что лучше кислородная маска или канюли
Принципы респираторной поддержки, специфичные для взрослых пациентов с COVID-19
Консенсусное заявление Австралийского общества защиты дыхательных путей
Вспышка коронавирусной инфекции в городе Ухань (Китай) в 2019 году привела к пандемии под кодовым названием — «COVID-19». Более 80 % подтвержденных случаев заболевания протекали в легкой форме, однако в 17 % случаев инфекция сопровождалась развитием тяжелого поражения легких — ОРДС (острого респираторного дистресс-синдрома взрослых): 4 % больных нуждались в проведении ИВЛ, у 4 % развивался сепсис. У пациентов с COVID-19, с осложнениями в виде развившегося ОРДС, как и в других группах пациентов с ОРДС, первично рассматривается вариант со срочной интубацией трахеи и переводом на ИВЛ с целью поддержания газообмена в легких и предоставления времени для восстановления функций легких и улучшения исхода лечения.
По последним данным, полученным в городе Ухань и Северной Италии, по крайней мере 10 % больных с подтвержденной COVID-19 инфекцией требуют перевода в отделения интенсивной терапии с целью наблюдения и лечения, части этих больных показана быстрая последовательная интубация с последующей ИВЛ для коррекции остро развившейся гипоксии на фоне ОРДС.
По мере роста заболеваемости в популяции повышается количество больных со слабо выраженными или вообще отсутствующими симптомами. Являясь переносчиками COVID-19, такие больные экстренно могут попасть на операционный стол, что имеет важное значение для экстренной хирургии.
Риски для медицинских работников
Основной механизм передачи COVID-19 — воздушно-капельный. Передача вируса может происходить как напрямую при близком контакте, так и опосредованно через аэрозоль (вирус может оставаться активным в течение многих часов и дней). Так, кашель и некоторые процедуры, основанные на воздушно-дыхательном потоке (ВДП), (см. табл. 1) могут приводить к образованию устойчивых мелкодисперсных аэрозолей, содержащих в себе частички вируса, которые могут переноситься по воздуху на большие расстояния, тем самым увеличивая риск передачи COVID-19.
Процесс ухода за тяжелыми пациентами с COVID-19 и выполнение процедур, сопровождающихся образованием аэрозолей с частицами вируса, представляет повышенный риск инфицирования медицинских работников.
Таблица 1 | Факторы риска аэрозолизации при оказании респираторной поддержки
Во время вспышки атипичной пневмонии в Канаде в 2002 году половина всех случаев заражения пришлась на медицинских работников. Болезнь и последующие карантинные мероприятия лишают систему здравоохранения самого главного ресурса — медработника в период высокого спроса. В настоящее время коронавирус COVID-19 классифицируется как инфекционное заболевание высокой степени тяжести (HCID), что подчеркивает значительный риск как для работников здравоохранения, так и для системы здравоохранения в целом.
Неинвазивная вентиляция легких с постоянным положительным давлением через лицевую маску или через надгортанные воздуховоды ввиду неполной герметичности неизбежно приводит к возникновению высокоскоростного воздушного потока, сопровождающегося образованием аэрозолей, в отличие, например, от ИВЛ через эндотрахеальную трубку (ЭТТ) при раздутой манжетке.
В противоположность вышеописанному опосредованное образование аэрозолей может происходить при процедурах, не связанных с потоком газа. Ларингоскопия, интубация трахеи или бронхоскопия напрямую не влияют на образование аэрозолей (табл. 1). Однако, при проведении ларингоскопии, например, с целью интубации трахеи в сознании или бронхоскопии с целью санации трахео-бронхиального дерева (ТБД) может возникнуть кашель, который, в свою очередь, будет сопровождаться образованием аэрозоля. При проведении «спасительного вмешательства» в экстренных случаях — крикотиреотомии или трахеостомии — также могут образовываться аэрозоли ввиду того, что данные процедуры могут проходить одновременно с респираторной поддержкой высокоскоростными потоками. Подводя некий итог, правильная подготовка больного к инвазивным вмешательствам (быстрая последовательная индукция, нейромышечная блокада), избегание процедур, провоцирующих образование описанных выше потоков, способствуют профилактике образования аэрозолей.
Процесс управления дыхательными путями представляет собой период повышенного риска (с точки зрения передачи аэрозолей) по следующим причинам:
Крайне важно во время оказания респираторной поддержки минимизировать риск развития событий, связанных с образованием аэрозолей. В таблице 2 представлены факторы риска образования аэрозолей и связанные с ними защитные стратегии, которые могут быть приняты для их предотвращения.
Таблица 2 | Меры профилактики рисков аэрозолизации
Неинвазивная вентиляция (НИВЛ) и высокопоточная назальная оксигенотерапия (HFNOT, HFNT)
Имеются ограниченные данные об эффективности и безопасности НИВЛ и HFNOT в контексте вирусных пандемий. Опыт лечения гриппа А (H1N1) показал, что у 57–85 % больных НИВЛ не справилась с возложенной на нее задачей, смертность в группе НИВЛ была выше по сравнению с больными, находящимися на традиционной ИВЛ. Схожие результаты были получены в городе Ухань у больных с COVID-19. Из 29 пациентов, поступивших в отделения интенсивной терапии, 22 (76 %) нуждались в ИВЛ. Смертность пациентов на НИВЛ и ИВЛ была сопоставима (79 % и 86 % соответственно). В целом, было высказано предположение, что применение НИВЛ следует избегать. Во время вспышки атипичной пневмонии (SARS) поступали сообщения о значимости «вторичной» передачи вируса при проведении НИВЛ. Использование НИВЛ небезопасно по нескольким причинам:
Было обнаружено, что в целом у пациентов в критическом состоянии в ОРИТ HFNOT снижает потребность в проведении неотложной интубации трахеи при острой гипоксемической дыхательной недостаточности по сравнению с традиционной кислородотерапией через носовые канюли, не влияя при этом на общую смертность. Ценность HFNOT при вирусных пандемиях неизвестна. Небольшое когортное исследование пациентов с гриппом А показало, что использование HFNOТ позволило избежать интубации у 45 % пациентов, хотя почти все пациенты в конечном итоге были переведены на ИВЛ. СМИ сообщают, что НИВЛ и HFNOТ широко используются в группе пациентов COVID-19 с легкой формой заболевания, однако точных данных нет. Данные методы найдут свое место в случае дефицита аппаратов ИВЛ. Потенциальные преимущества использования HFNOТ и НИВЛ в этих случаях, однако, должны быть сбалансированы в отношении риска образования вирусных аэрозолей. Опыта на манекенах показывают, что рассеивание жидкости при HFNOТ со скоростью потока 60 л/мин значительно меньше, чем при кашле и чихании, но при условии, что носовые канюли хорошо приспособлены под конкретного больного.
