что лучше титан или алюминий
Выбираем раму. Алюминий, карбон, сталь или титан?
Пожалуй, самый кардинальный апгрейд велосипеда — это замена рамы. Именно рама задаёт характер байка, сильнее всего влияет на его ходовые качества, на внешний вид и, как следствие, на получаемое удовольствие от катания. На интернет-форумах сломано множество копий насчёт выбора того или иного материала рамы и данную тему можно смело отнести к разряду холиваров, но всё же я позволю себе порассуждать и изложу своё мнение.
Алюминиевые рамы
На протяжении многих лет алюминиевые рамы пользуются большой популярностью среди велосипедистов по всему миру. Хоть рамы и называются «алюминиевые», но изготавливают их не из чистого алюминия, а из сплава, ввиду того, что сам по себе алюминий довольно мягок. Таким образом примерно на 95% сплав состоит из алюминия, но также включает: магний, цинк, марганец, титан, хром, железо и др. В результате этого получаются такие популярные сплавы как 7005 и 6061, чаще всего используемые при изготовлении велосипедных рам. С целью увеличения прочности применяются трубы большого диаметра и с большей толщиной стенок. Многие алюминиевые рамы, с целью облегчения, обладают т.н. баттингом, что представляет собой переменную толщину стенок труб в разных местах, в зависимости от нагрузки. В результате рама получается достаточно лёгкой, жёсткой и прочной.
Вес алюминиевой рамы среднего уровня в размере 19” составляет около 2-2.5 кг, что позволяет собрать довольно лёгкий байк при весьма скромном бюджете. Что касается жёсткости, то это и хорошо, и плохо. Для участия в гонках, где важен рывок, динамичная езда стоя на педалях и чёткость управления, жёсткость будет плюсом. Но если говорить о продолжительных поездках на длинные дистанции, то езда на алюминиевой раме может вызвать некоторые неприятные ощущения в пояснице, спине и руках, особенно если у вас есть какие-либо проблемы с позвоночником. Причиной тому названная выше жёсткость, а также свойства материала — низкое внутреннее трение, в результате чего, вибрация от колёс очень хорошо передаётся велосипедисту через раму.
Одним из главных недостатков алюминиевых рам является их склонность к накоплению усталости и, как результат, неожиданным поломкам в самый неподходящий момент. Именно поэтому стоит с особой настороженностью относиться к б/у рамам из алюминиевого сплава возрастом более 10 лет, с приличным пробегом или подвергавшимся большим нагрузкам (например, в экстремальных дисциплинах). Также это актуально для жёстких алюминиевых вилок. Мало того, что езда на такой вилке крайне некомфортна, так ещё и сломаться может внезапно.
Так или иначе, но алюминиевые рамы продолжают пользоваться большой популярностью и на их базе собирают многие серийные модели велосипедов в нижнем и среднем ценовых сегментах. Пожалуй, цена здесь является основополагающим фактором. Ведь приобрести достаточно качественную раму из алюминиевого сплава можно даже за 5000-8000 руб.
В профессиональном велоспорте алюминиевые рамы уже давно не используются и их полностью вытеснил карбон, который по своим свойствам гораздо лучше подходит для дисциплин, где счёт времени идёт на секунды, а веса на граммы.
Карбоновые рамы
В профессиональном спорте карбон закрепился прочно и надолго, вряд ли в ближайшие годы что-то сможет его вытеснить. Технологии продолжают оттачивать, выпускают новые модели рам, обладающие большей жёсткостью, прочностью, лучшей аэродинамикой и меньшим весом. Вместе с этим карбоновые рамы и компоненты перестали быть привилегией исключительно профессионалов и, чем дальше, тем больше, проникают в ряды велосипедистов-любителей. Вместе с этим появилась масса статей и тем на форумах с весьма неоднозначными мнениями насчёт карбоновых рам. Могут вызвать недоумение статьи, где автор рассказывает о том, какой карбон классный, надёжный и прочный, но потом сам себе противоречит и говорит о том, что он всё же немного хрупкий. Так всё же, надёжный или хрупкий? Давайте разберёмся.
