять в реальном времени.
Исследование атмосферы. Распространение звука в атмосфере подчиняется тем же самым законам, что и распространение звука в океане, с той разницей, что скорость распространения звука в воздухе в нормальных условиях у поверхности земли составляет 340 м/с. Это существенно меньше скорости звука в воде.
На рисунке 2 представлена схема звуковых лучей, выходящих из источника звука в атмосфере. Как видно, в присутствии ветра лучи по-разному ведут себя в зависимости от направления распространения. Поток воздуха увеличивает скорость распространения звука по ветру и несколько снижает ее в противоположном направлении. Как правило, приземный поток воздуха или ветер увеличивает свою скорость с высотой. Скорость распространения звука по ветру на большой высоте больше, чем у земли, поэтому фронт звуковой волны при подъеме вверх заворачивается и волна направляется вниз, где скорость меньше. Возникает рефракция звука. Благодаря этому в приповерхностном слое атмосферы образуется звуковой волновод, в котором концентрируется звук, и на поверхности земли можно регистрировать акустические сигналы, которые распространялись на высоте в несколько десятков километров. Эффект рефракции при распространении против ветра приводит к тому, что звук быстро уходит на большую высоту (десятки километров). Поэтому мы плохо слышим против ветра и хорошо по ветру.
Рис. 2. Схема звуковых лучей, выходящих из источника звука в атмосфере в присутствии ветра
Приземный звуковой волновод может образоваться не только в результате ветра. В тихий безветренный морозный день где-то за городом можно далеко слышать лай собак или шум машины. В такую погоду в приземной атмосфере возможна так называемая температурная инверсия. Обычно температура воздуха понижается с высотой, но в морозный день температура у поверхности земли, особенно в низине, может быть ниже, чем на некоторой высоте. Минимальная температура в приземном слое воздуха соответствует минимуму скорости распространения звука. Таким образом, температурная инверсия обеспечивает волноводное распространение звука у поверхности земли.
На рисунке 3 показано распределение температуры с высотой в атмосфере. Как видно, эта характеристика, как и в океане, имеет слоистую структуру. В областях нижней границы стратосферы (тропопауза) и нижней границы термосферы (мезопауза) температура, а следовательно, и скорость распространения звука достигают минимума. Здесь выполняются условия для существования атмосферных звуковых каналов. Звуковые волны от извержений вулканов или наземных взрывов распространяются по этим каналам на огромные расстояния и даже могут обогнуть Земной шар. Поэтому средняя атмосфера (от 20 до 120 км высоты) является хорошим проводником инфразвука. Это свойство атмосферы позволило ученым разработать методику инфразвукового зондирования атмосферы, базирующейся на явлении рассеяния акустических импульсов на слоистых неоднородностях скорости ветра и температуры атмосферы вплоть до высот нижней термосферы порядка 140 км. С помощью такой методики можно определить флуктуации скорости ветра в диапазоне высот от верхней стратосферы до нижней термосферы (90–140 км).
Рис. 3. Стратификация температуры в атмосфере. Изменение давления показано в гектапаскалях (1 гПа = 100 Па). В областях тропопаузы и мезопаузы температура, а следовательно, и скорость распространения звука достигают минимума. Здесь находятся атмосферные звуковые каналы
Сейсмические волны в земле. Аналогичным образом распространяются сейсмические волны в земле. Они могут быть как естественного происхождения, так и искусственные. В качестве естественных источников сейсмических волн мы можем назвать землетрясения, извержения вулканов, горные обвалы. Искусственным образом сейсмические волны возбуждаются наиболее эффективно взрывом или специальными многотонными вибраторами. Если в океане и атмосфере распространяются только продольные звуковые волны (в жидкостях и газах отсутствует сдвиговая упругость), то сейсмические волны могут быть как продольные, так и поперечные. Поперечные волны, в зависимости от плоскости колебаний, могут иметь разную поляризацию. Скорость распространения поперечных волн, как правило, в 2–3 раза меньше скорости распространения продольных. Наличие сейсмических волн двух типов расширяет возможности сейсмического зондирования в сравнении с зондированием океана или атмосферы.
Центральной задачей сейсмического зондирования является исследование структуры земли и поиск полезных ископаемых. Обе эти задачи требуют выполнения противоречивых подходов. С одной стороны, интересно заглянуть как можно глубже под поверхность земли. Этого можно достичь, понижая частоту сейсмического излучения. С понижением частоты снижаются потери, связанные с затуханием, и звуковые волны распространяются дальше. С другой стороны, уменьшение частоты ведет к росту длины излучаемой волны, а это снижает разрешающую способность дистанционного метода зондирования. Всё возрастающие требования к качеству разведки полезных ископаемых заставляют искать способы повышения разрешающей способности, а следовательно, и точности сейсморазведки.