Уровень рассеивания жидкости от пациентов и, следовательно, риск аэрозолизации вируса для медицинских работников остается неясным. Риск аэрозолизации при проведении HFNOТ будет зависеть от многих факторов, включая продолжительность использования, скорость потока, кашель пациента и комплаенс, а также качество и пригодность СИЗ персонала. Другими факторами, влияющими на выбор между HFNOТ и интубацией, являются: сопутствующие заболевания пациента, прогноз, ресурсные факторы (такие как наличие аппаратов ИВЛ и другого сопутствующего оборудования), а также наличие персонала, обладающего компетенциями для проведения интубации и ухода за пациентом, находящимся на ИВЛ.
До тех пор, пока не появятся дополнительные данные, следует предполагать, что НИВЛ и HFNOТ являются аэрозоль образующими процедурами. Пациенты, которым проводится данная разновидность респираторной поддержки, должны находиться в изолированных комнатах с отрицательным давлением, а персонал должен носить полную экипировку СИЗ (включая маски N95/P2) во время пребывания в палате.
Из имеющихся доказательств становится очевидно, что НИВЛ и HFNOТ не следует использовать у пациентов с тяжелой дыхательной недостаточностью, а также в клинических ситуациях, где неизбежна ИВЛ. В таких обстоятельствах пациента следует незамедлительно перевести от традиционной оксигенотерапии через лицевую маску к интубации с последующей инвазивной вентиляцией легких.
Руководство SAS
В последние недели появилось небольшое количество статей, руководств и диаграмм для помощи в ведении респираторной поддержки у пациентов с COVID-19, основанных главным образом на недавнем опыте Китая, Гонконга и Италии.
В частности, Австралийское общество защиты дыхательных путей рекомендует:
Общий подход позволит проводить обучение и имитационное моделирование на ранних этапах для всего персонала. Раннее обучение имеет первостепенное значение для улучшения соблюдения техники, особенно использования СИЗ. Последовательный подход, предполагающий сотрудничество между клиницистами из разных отраслей, также улучшит безопасность и эффективность оказания респираторной поддержки.
Следует признать трудности, с которыми сталкивается медицинский персонал, занимающийся ведением дыхательных путей у пациентов с COVID-19. Примеры приведены в таблице 3.
Таблица 3
Общие комментарии
Существуют общие рекомендации по интубации пациентов в критических состояниях. Соответствующие рекомендации должны выполняться в тех случаях, когда они не противоречат частным рекомендациям для группы пациентов с COVID-19, изложенным ниже.
Существуют общие методики для облегчения ведения дыхательных путей и перехода к сценарию «не могу интубировать, не могу вентилировать» (CICO). Многие из этих алгоритмов схожи по содержанию. Этих алгоритмов следует придерживаться в тех случаях, когда они не противоречат конкретным рекомендациям для группы пациентов с COVID-19, изложенным ниже.
Существуют чек-листы по интубации пациентов в критических состояниях. Их использование не запрещено, но следует рассмотреть возможность использования контрольного списка, который был бы специально модифицирован для группы пациентов с COVID-19.
Ранняя интубация должна быть рассмотрена с целью предотвращения дополнительного риска для персонала, проводящего ее, во время тяжелой гипоксии или остановки сердца/дыхания, а также с целью предотвращения длительного использования НИВЛ и HFNOТ.
Для оптимизации безопасности персонала и пациентов при подготовке к осуществлению респираторной поддержки пациентам из группы COVID-19 требуется значительное административное участие. В дополнение к врачам и среднему/младшему медперсоналу в отделениях интенсивной терапии, операционных залах и отделениях неотложной помощи потребуется обширное взаимодействие с другими службами стационара, включая службы инфекционного контроля, инженерного обеспечения, стерилизации и утилизации оборудования, отдела закупок и обучения.
Принципы ведения дыхательных путей, изложенные ниже, должны быть одинаковыми как для группы пациентов с легким или бессимптомным течением, требующим срочного хирургического вмешательства, так и для тяжелобольных пациентов с ОРДС.
Руководящие принципы
Эти рекомендации были разработаны в соответствии с нижеописанными принципами с целью поддержания безопасности персонала при одновременном обеспечении своевременной, эффективной и результативной респираторной поддержки.
Таблица 4
«Стандартизированная практика» удовлетворяет следующим критериям:
РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ В ГРУППЕ ПАЦИЕНТОВ С COVID-19
Обстановка для оказания респираторной поддержки:
Оборудование, мониторинг и медикаменты
Оборудование для доставки кислорода и вентиляции перед интубацией
Доставка кислорода и вентиляционное оборудование во время преоксигенации
Оборудование для доставки кислорода и вентиляции после интубации
Оксигенация и механическая вентиляция могут быть проведены с помощью анестезиологических наркозных аппаратов операционной или дыхательных аппаратов в ПИТ или ОНП. Хотя и те и другие имеют свои преимущества и недостатки, выбор, скорее всего, будет зависеть от их доступности и места оказания помощи пациенту, а не от их индивидуальных особенностей.
