что такое аргумент комплексного числа
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Учебное пособие: Комплексные числа
Название: Комплексные числа Раздел: Рефераты по математике Тип: учебное пособие Добавлен 13:49:20 12 июня 2011 Похожие работы Просмотров: 45866 Комментариев: 26 Оценило: 7 человек Средний балл: 4.3 Оценка: 4 Скачать | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
_ | _ | |||||||||||||
_ | _ | |||||||||||||
_ | ||||||||||||||
Всякий многочлен степени n ³ 1 имеет, по крайней мере, один нуль, действительный или комплексный
Доказательство этой теоремы выходит за рамки нашего курса. Поэтому примем теорему без доказательства.
Поработаем по этой теореме и по теореме Безу с многочленом Pn (x ).
,
гдеa 0 — это коэффициент при x n в Pn (x ).
Следствие из основной теоремы алгебры. О разложении многочлена на линейные множители
Любой многочлен степени на множестве комплексных чисел разлагается на n линейных сомножителей, то есть
гдех1, х2, … хn — это нули многочлена.
1)P 4(x ) = (x – 2)(x – 4)3 Þx 1 = 2 — простой нуль, x 2 = 4 — трехкратный нуль;
Свойство 4 (о количестве корней алгебраического уравнения)
Любое алгебраическое уравнение Pn(x) = 0 степени n имеет на множестве комплексных чисел ровно n корней, если считать каждый корень столько раз, какова его кратность.
1)x 2 – 4x + 5 = 0 — алгебраическое уравнение второй степени
Þx 1,2 = 2 ± = 2 ±i — два корня;
2)x 3 + 1 = 0 — алгебраическое уравнение третьей степени
Þx 1,2,3 = — три корня;
Разделим многочлен P 3(x ) на (x – 1):
x 3 | + | x 2 | – | x | – | 1 | x – 1 |
x 3 | – | x 2 | x 2 + 2x +1 | ||||
2x 2 | – | x | |||||
2x 2 | – | 2x | |||||
x | – | 1 | |||||
x | – | 1 | |||||
0 |
Þx 1 = 1 — простой корень, x 2 = –1 — двукратный корень.
Если алгебраическое уравнение с действительными коэффициентами имеет комплексные корни, то эти нули всегда парные комплексно сопряженные, то есть если x 0 = a + bi является корнем уравнения Pn (x ) = 0, то число также является корнем этого уравнения.
w нужно использовать определение и следующие легко проверяемые свойства операции комплексного сопряжения:
если , то
;
;
;
,
;
если – действительное число, то
.
Так как является корнем уравнения
, то
, где
,
– действительные числа.
Возьмем сопряжение от обеих частей последнего равенства и используем перечисленные свойства операции сопряжения:
, то есть число
также удовлетворяет уравнению
, следовательно, является его корнем, ч.т.д. v
1)
– парные комплексно сопряженные корни;
2) .
Любой многочлен с действительными коэффициентами разлагается на произведение линейных и квадратичных функций с действительными коэффициентами.
w Пусть x 0 = a + bi — нуль многочлена Pn (x ). Если все коэффициенты этого многочлена являются действительными числами, то тоже является его нулем (по свойству 5).
Вычислим произведение двучленов :
комплексный число многочлен уравнение
Получили (x – a )2 + b 2 — квадратный трехчленс действительными коэффициентами.
Таким образом, любая пара двучленов с комплексно сопряженными корнями в формуле (6) приводит к квадратному трехчлену с действительными коэффициентами. v
Примеры решения алгебраических уравнений на множестве комплексных чисел (Приведите примеры решения алгебраических уравнений на множестве комплексных чисел )
1. Алгебраические уравнения первой степени:
,
– единственный простой корень.
.
Ответ: .
2. Квадратные уравнения:
,
– всегда имеет два корня (различных или равных).
1) .
Ответ: .
2) .
Ответ: .
3) ,
.
Ответ: ,
.
3. Двучленные уравнения степени :
,
– всегда имеет
различных корней.
,
;
;
.
Ответ: ,
.
4. Решить кубическое уравнение .
Уравнение третьей степени имеет три корня (действительные или комплексные), при этом нужно считать каждый корень столько раз, какова его кратность. Так как все коэффициенты данного уравнения являются действительными числами, то комплексные корни уравнения, если они есть, будут парными комплексно сопряженными.
Подбором находим первый корень уравнения , так как
.
По следствию из теоремы Безу . Вычисляем это деление «в столбик»:
_ | |||||
_ | |||||
_ | |||||
Представляя теперь многочлен в виде произведения линейно и квадратного множителя, получим:
.