Нужен ли карбон мне?
Для того, чтобы вам было проще определиться, я предлагаю ответить для себя на ряд вопросов:
В случае уверенных положительных ответов на эти вопросы, можно предположить, что да, скорее всего вам действительно нужен велосипед на карбоновой раме. Если же вам, в первую очередь, важны надёжность и долговечность, вы не собираетесь завоёвывать призовые места на соревнованиях, а кошелёк не тянет карман, то не стоит гнаться за трендами. В этом случае обратите внимание на более доступные и испытанные временем материалы, например, сталь.
Стальные рамы
Хотите прикоснуться к настоящей классике? Купите качественную стальную раму. Многие десятилетие большинство велосипедов собирались именно на стальных рамах, начиная от детских Школьников, заканчивая Colnago профессионального уровня. В начале 90-х годов, в профессиональном велоспорте, стальные рамы очень быстро были вытеснены алюминиевыми, а затем и карбоновыми. Что касается более бюджетных велосипедов, то здесь сталь до сих пор в ходу, причём очень даже разная.
Самые простые и бюджетные — рамы из низкоуглеродистой стали, чуть более дорогие — из легированной (high tensile, hiten steel). Первые используются на велосипедах самой низкой ценовой категории и иногда их называют рамами из кроватных или водопроводных труб. Действительно, характеристики их вряд ли можно назвать выдающимися, особенно первых. Такие рамы обладают большим весом (4-5 кг) и довольно сильно подвержены коррозии. Тем не менее стоят они недорого, крепки и ремонтопригодны и хорошо гасят вибрации.
Самые лучшие и интересные стальные рамы изготавливают из хромомолибденовой стали (CrMo). Некогда легендарные ХВЗ, Colnago, Bianchi, Pinarello и многие другие известные производители шоссейных и горных рам имели в своём арсенале множество моделей хромомолибденовых рам разного уровня, от средних любительских, до топовых профессиональных, на которых множество раз одерживали победы на культовых мировых велогонках, таких как: Tour de France, Giro d’Italia, Paris-Roubaix и многих других. Конечно, на сегодняшний день, в профессиональном велоспорте, сталь (даже такая качественная) уже много лет не используется, но многие производители продолжают изготавливать хромомолибденовые рамы, как шоссейные, так и горные, которые пользуются большой популярностью у ценителей классики и велотуристов, которым важна максимальная надёжность, ремонтопригодность и комфорт при передвижении по дорогам с самым разным покрытием.
Хромомолибденовые рамы очень стойки к накоплению усталости. Даже, если случилось так, что хромомолибденовая рама сломалась, то, как правило, это происходит не резко, а постепенно. Были случаи, когда у хромомолибденовых рам в тяжёлых походах появлялась трещина, но они выдерживали, не ломались, и позволяли закончить маршрут. Почти 10 лет назад ко мне попала хромомолибденовые рама Jamis Exile XC. Фотографии этого велосипеда вы можете наблюдать на страницах этого сайта. Так вот рама попала ко мне уже сильно побитой жизнью. Она долго лежала в неотапливаемом гараже, в результате чего начала ржаветь. Резьбу карточного узла мне пришлось тщательно очистить, обработать преобразователем, а после пролить всю раму мовилем. Кроме того на верхней трубе рамы есть вмятина, а также присутствует небольшое искривление задних перьев, таким образом заднее колесо оказалось немного в стороне. Тем не менее это мой основной велосипед на все случаи жизни, который я использую круглый год на протяжении 9 лет.
Бытует мнение, что стальные рамы очень тяжёлые. Но это совершенно не относится к качественным хромомолибденовым рамам. Если, конечно, не сравнивать их с карбоном. А вот с алюминиевыми вполне можно сравнить и преимущество будет не всегда за последними. Конечно, лёгкие хромомолибденовые рамы довольно дороги и могут стоить 20000-30000 руб. и более. Но есть варианты и подешевле, к тому же, в случае хромомолибденовых рам, не стоит сильно бояться Б/У, как с алюминиевыми. Мне мой Jamis достался почти бесплатно, можно сказать, что я его спас 🙂
Титановые рамы
Вот мы и добрались до моего любимого титана. Именно велосипед на титановой раме олицетворяет для меня максимальную универсальность, надёжность и является моим выбором. Напомню, что уже более 12 лет я владею велосипедом на базе рамы Titerra Ti-M19, некоторое время назад я писал о нём в статье и рассказывал в видео.