Оборудование для осуществления респираторной поддержки
Для того, чтобы основная интубационная тележка находилась вне палаты пациента, мы рекомендуем иметь заранее подготовленную «Интубационную укладку COVID-19» или специальную «Интубационную тележку COVID-19» (см. табл. 5).
Таблица 5
** С целью оптимизации процесса поддержания проходимости дыхательных путей в европейских странах и США распространены интубационные тележки. Ящики подобной тележки имеют внешнюю маркировку для уменьшения количества времени необходимого для сборки той или иной укладки в экстренной ситуации. Рекомендованы DAS и внесены в алгоритмы ведения трудных дыхательных путей от 2015 г. Подробнее можно ознакомиться по ссылке.
В тех случаях, когда есть показания для использования надгортанных воздуховодов с целью ведения дыхательных путей, рекомендуется использовать устройства второго поколения ввиду лучшей их герметичности, что в условиях вентиляции с положительным давлением снижает риск аэрозолизации вируса.
Общепризнанно, что видеоларингоскопы очень ограниченный и дорогой ресурс.
После интубации пациента следует использовать закрытые системы санации, чтобы свести к минимуму аэрозолизацию вируса.
Для измерения давления в манжете интубационной трубки необходимо иметь в наличии специальный манометр, чтобы свести к минимуму утечки и риск аэрозолизации вируса.
Оборудование вне помещения
Команда
При формировании «интубационной бригады» вам следует:
Мы рекомендуем следующий состав команды (см. рис. 1):
«Интубационные бригады» в целом могут быть наняты определенными больницами. Подобное решение будет зависеть от числа подтвержденных случаев и кадровых ресурсов. Это может повысить осведомленность персонала, приемлемость и эффективность процессов, связанных с управлением дыхательными путями в группе пациентов с COVID-19, включая надлежащее надевание/снятие СИЗ среди персонала. Доказательств в пользу этой стратегии пока нет
Рисунок 1 | Респираторная поддержка при COVID-19 (скачать)
Планирование
Коммуникация
Свободная коммуникация имеет жизненно важное значение в связи с риском заражения персонала. В то же время СИЗ могут ограничивать коммуникацию.
Методические пособия
Известно, что частота ошибок увеличивается во время возникновения стрессовых ситуаций, даже если в этом участвуют опытные специалисты (зацикливание, принятие неправильных решений, потеря контроля над ситуацией).
Средства индивидуальной защиты (СИЗ)
Процесс оказания респираторной поддержки
Чтобы максимизировать успех интубации с первой попытки, быстро обеспечить безопасность ВДП пациента и минимизировать риски для персонала, следует отдавать предпочтение знакомым, надежным методикам.
Рисунок 2 | Правильное положение рук (V-E) при вентиляции лицевой маской
Вентиляция через лицевую маску
Если требуется вентиляция при помощи маски, необходимо принять следующие меры предосторожности:
В ситуации CICO («Не могу интубировать, не могу вентилировать») рекомендовано использование техники скальпель-буж для минимизации риска вирусной аэрозолизации при инсуффляции кислорода под высоким давлением через канюлю с небольшим отверстием.
После проведения интубации
Существуют общие рекомендации по экстубации. Их следует соблюдать в тех случаях, когда они не противоречат особенностям при экстубации пациентов COVID-19, изложенным ниже. В идеале пациенты не должны быть инфицированными при проведении экстубации, но это, скорее всего, будет невыполнимо, так как ресурсы системы здравоохранения истощаются. Однако там, где это достижимо, применяются стандартные процедуры экстубации. В ситуациях, когда пациент все еще подвержен риску вирусной передачи, следует соблюдать следующие рекомендации:
Обучение
Особые условия
Уход в отделении интенсивной терапии после интубации.
Экстренная хирургия у пациентов с COVID-19
Как говорилось в самом начале, пациенты с легким или бессимптомным течением COVID-19 могут нуждаться в экстренном оперативном вмешательстве, не связанном непосредственно с коронавирусной болезнью. Пациенты данной группы не нуждаются в срочной респираторной поддержке.
Внеплановое оказание респираторной поддержки (сюда входит и управление дыхательными путями на догоспитальном этапе)
Эти сценарии представляют большой риск для персонала, особенно во время остановки сердечной деятельности. Некоторые рекомендации уже были предложены к использованию в Великобритании. Мы рекомендуем:
Рисунок 3 | Алгоритм поддержания проходимости дыхательных путей у пациентов COVID-19 (скачать)
Что лучше кислородная маска или канюли
Пациент А., 49-ти лет, поступил в ФГБУ «НМИЦ Кардиологии» МЗ РФ Центр COVID-19 с жалобами на кашель с трудноотделяемой мокротой, одышку, нехватку воздуха, боль в груди, головную боль и повышение температуры до 39,4 о С, SpO2 93-94% на атмосферном воздухе. У пациента был положительный назофаренгеальный мазок на SARS-CoV-2.
В течение нескольких дней у пациента нарастала симптоматика дыхательной недостаточности, по данным компьютерной томографии увеличился процент поражения легких до 90% (КТ-4).
Пациент находился на антибактериальной терапии, антикоагулянтной терапии, специфической терапии: гидроксихлорохином, азитромицином, лопинавир-ритонавиром. В последующем, в связи с развитием цитокинового «шторма» больному вводился тоцилизумаб.