Другие корни находим как корни квадратного уравнения:
.
Ответ: ,
.
5. Составить алгебраическое уравнение наименьшей степени с действительными коэффициентами, если известно, что числа x 1 = 3 и x 2 = 1 + i являются его корнями, причем x 1 является двукратным корнем, а x 2 — простым.
Число тоже является корнем уравнения, т.к. коэффициенты уравнения должны быть действительными.
Всего искомое уравнение имеет 4 корня: x 1, x 1, x 2, . Поэтому его степень равна 4. Составляем многочлен 4-й степени с нулями x 1, x 1, x 2,
по формуле (6):
Þ
.
Искомое уравнение имеет вид P 4(x ) = 0.
Ответ: .
1. Сформулируйте определение комплексного числа
3. Какое название или смысл имеет формула?
4. Поясните смысл обозначений в этой формуле:
5. ⌂ .
7. Что такое действительная часть комплексного числа z?
9. Что такое комплексно сопряженное число?
11. Что такое комплексный ноль?
13. Сформулируйте смысл комплексного равенства.
15. Что такое модуль и аргумент комплексного числа?
17. Что такое аргумент комплексного числа?
18. Какое название или смысл имеет формула?
19. Поясните смысл обозначений в этой формуле:
20. ⌂ .
21. Что такое алгебраическая и тригонометрическая формы комплексного числа?
22. Какое название или смысл имеет формула?
23. Поясните смысл обозначений в этой формуле:
24. ⌂ .
25. Что называется алгебраической формой комплексного числа?
27. Дайте определения и перечислите основные свойства арифметических действий над комплексными числами.
28. Какое название или смысл имеет формула?
29. Поясните смысл обозначений в этой формуле:
31. Какое название или смысл имеет формула?
32. Поясните смысл обозначений в этой формуле:
33. ⌂ .
34. Какое название или смысл имеет формула?
35. Поясните смысл обозначений в этой формуле:
36. ⌂ .
37. Что такое формула Муавра?
38. Какое название или смысл имеет формула?
39. Поясните смысл обозначений в этой формуле:
40. ⌂ .
41. Что называется корнем степени n из комплексного числа?
42. Какое название или смысл имеет формула?
43. Поясните смысл обозначений в этой формуле:
44. ⌂ .
45. Что называется показательной формой комплексного числа?
46. Какое название или смысл имеет формула?
47. Поясните смысл обозначений в этой формуле:
48. ⌂ .
49. Что такое формулы Эйлера?
50. Какое название или смысл имеет формула?
51. Поясните смысл обозначений в этой формуле:
52. ⌂ .
53. Что называется целой функцией?
55. Что называется полиномом?
57. Что такое коэффициенты многочлена?
59. Что называется нулем функции?
61. Перечислите основные свойства многочленов.
63. Сформулируйте свойство о делении многочлена на разность (x – х0).
65. Какое название или смысл имеет формула?
66. Поясните смысл обозначений в этой формуле:
67. ⌂ .
69. Сформулируйте теорему теорема алгебры основная.
70. Какое название или смысл имеет формула?
71. Поясните смысл обозначений в этой формуле:
72. ⌂ .
73. Что называется k-кратным нулем многочлена?
75. Сформулируйте свойство о количестве корней алгебраического уравнения.
78. Сформулируйте свойство о разложении многочлена с действительными коэффициентами на линейные и квадратичные множители.
k-кратным нулем многочлена называется. (стр. 18)
алгебраическим многочленом называется. (стр. 14)
алгебраическим уравнением n-й степени называется. (стр. 14)
алгебраической формой комплексного числа называется. (стр. 5)
аргумент комплексного числа это. (стр. 4)
действительная часть комплексного числа z это. (стр. 2)
комплексно сопряженное число это. (стр. 2)
комплексный ноль это. (стр. 2)
комплексным числом называется. (стр. 2)
корнем степени n из комплексного числа называется. (стр. 10)
корнем уравнения называется. (стр. 14)
коэффициенты многочлена это. (стр. 14)
мнимая единица это. (стр. 2)
мнимая часть комплексного числа z это. (стр. 2)
модулем комплексного числа называется. (стр. 4)
нулем функции называется. (стр. 14)
показательной формой комплексного числа называется. (стр. 11)
полиномом называется. (стр. 14)
простым нулем многочлена называется. (стр. 18)
противоположное число это. (стр. 2)
степень многочлена это. (стр. 14)
тригонометрической формой комплексного числа называется. (стр. 5)
- Как убрать очередь в атернос
- в каком году началась пандемия ковид 19