Титановые рамы обладают весом, сравнимым с лучшими алюминиевыми образцами, прочностью и комфортом, присущим хромомолибденовым рамам, но при этом практически не боятся коррозии и обладают фантастической долговечностью. Замечу, что пункт про долговечность имеет силу, если при изготовлении были соблюдены все технологии. В противном же случае рама может быстро сломаться и починить её уже будет не так просто, поскольку требования к условиям обработки титана весьма высоки, что напрямую отражается на ремонтопригодности изделия, особенно при отсутствии необходимых условий. Но если технология была соблюдена, то титановая рама будет служить вам десятилетиями, ещё и на внуков с правнуками хватит.
При изготовлении титановых рам применяется сплав, содержащий и другие элементы, а не только титан в чистом виде. Такие сплавы называются Titanium alloys. Так, например, самыми популярными сплавами, используемыми в производстве велосипедных рам являются 3AL-2.5V (3% Алюминий и 2.5% Ванадий) и 6AL-4V (6% Алюминий и 4% Ванадий). Зачастую данные сплавы комбинируются и используются в разных частях одного изделия. Также применяются и другие сплавы, например, известная фирма Rapid использует в своих рамах аэрокосмический сплав ОТ-4 и ПТ-7М.
Что касается предназначения титановых рам, то круг их применения весьма широк: круглогодичная и ежедневная эксплуатация в городе, сложные многодневные походы, бреветы, покатушки по любым типам дорог, сопряжённые с длительными пешими переходами, где велосипед приходится тащить буквально на себе. Разве что сюда я не стану относить гонки, где важна высокая жёсткость рамы, позволяющая обеспечить максимальный рывок и острое управление. Поскольку титан мягок, то он имеет некоторые потери при педалировании, особенно при силовом. Также, в случае эксплуатации велосипеда с титановой рамой людьми весом 100 кг и более, может быть заметна излишняя мягкость, вплоть до ощущения, что рама под вами просто болтается. Конечно, это во многом зависит от конкретной модели рамы.
Визуально велосипед на титановой раме выглядит совершенно неброско. Титан довольно редко красят и если нужно добиться эффектного внешнего вида, то его полируют до приобретения блеска. Большинство же рам продаются не полированными и для обывателей представляют собой просто серую железяку. Это, несомненно, можно отнести к плюсам. Несмотря на свою немалую стоимость, титановые велосипеды привлекают к себе гораздо меньше внимания, нежели разукрашенные алюминиевые или модные карбоновые, которые иногда так и кричат: «Эй, возьми меня, я такой классный!». Даже знаю случай, когда во время покатушки группа остановилась у сельского магазина, прислонили велосипеды и ушли. Титановый велосипед был прислонен последним. Когда люди вышли из магазина, то обнаружили, что титан (который был самым первым) валяется в стороне, а вот нового алюминиевого байка след простыл. Конечно, не стоит рассчитывать, что это работает всегда и спокойно оставлять велосипед где попало, но плюсом это, несомненно, является.
Самым большим недостатком титановых рам является их высокая цена, которая может быть эквивалентна брендовым карбоновым изделиям и даже превышать их стоимость. Так, например, б/у титановая рама, которой уже стукнуло 15 лет, может легко продаваться за 20000 руб., при этом нельзя сказать, что это сильно завышенный ценник. Цены на новые отечественные титановые рамы начинаются от 45000 руб. Поэтому, если вы решили собрать велосипед на титановой раме, то перед этим нужно взвесить все «за», «против» и понять, для чего всё это надо и стоит ли игра свеч. Во многих случаях хромомолибденовая рама может стать отличной альтернативой титану за существенно меньшие деньги.