Пациент пробыл в блоке интенсивной терапии 6 дней и в дальнейшем учитывая стабилизацию клинического состояния – отсутствие необходимости в проведении респираторной поддержки с применением СРАР – терапии, пациент был переведен в отделение.
При контрольном КТ исследовании: выраженная положительная динамика в виде частичного разрешения вирусной пневмонии, новых участков инфильтрации в паренхиме легких не определяется. Средне-тяжелая степень, процент поражения легочной ткани – 50-60% (КТ2).
Учитывая стабилизацию состояния, отсутствие признаков дыхательной недостаточности и хорошее самочувствие, пациент был выписан из стационара.
Во время проведения СРАР – терапии врачами и медицинским персоналом применялись следующие защитные средства: респиратор FFP3, очки, щиток, костюм индивидуальной защиты влагонепроницаемый, перчатки (2-3 пары). За время использования пациентом СРАР – терапии и в течение 14 дней после ни один сотрудник не заболел, положительных назофаренгиальных мазков на SARS-CoV-2 так же зафиксировано не было.
После выписки пациент выразил благородность всему коллективу ФГБУ «НМИЦ кардиологии».
Полностью клинический пример планируется к публикации в журнале «Анестезиология и реаниматология», ссылка на номер будет размещена на сайте.
Случай предоставлен Литвиным Александром Юрьевичем и Елфимовой Евгенией Михайловной.
Искусственная вентиляция легких (ИВЛ): инвазивная и неинвазивная респираторная поддержка
К искусственной вентиляции легких (ИВЛ) прибегают для оказания помощи пациентам с острой или хронической дыхательной недостаточностью, когда больной не может самостоятельно вдыхать необходимый для полноценного функционирования организма объем кислорода и выдыхать углекислый газ. Необходимость в ИВЛ возникает при отсутствии естественного дыхания или при его серьезных нарушениях, а также во время хирургических операций под общим наркозом.
Что такое ИВЛ?
Искусственная вентиляция в общем виде представляет собой вдувание газовой смеси в легкие пациента. Процедуру можно проводить вручную, обеспечивая пассивный вдох и выдох путем ритмичных сжиманий и разжиманий легких или с помощью реанимационного мешка типа Амбу. Более распространенной формой респираторной поддержки является аппаратная ИВЛ, при которой доставка кислорода в легкие осуществляется с помощью специального медицинского оборудования.
Показания к искусственной вентиляции легких
Искусственная вентиляция легких проводится при острой или хронической дыхательной недостаточности, вызванной следующими заболеваниями или состояниями:
Инвазивная вентиляция легких
Эндотрахеальная трубка вводится в трахею через рот или через нос и подсоединяется к аппарату ИВЛ
При инвазивной респираторной поддержке аппарат ИВЛ обеспечивает принудительную прокачку легких кислородом и полностью берет на себя функцию дыхания. Газовая смесь подается через эндотрахеальную трубку, помещенную в трахею через рот или нос. В особо критических случаях проводится трахеостомия – хирургическая операция по рассечению передней стенки трахеи для введения трахеостомической трубки непосредственно в ее просвет.
Инвазивная вентиляция обладает высокой эффективностью, но применяется лишь случае невозможности помочь больному более щадящим способом, т.е. без инвазивного вмешательства.
Кому и когда необходима инвазивная ИВЛ?
Подключенный к аппарату ИВЛ человек не может ни говорить, ни принимать пищу. Интубация доставляет не только неудобства, но и болезненные ощущения. Ввиду этого пациента, как правило, вводят в медикаментозную кому. Процедура проводится только в условиях стационара под наблюдением специалистов.
Инвазивная вентиляция легких отличается высокой эффективностью, однако интубация предполагает введение пациента в медикаментозную кому. Кроме того, процедура сопряжена с рисками.
Традиционно инвазивную респираторную поддержку применяют в следующих случаях:
Как работает аппарат инвазивной ИВЛ?
Принцип работы приборов для инвазивной ИВЛ можно описать следующим образом.
Особенности оборудования для инвазивной вентиляции
Оборудование для инвазивной вентиляции легких имеет ряд характерных особенностей.
Неинвазивная вентиляция легких
За последние два десятилетия заметно возросло использование оборудования неинвазивной искусственной вентиляции легких. НИВЛ стала общепризнанным и широко распространенным инструментом терапии острой и хронической дыхательной недостаточности как в лечебном учреждении, так и в домашних условиях.
Одним из ведущих производителей медицинских респираторных устройств является австралийская компания ResMed
НИВЛ — что это?
Неинвазивная вентиляция легких относится к искусственной респираторной поддержке без инвазивного доступа (т.е. без эндотрахеальной или трахеостомической трубки) с использованием различных известных вспомогательных режимов вентиляции.
Оборудование подает воздух в интерфейс пациента через дыхательный контур. Для обеспечения НИВЛ используются различные интерфейсы – носовая или рото-носовая маска, шлем, мундштук. В отличие от инвазивного метода, человек продолжает дышать самостоятельно, но получает аппаратную поддержку на вдохе.
Когда применяется неинвазивная вентиляция легких?