Разрешить возникшее противоречие удалось за счет развития методов приема сейсмических сигналов. Известно, что чем больше приемная антенна, тем выше ее пространственное разрешение. Если принимать сигналы большим количеством приемников, объединенных в единую сеть, то можно повысить пространственную точность дистанционного зондирования. Но для этого требуется сложная обработка сигналов от многих сотен или даже тысяч приемников. Современная сейсморазведка обеспечивает достаточную точность зондирования, чтобы определить продуктивные залежи полезных ископаемых, например нефти или газа, на глубинах более 10 км. Современные технологии обеспечивают прохождение скважины горизонтально вдоль пласта, чтобы повысить эффективность добычи нефти. Толщина пласта составляет порядка 10 м на глубине несколько километров. При этом длина скважины может быть более 10 км. Точность прокладки скважины соизмерима с точностью выведения ракеты на траекторию к межпланетному полету.
Рис. 4. Вертикальный сейсмический разрез строения верхних слоев земли
Для зондирования структур земли используют естественные низкочастотные сейсмические сигналы от землетрясений или даже приливных волн, вызванных движением Луны. На рисунке 4 показан пример результатов такого зондирования на глубину более 50 км. Он свидетельствует о том, что в структуре земли есть не только горизонтальные слои, но и крупные вертикальные разломы, которые могут доходить до мантии.
Знание особенностей распространения низкочастотного звука в океане, атмосфере и земле позволило разработать и создать эффективную международную систему контроля за выполнением договора о всеобщем запрещении ядерных испытаний. Существует специальная схема расположения станций на земле и в океане, осуществляющих постоянный мониторинг и регистрирующих сейсмические, гидроакустические и инфразвуковые сигналы в атмосфере. Эти станции объединены в общую сеть и поэтому могут определить место и время события, приведшего к появлению того или иного сигнала.
Примером такой эффективности является обнаружение взрыва метеороида в небе над Челябинском 15 февраля 2013 года. Метеороид вошел в атмосферу под углом 20° со скоростью 18 км/с. По мере полета в атмосфере скорость метеороида уменьшалась и происходил его нагрев. Перед ним возникла ударная волна, в которой воздух был сильно сжат и разогрет. Метеороид разрушился, когда разность давлений на фронте ударной волны и на противоположной его стороне превысила предел прочности метеороида. Это разрушение (взрыв) сопровождалось вспышкой яркости излучения в течение пяти секунд. Максимум яркости наблюдался на высоте 23,3 км южнее Челябинска. Примерный эффективный диаметр метеороида равен 18 м, а его масса 11 000 тонн. Семнадцать станций зарегистрировали ударную волну этого взрыва. Последующий анализ позволил оценить эквивалент мощности взрыва в 2–3 кт тринитротолуола.
Современные проблемы применения медицинского ультразвука
Ультразвук мегагерцового диапазона частот достаточно хорошо распространяется в биологических тканях. Как известно, живые организмы почти на 90% состоят из воды. Поэтому скорость распространения звука в таких условиях близка к 1500 м/с, что соответствует скорости распространения звука в воде. Длина волны ультразвука на частоте 1 МГЦ равна при этом 1,5 мм, что обеспечивает достаточно высокое пространственное разрешение ультразвуковых методов.
Хорошо известно применение ультразвука в медицине для диагностики и исследования внутренних органов и суставов (УЗИ). Менее известны успехи в области ультразвуковой хирургии, хотя и здесь есть существенные результаты. Прежде всего это дробление и удаление камней из почек с помощью фокусированного воздействия ударными волнами — так называемая литотрипсия. Начиная с 1980-х годов литотрипсия является наиболее распространенной процедурой для удаления камней из почек. Другим быстро развивающимся направлением исследований является терапевтическое направление применения ультразвука, основное преимущество которого — лечебное воздействие внутри тела без повреждения окружающей ткани. Широкие возможности различных видов ультразвуковой терапии были продемонстрированы экспериментально, а некоторые из них уже нашли применение в клинической практике. Одним из примеров является интенсивный фокусированный ультразвук.