Заключение
Конечно, помимо алюминиевых, карбоновых, стальных и титановых, есть велосипедные рамы и из других, гораздо более экзотичных сплавов и материалов, например, магниевые или скандиевые рамы. Но на сегодняшний день в продаже их найти весьма сложно, даже под заказ, да и насколько мне известно, интерес к ним уже сильно поубавился, в сравнении с тем, каким он был лет 10-15 назад.
Что касается выбора материала рамы для своего велосипеда, то здесь нужно подумать и определиться, как именно он будет эксплуатироваться. Каждый материал по-своему хорош, но и имеет свои слабые стороны. Если речь идёт о сборке бюджетного велосипеда, то скорее всего выбор будет ограничен алюминиевыми и стальными рамами. В случае вашей склонности к спорту и гонкам, на первых порах, гоняться стоит на алюминии, но при ощутимом росте переходите на карбон, что позволит вам улучшить результат. Но не стоит думать, что сев на карбон, вы сразу приедете в первой 5ке. Всё же, в первую очередь, едет велосипедист, а велосипед ему в этом помогает. Если вы тяготеете к велотуризму, любите длительные поездки по любым дорогам (а может и вовсе без них), при этом есть желание прикоснуть к чему-то вечному, надёжному и есть возможность серьёзно потратиться, то велосипед на титановой раме подойдёт вам как нельзя лучше. Не готовы потратить несколько десятков тысяч на одну раму, но хочется надёжности и долговечности, а «дутые» алюминиевые рамы не нравятся визуально? В этом случае обратите внимание на хромомолибденовые модели, которые, несомненно, смогут удовлетворить ваши потребности и изысканный вкус.
Несомненно, выбор рамы — вопрос очень важный, ведь на хорошем оборудовании и кататься приятно. Но я не советую вам ударяться в велофетишизм, гнаться за граммами и тратить время впустую, споря на велофорумах на тему, что круче, что катит, а что не катит. Главное, чтобы велосипед вам нравился, а у вас было желание, время и силы почаще кататься, получая пользу и удовольствие.
Если вам есть что добавить или вы хотите задать вопрос по той или иной раме, то милости прошу в комментарии.
Какой сплав в инвалидной коляске является лучшим?
Какой сплав самый лучший? Невозможно однозначно ответить на этот вопрос. Ультра легкие инвалидные коляски, как правило, состоят из четырех типов материалов: алюминия, титана, карбона и других композитных материалов. Сравнение одного вида материала c другим осуществить практически невозможно, так как каждый вид материала имеет свои преимущества и недостатки, а также технология создания материалов постоянно развивается и меняется. Например, всего десять лет назад углеродное волокно имело свойство желтеть и разрушаться. Однако в процессе улучшения технологий, производство углеродных волокон прошло долгий путь в изготовлении техники для инвалидов на протяжении десятилетий. Многие композитные материалы, используемые в их производстве, представляют собой комбинацию из углеродного волокна, пластмассы или смолы. Эти материалы также прошли долгий путь совершенствования на протяжении последних лет.
Например, в аэрокосмической промышленности на передний план вышли материалы для создания прочных и легких деталей. Объясняется это одной простой причиной. Чем легче самолет, тем лучше он будет выполнять свои полёты и тем более экономичным будет в эксплуатации. Такой подход усовершенствования деталей дает снижение веса в среднем на 20 процентов по сравнению с более традиционными алюминиевыми конструкциями. В то время, как большинство производителей инвалидных колясок делают свою продукцию либо из алюминия, титана или композитных материалов, авиапромышленность использует все эти материалы соответствующим образом для достижения легкости и безопасности. Инженерные разработки являются более важными, чем сам материал.
Кроме того, не все алюминиевые или титановые детали равны в своих возможностях. Есть очень много нюансов, которые входят в создание данного вида техники. Алюминий инвалидного кресла, произведённый одной компанией, может быть легче, чем алюминий, произведённый другой.
Диаметр и толщина труб, эффект жесткости, прочность и вес.