Ключом к успешному использованию неинвазивной вентиляции легких является признание ее возможностей и ограничений, а также тщательный отбор пациентов (уточнение диагноза и оценка состояния больного). Показаниями для НИВЛ являются следующие критерии:
Что лучше кислородная маска или канюли
ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия; ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия; ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия
ФГБОУ ВО СГМУ Минздрава России, Архангельск, Россия
Применение высокопоточной оксигенации в терапии острого респираторного дистресс-синдрома
Журнал: Анестезиология и реаниматология. 2020;(1): 47-54
Ушаков А. А., Смёткин А. А., Фот Е. В., Кузьков В. В., Киров М. Ю. Применение высокопоточной оксигенации в терапии острого респираторного дистресс-синдрома. Анестезиология и реаниматология. 2020;(1):47-54. https://doi.org/10.17116/anaesthesiology202001147
ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
Высокопоточная назальная оксигенация позволяет обеспечить доставку увлажненной и подогретой кислородно-воздушной смеси с фракцией вдыхаемого кислорода от 21 до 100% и величиной потока до 80 л/мин. Высокопоточная оксигенация имеет определенные преимущества перед неинвазивной вентиляцией легких. Как показывают результаты недавних исследований, высокопоточная оксигенация не менее эффективна, чем традиционная оксигенотерапия, а в ряде ситуаций более комфортна для пациента и может эффективно использоваться на различных этапах лечения острого респираторного дистресс-синдрома.
ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия; ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия; ГБУЗ АО «Первая городская клиническая больница им. Е.Е. Волосевич», 163000, Архангельск, Россия
ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, 163000, Архангельск, Россия
ФГБОУ ВО СГМУ Минздрава России, Архангельск, Россия
Кислородотерапия является средством первого ряда для лечения гипоксемической дыхательной недостаточности, однако эффективность этой методики ограничена, особенно при необходимости наращивания фракции вдыхаемого кислорода. Следует также учитывать, что при использовании стандартной маски или носовых канюль фракция вдыхаемого кислорода, как правило, не превышает 40% за счет «примешивания» окружающего воздуха. Ограничены также возможности подогрева дыхательной смеси и поддержания положительного давления в конце выдоха, что снижает клиническую эффективность метода [1]. Альтернативой в таких случаях является инвазивная искусственная вентиляция легких (ИВЛ). Данный метод сам по себе является жизнеспасающим, но при этом не лишен ряда недостатков. К наиболее частым осложнениям ИВЛ относят вентилятор-ассоциированную пневмонию и трахеобронхит, баро-, волюмо-, оксигено- и ателектотравму [2—5].
В качестве еще одного метода респираторной терапии может выступать неинвазивная вентиляция легких (НИВЛ). Данная методика хорошо зарекомендовала себя в лечении декомпенсации хронической обструктивной болезни легких (ХОБЛ), некардиогенного и кардиогенного отека легких [6—12]. К факторам, ограничивающим ее активное применение, можно отнести трудоемкость метода, а в ряде ситуаций — дискомфорт для пациента. В начале XXI века для респираторной поддержки пациентов в критическом состоянии начали рассматривать еще менее инвазивную методику — высокопоточную оксигенацию (ВПО) [6, 12, 13]. Последняя имеет ряд преимуществ перед стандартной оксигенотерапией и НИВЛ в лечении артериальной гипоксемии, не вызывает существенного дискомфорта у больного и обеспечивает величину инспираторного потока, близкую к потребностям пациента с дыхательной недостаточностью (40—60 л/мин) [14, 15].
Возможности применения ВПО в терапии острого респираторного дистресс-синдрома (ОРДС) являются в настоящее время предметом повышенного интереса со стороны врачей-анестезиологов-реаниматологов и требуют активного изучения. На данный момент нет четких алгоритмов по применению ВПО при ОРДС, не определены оптимальные показания для использования данной методики у этой категории больных, что побудило авторов к написанию обзора.
Высокопоточная оксигенация: ключевые принципы
Высокопоточная назальная оксигенация позволяет обеспечить доставку увлажненной и подогретой кислородно-воздушной смеси с фракцией вдыхаемого кислорода от 21 до 100% и величиной потока до 80 л/мин. Методика ВПО включает различные системы для эффективного увлажнения и согревания газовой смеси [13].
Принципиальными особенностями ВПО являются возможности пошаговой регуляции скорости потока и температуры, а также точность установки фракции вдыхаемого кислорода. Современные системы ВПО располагают специальными дыхательными контурами из полупроницаемого материала, не допускающего образования конденсата, а также оригинальными носовыми или трахеостомическими канюлями. При этом максимальный поток, тип увлажнения и дизайн носовых канюль варьируют в зависимости от модели устройства. На сегодняшний день оборудование для высокопоточной кислородотерапии представлено несколькими производителями [13, 14]. Кроме того, ВПО стала появляться в качестве дополнительной опции на аппаратах ИВЛ [15].
Основные эффекты высокопоточной назальной оксигенации
Основными положительными эффектами ВПО являются соответствие величины потока аппарата на вдохе потоку в дыхательных путях пациента с дыхательной недостаточностью и возможность повышения фракции кислорода на вдохе. К физиологическим эффектам ВПО относится и уменьшение мертвого пространства дыхательных путей, что обеспечивается за счет высокого потока кислородно-воздушной смеси (эффект вымывания, washout effect). Более того, высокий поток обеспечивает динамический рост давления в дыхательных путях на выдохе (эффект положительного давления в конце выдоха, ПДКВ), что способствует расправлению спавшихся альвеол и вовлечению их в газообмен [16, 17]. Повышение ПДКВ на фоне высокопоточной назальной оксигенации ограничено 2—7 см вод. ст., поэтому оно не сопровождается нарушениями гемодинамики [13, 18, 19]. Поток газовой смеси с температурой от 31 °C и выше дает возможность дополнительного согревания и увлажнения слизистой дыхательных путей, что благоприятно влияет на газообмен и переносимость пациентом процедуры. Благодаря оригинальной методике постоянного испарения влаги в контуре обеспечивается оптимальная влажность подаваемой смеси.