Рисунок 5 иллюстрирует основную идею применения фокусированного ультразвука. Акустическая интенсивность вблизи излучающего преобразователя достаточно низка, так что ткани не повреждаются. В фокальной области интенсивность заметно возрастает, и нагрев за счет поглощения волны достаточен для теплового разрушения белков ткани. Это позволяет неинвазивно «прижечь» место внутреннего кровотечения или вызвать некроз опухолевых тканей в глубоко расположенных областях человеческого тела. Наиболее перспективными, с точки зрения расширения применения ультразвуковых методов в медицине, являются гемостазис (остановка кровотечения), хирургия и стимуляция иммунного отклика. Можно также упомянуть ультразвуковой контроль и интенсификацию транспорта лекарств. Экспериментально было показано, что ультразвук может улучшать транспорт лекарств и генов через биологические барьеры: клетки, ткани и тромбы.
Рис. 5. Схема ультразвукового воздействия на биологические ткани. Пучок интенсивного фокусированного ультразвука используется для локализованного разрушения опухоли или остановки внутреннего кровотечения без повреждения окружающей ткани. Акустическая энергия, излучаемая ультразвуковым преобразователем, концентрируется в объем, примерно равный объему рисового зерна
Укажем на некоторые основные проблемы, которые нуждаются в решении для успешного применения интенсивного ультразвука в практике.
Одной из важных задач является получение больших значений амплитуды акустической волны в фокусе с учетом структуры человеческого тела. Усиление ультразвуковой волны при фокусировке необходимо для обеспечения высокой интенсивности в небольшой фокальной области, чтобы не повредить остальные участки ткани на пути распространения ультразвука. Ультразвуковой ожог кожи является одним из характерных побочных эффектов при применении интенсивного ультразвука, поскольку в коже коэффициент поглощения ультразвука в несколько раз выше, чем в ткани. Поэтому на этом участке акустическая интенсивность должна быть как можно более низкой. Такую процедуру возможно реализовать, применяя многоэлементные ультразвуковые антенны, излучение которых будет согласовано со структурой тела, по которой должно пройти излучение.
Важными также являются технические разработки по созданию хорошего акустического согласования ультразвукового излучателя с телом. Дело в том, что ультразвуковые излучатели делаются, как правило, из пьезоэлектрической керамики. И для того чтобы обеспечить наилучшую передачу звуковой энергии в человеческое тело, нужно согласовать условия прохождения звука от твердой пьезокерамики к мягким биологическим тканям. Для этого применяют специальные контактные смазки или жидкости. Например, по сравнению с вогнутыми источниками плоские УЗ преобразователи гораздо труднее сделать фокусирующими, но зато для них легче обеспечить согласование при непосредственном контакте с кожей. Поглощение в костях еще сильнее, вот почему важно минимизировать попадание на них ультразвука. Соответствующая технология предполагает использование многоэлементных фазированных антенн для осуществления электронной фокусировки. На рисунке 6 показано схематическое изображение такой антенны для фокусировки ультразвукового излучения в мозг через кости черепа.
Рис. 6. Схема ультразвукового транскраниального воздействия на мозг
Мозг является тем органом, где применение терапии с использованием фокусированного ультразвука имеет свои особенности. Принципиальной трудностью здесь является тот факт, что ультразвуковые волны плохо проходят сквозь черепную коробку из-за поглощения в кости и отражения на ее границах. Кроме того, кости черепа неоднородны по толщине и характеризуются более высокой (по сравнению с расположенными за ними мягкими тканями) скоростью звука, что приводит к трудно предсказуемым эффектам рефракции. Решение проблемы ультразвукового воздействия и визуализации через толстые кости черепа возможно при использовании разработанных в последнее время методов волновой физики, связанных с компенсацией потерь и аберраций при распространении волн в неоднородной среде. В основе лежит голографический принцип, согласно которому распределение характеристик волнового поля на некоторой поверхности в этом поле содержит информацию о всей трехмерной структуре поля, а также принцип обратимости недиссипативных волновых процессов во времени и связанный с этим метод обращения волнового фронта.
Метод обращения волнового фронта, применяемый в радиолокации и при исследовании структуры подводных акустических каналов в океане, предполагает использование пробной волны, которая, проходя по неоднородной среде, регистрируется многоэлементной антенной. Зарегистрированный сигнал имеет сложную пространственную и временную структуру, что отражает многолучевое распространение через неоднородную среду. Если на антенне обратить во времени фазовые задержки зарегистрированного сигнала и излучить сигнал с такой сложной пространственно-временной фазовой модуляцией, то излученный сигнал, проходя в обратном порядке через те же самые неоднородности среды, соберется, т.е. сфокусируется в точку излучения пробного сигнала. Для реализации такого подхода необходимо использовать многоэлементные приемоизлучающие антенны, управляемые мощными вычислительными процессорами, обеспечивающими в реальном времени сложную многоканальную обработку сигналов.