Производитель инвалидной техники может использовать тонкостенные трубы, и тем самым добиться легкости рамы инвалидного кресла, которая была бы весьма удовлетворительной для некоторых пациентов. Но данная рама может треснуть от избыточного веса и тяжести.
В самых лёгких инвалидных креслах используются различные толщины и диаметры труб в разных частях корпуса в целях достижения лучшего баланса веса, прочности и жесткости, которая необходима для лучшей езды. Например, титан имеет более высокую прочность, чем алюминий. Но в 2008 году исследователи из Университета Питтсбурга опубликовали исследования испытаний четырех популярных марок титана, используемых в производстве инвалидной техники. Ученые обнаружили, что прочность титановых инвалидных кресел была меньше чем у их алюминиевых аналогов. Титановые кресла-коляски были легкие, однако эта лёгкость была достигнута в ущерб прочности рамы.
Поэтому ошибочно считать, что инвалидная коляска, изготовленная из одного материала, обязательно будет легче, прочнее или лучше, чем такая же коляска из другого вида материала. Вероятно, что лёгкий вес и прочный корпус в будущем будет достигнут тогда, когда будет использоваться сочетание различных типов материалов, именно тех, которые используются сейчас в авиационной промышленности. Примером этому служит авиалайнер Boeing Dreamliner.
Рассмотрим типы материалов, использующихся в производстве инвалидной техники:
Титан.
Титан тяжело окрасить. Существуют особые методы покраски титана, но зачастую они очень дорогие. В результате, многие кресла-коляски, сделанные из титана окрашены в тускло серый цвет. Кому-то это нравится, а кому-то нет.
Углеродное волокно.
В процессе усовершенствования, всё ещё имеются жалобы на повреждение углеродного волокна у рамы инвалидного кресла. Так это или нет, но эта технология является достаточно старой и зависит от типа производства углеродного волокна, который использует производитель. Также углеродное волокно может пожелтеть под воздействием ультрафиолетового света, если оно не покрыто краской или каким-либо другим материалом.
Алюминий.
Сварные алюминиевые рамы, как правило, получаются более лёгкими, чем алюминиевые рамы, скрепленные скобами и винтами. Но многим людям не нравится внешний вид сварки, а также сварные части не могут быть отрегулированы под нужды инвалида. И если пациент захочет продать такую коляску, он может столкнуться с проблемой поиска покупателя, который будет иметь точно такие же габариты и вес.
Какая инвалидная коляска удобней?
Одним из ключевых вопросов при выборе сверхлегкой коляски является то, как производитель делает её подходящей к габаритам вашего тела. В связи с этим компания «Орт-Фарм Ортопедия» даёт следующую рекомендацию по подбору и покупке. Существует три типичных подхода:
1. Достижение оптимальной регулировки: Производитель может сделать инвалидную коляску с несколько более длинной рамой и затем использовать отладку её ширины для того, чтобы подогнать её габариты под ваши размеры и требования. Производитель отрегулирует высоту сидения, угол переднего кастера, угол заднего сиденья, высоту спинки и длину ступеньки для ног, то есть все требования, которые вы ставите перед изготовителем. Проблема в том, что для регулировки инвалидной коляски потребуются болты, скобы, винты и все эти дополнения придадут дополнительный вес. Поэтому большинство ультра-легких колясок имеют ограниченную настраиваемость.
2. Подход к изменению размера рамы: некоторые производители могут уменьшить вес за счёт отсутствия регулировки или универсального правила «один размер для всех». Для того, чтобы свести к минимуму количество типов размеров инвалидных колясок, которые производитель должен был хранить на своих складах, нашлось следующее решение: конструкторы инвалидной техники попытались свести к минимуму некоторые размеры. Например, определённые виды колясок предложены только с рамой одной длины.
Вес инвалидной коляски. Сравнение.
У какого производителя самая легкая инвалидная коляска?
Наверное, ответить на это не так и легко, как можно подумать на первый взгляд. Много факторов играют роль в весе, и поиск данных, необходимых для сравнения этих весов зачастую является невозможной задачей.