Таким образом, подогрев и адекватное увлажнение смеси способствуют улучшению клиренса слизистого секрета, что уменьшает бронхообструкцию и препятствует дальнейшему ателектазированию. Следует также отметить, что создание высокого потока сводит к минимуму «примешивание» окружающего воздуха, позволяя обеспечить стабильную и управляемую фракцию вдыхаемого кислорода, вплоть до 100% [20, 21]. Описанные эффекты позволяют улучшить элиминацию углекислого газа (СО2), снизить частоту дыхания и стабилизировать показатели оксигенации (рис. 1). Рис. 1. Физиологические эффекты высокопоточной оксигенации. Более того, показано, что методика ВПО достаточно проста в использовании и не сопровождается серьезными временными затратами со стороны персонала, а также легче переносится пациентами [14].
Простота использования метода и «дружелюбный» интерфейс минимизируют потенциальную возможность ошибок в результате человеческого фактора. Основные противопоказания к ВПО включают нарушение сознания, высокий риск аспирации и обструкцию носовых ходов (травма, кровотечение, операция) [17, 20, 22]. Проведение ВПО может быть крайне опасным у пациентов с переломом основания черепа в связи с риском пневмоцефалии и менингита [17]. Кроме того, у пациентов с ХОБЛ при использовании ВПО с высокой фракцией кислорода возможно развитие респираторного ацидоза вследствие снижения частоты дыхательных движений и гиповентиляции [17, 22]. К специфическим, но достаточно редким проблемам проведения ВПО относят раздражение, дискомфорт и заложенность слизистой носоглотки, ощущение избыточного тепла, нарушения обоняния, дополнительный шумовой эффект и аэрофагию [17].
Определенную озабоченность вызывают вопросы инфекционной безопасности применения ВПО. В ходе ряда исследований оценена степень бактериального загрязнения окружающей среды на фоне использования высокопоточных носовых канюль по сравнению с обычной кислородной маской у пациентов с пневмонией.
Результаты показали, что использование ВПО не ассоциировалось с ростом контаминации окружающей среды грамотрицательными или иными бактериями [13, 23].
Преимущества стандартной кислородотерапии, высокопоточной назальной оксигенации и НИВЛ [22—24] суммированы в таблице. Таблица. Сравнение стандартной кислородотерапии, высокопоточной оксигенации и неинвазивной вентиляции легких
Высокопоточная оксигенация в лечении ОРДС
С момента первого описания ОРДС в 1967 г. прошло более полувека, однако данное состояние до сих пор является одной из ключевых проблем в отделении интенсивной терапии (ОИТ) и сопровождается высокой летальностью [25, 26]. Исход лечения ОРДС зависит от многих факторов, из них решающее значение имеют следующие: в какой стадии ОРДС начато лечение и насколько оно эффективно, какие еще органы и системы поражены, насколько устранима причина, вызвавшая ОРДС [5]. Большую роль играет и проведение респираторной поддержки, необходимой для обеспечения адекватного газообмена в легких, уменьшения работы дыхания, расправления спавшихся альвеол и поддержания нестабильных альвеол в раскрытом состоянии во время выдоха [5, 20, 25, 27].
Использование ВПО на начальных этапах лечения ОРДС
Возможность применения ВПО как стартовой терапии гипоксемической дыхательной недостаточности, в том числе ОРДС, активно обсуждается в медицинской литературе последних лет [28—30].
Однако стоит учитывать, что нарушение сознания, полиорганная недостаточность и шок являются противопоказаниями к использованию данного метода. Кроме того, одна из опасностей использования ВПО на начальных этапах лечения гипоксемической дыхательной недостаточности заключается в возможной задержке необходимой интубации трахеи, что, в свою очередь, может ухудшить результат лечения больного [29]. Наличие четких критериев для начала ИВЛ облегчает принятие такого решения.
Следует также иметь в виду, что, если в течение первого часа от начала ВПО у пациента с гипоксемической дыхательной недостаточностью не отмечено существенного клинического улучшения, риск дальнейшей неэффективности подобного лечения становится очень высоким [30]. В качестве факторов риска неэффективности ВПО при ОРДС отмечены отсутствие улучшения оксигенации, сохраняющееся тахипноэ, а также участие вспомогательной мускулатуры в акте дыхания [30]. В числе нереспираторных предикторов неудачного проведения ВПО, как правило, выделяют потребность в вазопрессорах, тахикардию, тяжесть исходного заболевания, а также полиорганную недостаточность [27—29]. Кроме того, ВПО становится неэффективной при большом объеме плеврального выпота, когда приоритетом в лечении дыхательной недостаточности становится плевральная пункция [31].
Имеющиеся на данный момент исследования относительно эффективности ВПО при гипоксемической дыхательной недостаточности противоречивы. Так, J. Frat и соавт. в своем многоцентровом исследовании, в которое включены преимущественно пациенты с пневмонией, показали, что ВПО не снижает риск интубации по сравнению с традиционной оксигенотерапией и НИВЛ (38, 47 и 50% соответственно, р=0,18) [24]. Это может объясняться ограниченными возможностями мобилизации альвеол у этой категории больных и отсутствием у них выраженных нарушений механики дыхания. Тем не менее в подгруппе пациентов с PaO2/FiO2, равном или менее 200 мм рт.ст., частота интубации трахеи и количество дней без ИВЛ к 28-м суткам исследования были статистически значимо ниже на фоне ВПО. Кроме того, ВПО сопровождалась большим комфортом, снижением выраженности дыхательной недостаточности и уменьшением тахипноэ по сравнению с НИВЛ и традиционной оксигенотерапией [24].
Анализируя результаты последних cтатей и обзоров, можно отметить, что применение ВПО у пациентов с дыхательной недостаточностью различного генеза снижает частоту интубации по сравнению со стандартной кислородотерапией и НИВЛ, не влияя при этом на длительность пребывания в ОИТ и летальность [29—32]. Так, использование ВПО снижает частоту интубации только по сравнению с традиционной оксигенотерапией, при этом степень комфорта пациентов при ВПО выше, чем при традиционной кислородотерапии и при НИВЛ [29]. Интересно отметить, что даже в тех исследованиях, в которых на фоне применения ВПО не получено статистически значимого снижения частоты интубации трахеи, авторы отмечают безопасность ВПО. Так, R. Parke и соавт. показали, что подавляющее большинство пациентов из группы ВПО хорошо переносили эту методику [22].
В настоящее время нет однозначного мнения относительно оптимального алгоритма выбора первичных настроек ВПО и последующей их коррекции у больных с дыхательной недостаточностью различного генеза. Рабочий алгоритм коррекции гипоксемии с использованием ВПО представлен на рис. 2. Рис. 2. Коррекция гипоксемии с использованием высокопоточной оксигенации (модифицировано из статьи Т. Renda и соавт. [29]).
Как указано выше, аппараты для ВПО имеют простой и информативный интерфейс, при этом врач при проведении ВПО корректирует только три параметра: температуру, скорость потока и фракцию вдыхаемого кислорода (рис. 3). Рис. 3. Схема проведения высокопоточной оксигенации.
На данный момент нет четких рекомендаций по выбору температуры для согревания кислородно-воздушной смеси. В то же время показано, что применение более низкой температуры (31—34 °С) ассоциируется с большим комфортом для пациентов с ОРДС по сравнению с температурой 37 °C [33]. В любом случае подбор температуры носит строго индивидуальный характер, с учетом ощущений конкретного пациента.
Что касается устанавливаемой скорости потока, продемонстрировано, что в подгруппе пациентов с выраженной дыхательной недостаточностью больные лучше переносили максимальный поток 60 л/мин, при этом пациенты с ОРДС легкой степени не испытывали дискомфорта и при более низком потоке [33].
Таким образом, при ОРДС легкой степени тяжести допустимо начинать ВПО со скорости потока 20—30 л/мин с последующим увеличением последней в зависимости от показателей газообмена и состояния больного. В то же время у пациентов с более выраженной гипоксемией, вероятно, стоит начинать процедуру с более высоких цифр потока (50—60 л/мин) для развития максимального эффекта ПДКВ [34].
При выборе оптимальной фракции вдыхаемого кислорода у пациентов с ОРДС необходимо учитывать потенциальный вред от применения высокой концентрации кислорода, при этом следует подбирать минимальные значения, необходимые для достижения уровня SpO2 92—97% [27, 35]. Адекватной оксигенации следует добиваться прежде всего за счет увеличения скорости потока, а не фракции вдыхаемого кислорода. Подбор этих двух переменных должен строиться на принципах подбора ПДКВ и FiO2, описанных в рамках концепции респираторной поддержки у пациентов с ОРДС [5, 7, 27].
Ключевые принципы отлучения от ВПО аналогичны таковым при прекращении ИВЛ и подразумевают снижение FiO2 в условиях комплексного мониторинга оксигенации, постепенное снижение скорости потока кислородно-воздушной смеси на 5 л/мин каждые 6—8 часов; переход на традиционную кислородотерапию или спонтанное дыхание при скорости потока, равной или менее 20 л/мин, и FiO2менее 0,4 при адекватных показателях газообмена и в отсутствие признаков нарастания дыхательной недостаточности (см. рис. 2) [29].
Использование ВПО в ходе индукции анестезии у пациентов с ОРДС
В случае неэффективности стартовой консервативной терапии пациентам с ОРДС требуется обеспечение инвазивной вентиляции легких, при этом одним из критических моментов может стать сам процесс интубации трахеи с обеспечением седации и миорелаксации [36—40]. В этом плане перспективным видится направление по использованию ВПО на этапе преоксигенации. За счет поддержания высокого потока, возможности использования 100% кислорода, а также отсутствия необходимости прекращать оксигенацию во время ларингоскопии риск десатурации может быть минимизирован [41].
В настоящее время лишь в нескольких исследованиях проведено сравнение эффективности преоксигенации при помощи ВПО и лицевой маски у пациентов с гипоксемической дыхательной недостаточностью. Так, в исследовании М. Simon и соавт. у пациентов группы традиционной преоксигенации через минуту после индукции анестезии при переводе на ИВЛ у больных с гипоксемией наблюдалась более выраженная десатурация, чем у пациентов группы ВПО, у которых период ларингоскопии и интубации прошел без выраженного снижения уровня SpO2 [40].
В то же время ряд авторов уже продемонстрировали эффективность ВПО для преоксигенации у пациентов с интактными легкими. Так, А. Patel и S. Nourei показали, что преоксигенация при помощи ВПО позволяла избежать снижения уровня SpO2 менее 90%, несмотря на апноэ средней продолжительностью 17 мин [42]. Кроме того, применение ВПО во время экстренной интубации у пациентов ОИТ без признаков значимой гипоксемии (PaO2/FiO2 более 200 мм рт.ст.) ассоциируется с меньшей частотой десатурации (менее 90%), а также с меньшей частотой осложнений в ходе выполнения интубации трахеи [29].
Применение ВПО в период прекращения ИВЛ при ОРДС
Этап прекращения респираторной поддержки остается одним из ключевых аспектов ведения пациентов с ОРДС. Несмотря на улучшение состояния пациента и разрешающуюся дыхательную недостаточность, на этом этапе возможно развитие эпизодов гипоксемии и/или гиперкапнии, не менее клинически значимых, чем при манифестации ОРДС. В этих обстоятельствах нередко возникает потребность в реинтубации трахеи и продолжении инвазивной ИВЛ, особенно у пациентов высокого риска. Потребность в реинтубации остается серьезной проблемой отлучения от ИВЛ, встречающейся в 10—20% случаев ОРДС [43], и ассоциируется с ростом количества осложнений и повышением летальности (до 50% при необходимости реинтубации) [36]. В связи с этим, как показано в недавних исследованиях развития гипоксемической дыхательной недостаточности, в том числе у послеоперационных больных, необходимость поддержания адекватного газообмена после прекращения ИВЛ на фоне сохраняющейся гипергидратации легких требует дальнейшего поиска мер терапии, включая использование ВПО [30, 44].