Как отличить титан от нержавеющей стали и алюминия
Отличить титан от нержавеющей стали аустенитного класса или алюминия довольно сложно. Особенно если у вас имеется один образец и сравнивать не с чем. Все три металла являются парамагнетиками и не реагируют на магнит, имеют серебристый цвет и похожий удельный вес. Но есть несколько простых и проверенных способов отличить титан от легированной стали и алюминия в домашних условиях без специального оборудования.
Доступный и простой способ — поцарапать металлом стекло
Если коротко
Пояснение, детали
Метод основан на способности титана оставлять характерные темные следы на поверхности стекла и кафельной плитки. При этом металл не царапает стекло, а именно рисует на его поверхности. Смыть такой след можно только раствором плавиковой кислоты (HF). А нержавеющая сталь может поцарапать стекло, но темного следа не оставит. Алюминий вообще не способен нанести никаких повреждений.
Отличить титан по искре
Если коротко
Пояснение, детали
Во время обработки титана на точильном станке или при резком продольном трении по абразивной поверхности точильного камня контакт металла сопровождается россыпью искр ярко-белого цвета. При отсутствии абразива можно использовать мелкий напильник или даже простой бетон, хотя эффект будет меньшим.
Искры от нержавеющей стали имеют желтый и красный оттенок. Их вылетает намного меньше, а на бетоне и напильнике не будет совсем. Некоторые сорта нержавеющих сталей были разработаны, как пожаробезопасные. Искрообразование во время обработки таких металлов невозможно технологически. При трении алюминия по образивной поверхности искры не выделяются, но могут оставаться характерные серебристые следы на поверхности.
Такой тест на возможность образования искр наиболее популярный и простой, поскольку цвет действительно отличается очень сильно, а их полное отсутствие сразу говорит о том, что этот металл не титан.
После того, как вы определите какой именно металл перед вами вы можете сдать его по выгодной цене:
Проверка на гальваническую реакцию
Для проведения этого теста потребуется источник постоянного тока с напряжением около 12 В. Это может быть автомобильный аккумулятор или преобразующий трансформатор. Соедините через провод плюс батареи с исследуемым образцом, а минус с металлическим стержнем, на конце которого намотана вата, марля или кусок хлопчатобумажной ткани. Намочите вату слабым раствором соляной кислоты или обычной кока-колой.
Если это титан, то при прикосновении к металлу его поверхность будет окрашиваться в результате образования оксидной пленки. Цветовой оттенок зависит от величины напряжения, концентрации кислоты в растворе и времени воздействия. Нержавеющие сплавы и алюминий данной реакции не подвержены.
Сравнение удельного веса — способ, требующий точных измерений
Всем известно, что алюминий это самый легкий из этих трех металлов, а сталь самая тяжелая. Но как определить, если у вас один образец и сравнивать не с чем? Это можно сделать путем измерений и вычисления плотности или удельного веса материала, который примерно составляет:
Этот способ определения требует наличия точных весов и емкости для погружения образца в воду.
После взвешивания металла необходимо определить его объем. Проще всего воспользоваться для этого, известным со школы законом Архимеда, погрузив образец в жидкость. Изменение уровня воды покажет искомую величину.
Это более сложный и длительный вариант определения и поэтому используют его очень редко. Но он тоже дает результаты и должен рассматриваться.
Специфические способы определить титан
В отдельных случаях определение металла можно произвести простыми и весьма оригинальными способами:
Насколько надежны эти методы?
Приведенные методы достаточно надежные и часто используюстся специалистами по приему металлолома. Однако стоит учитывать, что точное определение химического состава сплава, особенно при наличии примесей, может быть выполнена только с использованием специального оборудования.
Что легче алюминий или титан
Алюминий и титан 2020
Алюминий против титана В мире, в котором мы живем, есть множество химических элементов, которые отвечают за состав всех неживых вещей вокруг нас. Большинство из этих элементов являются естественными, то есть они происходят естественным образом, тогда как остальные являются синтетическими; то есть они не происходят естественным образом и искусственно создаются. Периодическая таблица является очень полезным инструментом при изучении элементов. На самом деле это табличное устройство, которое отображает все химические элементы; организация основана на атомном номере, электронных конфигурациях и некоторых конкретных повторяющихся химических свойствах. Два элемента, которые мы собрали из таблицы для сравнения, — алюминий и титан.