В последнее время опубликован ряд работ, посвященных методам респираторной поддержки в постэкстубационном периоде. К таким методам относятся ВПО, НИВЛ и традиционная оксигенотерапия [34]. В недавнем рандомизированном исследовании G. Hernаndez и соавт. продемонстрировали, что применение ВПО по сравнению с традиционной оксигенотерапией способно снизить риск повторного перевода на ИВЛ у пациентов с клиникой дыхательной недостаточности в постэкстубационном периоде (4,9% по сравнению с 12,2%, р=0,004) [13].
Данное исследование включало широкий спектр пациентов с преобладанием больных хирургического профиля, с низким риском развития постэкстубационной острой дыхательной недостаточности. Более того, доля пациентов с ОРДС в этой работе невелика, что указывает на необходимость проведения дальнейших исследований. Эти же авторы оценили эффект ВПО по сравнению с НИВЛ у пациентов высокого риска в постэкстубационном периоде, показав схожее влияние обеих методик на частоту реинтубации при меньшем количестве осложнений, связанных с применением ВПО [45]. При этом одной из причин более выраженной гипоксемии у больных группы НИВЛ было раннее прекращение сеансов респираторной поддержки на фоне нарастающего дискомфорта у пациента [45].
S. Maggiore и соавт. в своем двуцентровом исследовании с участием пациентов смешанного профиля показали, что превентивное использование ВПО в раннем постэкстубационном периоде у больных с PaO2/FiO2 менее 300 мм рт.ст., находившихся на ИВЛ не менее 24 часов, сопровождается улучшением оксигенации, уменьшением дискомфорта, а также снижением частоты реинтубации по сравнению с применением кислородной маски с клапаном Вентури [46]. Следует отметить, что в эту работу включены преимущественно пациенты с пневмонией и с травмой, что указывает на необходимость проведения дальнейших исследований у больных с ОРДС.
После принятия решения о прекращении ИВЛ и экстубации целесообразно начинать ВПО с достаточно высокой скоростью потока газовой смеси (50—60 л/мин) с учетом индивидуальной переносимости. Фракция вдыхаемого кислорода также подбирается индивидуально для достижения адекватной оксигенации. При стабильном состоянии пациента показано постепенное снижение фракции вдыхаемого кислорода с последующим поэтапным снижением скорости потока кислородно-воздушной смеси (пошагово по 3—5 л/мин в течение 2—4 часов). В отсутствие признаков нарастания дыхательной недостаточности, а также при фракции вдыхаемого кислорода менее 40% и скорости потока не более 15—20 л/мин возможно прекращение ВПО [29].
Отсутствие эффекта от ВПО в раннем постэкстубационном периоде, как правило, является показанием для реинтубации и продолжения ИВЛ. Критерии повторного перевода на ИВЛ пациентов, получающих ВПО, не отличаются от стандартных. К ним относятся развитие тахипноэ, участие в акте дыхания вспомогательной мускулатуры, неспособность самостоятельно откашливать трахеальный секрет, уровень SpO2 менее 90%, а также нестабильность гемодинамики и ухудшение неврологического статуса [47].
Важным вопросом является и прекращение респираторной поддержки у пациентов с трахеостомой. Несмотря на снижение работы дыхания, риск инфекционных осложнений и невозможность в полной мере самостоятельно санировать мокроту усложняют их перевод на спонтанное дыхание.
Применение ВПО как переходного этапа между ИВЛ и спонтанным дыханием имеет определенные клинические перспективы, однако информация на эту тему ограничена и носит противоречивый характер.
Так, L. Corley и соавт., сравнивая эффекты высокопоточной и низкопоточной оксигенации у пациентов с трахеостомой и осложненным течением послеоперационного периода в кардиохирургии, отметили улучшение PaO2/FiO2 на фоне применения ВПО и связали это с возможностями более точного дозирования фракции вдыхаемого кислорода [19].
Напротив, Т. Stripoli и соавт. показали, что применение ВПО у больных с трахеостомой не имело существенных преимуществ по сравнению с традиционной кислородотерапией на этапе отлучения от респиратора [48]. Согласно данной работе, применение ВПО не сопровождалось улучшением нейрореспираторного драйва, снижением работы дыхания, а также улучшением газообмена по сравнению с пациентами контрольной группы.
Снижение преимуществ ВПО при дыхании через трахеостому может объясняться устранением одного из благоприятных эффектов методики при этом способе ее проведения — улучшения элиминации CO2 за счет вентиляции назофарингеального мертвого пространства. Ранее показано, что наличие трахеостомы само по себе позволяет снизить нейрореспираторный драйв на 30% за счет снижения сопротивления в дыхательных путях и анатомического мертвого пространства [49].
Заключение
Учитывая физиологические предпосылки, а также результаты клинических исследований, можно заключить, что высокопоточная оксигенация через назальные канюли претендует на место важного компонента респираторной поддержки пациентов с легким и умеренным острым респираторным дистресс-синдромом. Применение этой методики обосновано не только на начальных этапах ведения пациентов с острым респираторным дистресс-синдромом, но и на стадии прекращения искусственной вентиляции легких. Требуется проведение дальнейших крупных многоцентровых исследований по применению высокопоточной оксигенации.
Финансирование. Грант Президента Р.Ф. НШ—3927.2018.7.
Авторы заявляют об отсутствии конфликта интересов.
The authors declare no conflicts of interest.