Начнем с того, что алюминий является химическим элементом, который имеет символ Al и находится в группе бора. Он имеет атомный 13, т. Е. Имеет 13 протонов. Алюминий, как многие из нас знают, относится к категории металлов и имеет серебристо-белый вид. Он мягкий и пластичный. После кислорода и кремния алюминий является третьим наиболее распространенным элементом в земной коре. Он составляет почти 8% (по массе) твердой поверхности Земли.
С другой стороны, титан также является химическим элементом, но он не является типичным металлом. Он относится к категории переходных металлов и имеет химический символ Ti. Он имеет атомный номер 22 и имеет серебристый вид. Он известен своей высокой прочностью и низкой плотностью. То, что характеризует титан, является тот факт, что он очень устойчив к коррозии в хлоре, морской воде и водной воге.
Сравним два элемента по их физическим свойствам. Алюминий — ковкий металл и легкий. Приблизительно алюминий имеет плотность, которая составляет примерно одну треть от объема стали. Это означает, что при том же объеме стали и алюминия последний имеет одну треть массы. Эта характеристика очень важна для ряда применений алюминия. Фактически, это качество с низким весом является причиной того, что алюминий настолько широко используется при создании самолетов. Его внешний вид варьируется от серебра до тускло-серого. Его фактический внешний вид зависит от шероховатости поверхности. Это означает, что цвет становится ближе к серебру для более гладкой поверхности. Более того, он не является магнитным и даже не легко воспламеняется. Алюминиевые сплавы широко используются из-за их прочности, которые намного превосходят прочность чистого алюминия.
Титан характеризуется высоким отношением прочности к весу. Он довольно пластичный в среде, свободной от кислорода, и имеет низкую плотность. Титан имеет очень высокую температуру плавления, которая даже больше, чем 1650 градусов по Цельсию или 3000 градусов по Фаренгейту. Это делает его очень полезным в качестве тугоплавкого металла. Он имеет довольно низкую тепловую и электрическую проводимость и является парамагнитным. Коммерческие сорта титана имеют прочность на растяжение около 434 МПа, но менее плотные. По сравнению с алюминием титан примерно на 60% плотнее. Однако он имеет двойную прочность алюминия. Оба имеют очень разную прочность на растяжение.
Резюме различий, выраженных в пунктах
Карбон,титан или алюминий?
Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.
Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.
Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi- end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний — композиционный материал на основе углеволокна и эпоксидного связующего.
Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al/2.5 V) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.
Следующая важная характеристика – предел текучести, напряжение при котором начинает возникать пластическая деформация, другими словами, при разгрузке от которого возникает остаточная деформация заданной величины. Для карбона такие данные не приводятся, для титана порядка 300 МПа, для алюминия порядка 20 МПа.
Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.
Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.
Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.
Причиной разрушения велосипедной рамы являются не чрезмерные нагрузки, а накопление в процессе эксплуатации изделия мелких внутренних повреждений (которые принято называть трещинками или дислокациями), спровоцированное периодическим влиянием внешних сил (напряженного состояния). Определяющей характеристикой металла, так или иначе реагировать на напряженное состояние, является пластичность.
Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.
Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.
Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.
Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!
Ещё одной причиной разрушения конструкционных материалов являются внешние дефекты (царапины). Стойкость материала к царапинам определяется твердостью. Твердость титана по Бриннелю составляет 103 ед., а у алюминия 25 ед., то есть у титана она в 4 раза выше!
У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).
Суммируя всё сказанное, получается, что применительно к велосипедной раме титан выглядит материалом практически идеальным. Также это можно сказать про сочетание титана и карбона (углепластика). Однако, дорогой читатель, окончательный выбор всё равно остаётся за Вами.
Титан, карбон или алюминий?
Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.
Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.
Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi — end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний — композиционный материал на основе углеволокна и эпоксидного связующего.
Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al /2.5 V ) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.
Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.
Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.
Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.
Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.
Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.
Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.
Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!
У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).