в какой стране коллайдер
Большой адронный коллайдер: назначение, открытия и мифы
Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).
10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.
Как выглядит Большой адронный коллайдер
Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.
Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.
Как работает Большой адронный коллайдер
Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.
БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.
Откуда берутся протоны в для столкновения?
Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.
БАК состоит из трёх основных частей:
Зачем нужен Большой адронный коллайдер
С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.
Какие открытия совершили на БАК
На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.
Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.
С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.
Может ли коллайер уничтожить Землю
С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.
Есть две причины, чтобы не волноваться.
Надеемся, Вам было интересно, как и нам во время работы над этим материалом!
Большой адронный коллайдер. Справка
Большой адронный коллайдер (Large Hadron Collider, LHC) ‑ ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов). Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).
ЦЕРН ‑ крупнейший в мире научный центр в области физики высоких энергий, который был основан близ Женевы в 1954 году для обеспечения сотрудничества среди европейских государств в области ядерных исследований.
В настоящее время ЦЕРН объединяет 20 государств. При этом страны‑наблюдатели, в том числе и Россия, активно участвуют в различных проектах. В научных учреждениях ЦЕРН на постоянной основе или в рамках международного сотрудничества трудятся порядка 10 тысяч физиков и инженеров из различных стран. Около тысячи из них ‑ представители российского научного сообщества. Помимо открытий в области физики, ЦЕРН известен тем, что в его стенах в 1989 году был предложен проект Всемирной паутины (World Wide Web).
Идея сооружения Большого адронного коллайдера появилась в 1984 году, однако официально была одобрена лишь десять лет спустя. Строительство коллайдера началось в 2001 году, после завершения работы другого ускорителя ‑ Большого электрон‑позитронного коллайдера (Large Electron‑Positron Collider, LEPC).
Большой адронный коллайдер располагается в туннеле с длиной окружности 26,7 км (в том же, который прежде занимал Большой электрон‑позитронный коллайдер) на глубине порядка от 0,05 до 0,17 км. В целях удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, которые будут работать при температуре 1,9 градуса по шкале Кельвина (или же минус 271,3 градуса по шкале Цельсия, что лишь немногим превышает отметку абсолютного нуля). Предполагается, что скорость разогнанных протонов составит 0,999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн.
Специалисты надеются, что с помощью ускорителя смогут получить наиболее достоверную информацию о происхождении Вселенной.
Большой адронный коллайдер ‑ самая сложная экспериментальная установка и самый высокоэнергичный ускоритель элементарных частиц в мире. По своим параметрам он превосходит протон‑антипротонный коллайдер Национальной ускорительной лаборатории им. Энрико Ферми (Fermi National Accelerator Laboratory, штат Иллинойс, США) и релятивистский коллайдер тяжелых ионов Брукхейвенской национальной лаборатории (Brookhaven National Laboratory, штат Нью‑Йорк, США). Общая стоимость проекта, осуществляемого при активном содействии российских специалистов из Курчатовского института (Москва), Института теоретической и экспериментальной физики им. А.И.Алиханова (Москва), Института физики высоких энергий (Протвино, Московская обл.), Института ядерной физики им. Г.И.Будкера СО РАН (Новосибирск) и прочих научно‑исследовательских учреждений, превышает 8 млрд долларов.
11 и 24 августа 2008 года на Большом адронном коллайдере прошли успешные предварительные испытания, а на 10 сентября 2008 года был намечен его запуск.
Вместе с тем, ряд ученых выразили свои опасения по поводу безопасности проводимого исследования. По их мнению, при моделировании этих процессов может возникнуть отличная от нуля вероятность выхода экспериментов из‑под контроля и развития цепной реакции, которая теоретически будет способна уничтожить всю нашу планету. При этом наиболее часто упоминается возможность появления микроскопических черных дыр с последующим захватом ими окружающей материи.
«Апокалиптические» настроения, связанные с готовящимся запуском Большого адронного коллайдера, оказались настолько сильны, что 21 марта 2008 года жители штата Гавайи (США) Уолтер Вагнер и Луис Санчо обратились в окружной суд штата с иском, содержащим требование временного прекращения всех работ по сооружению ускорителя и проведения дополнительной экспертизы безопасности последнего. В заявлении Вагнера и Санчо в качестве ответчика был обозначен не только Европейский совет по ядерным исследованиям, но и ряд американских организаций, принимающих участие в проекте (в частности, Национальная ускорительная лаборатория им. Энрико Ферми). Иск был отклонен.
26 августа 2008 года группа европейских ученых, утверждающих, что запуск ускорителя представляет угрозу безопасности государств‑участников ЕС и их граждан, подала жалобу в Европейский суд по правам человека. Этот иск также был вскоре отклонен.
Однако уже на третий день после запуска коллайдера вышел из строя трансформатор в системе охлаждения ускорителя в одном из секторов кольца. Температура там поднялась до 4,4 градуса по Кельвину. Через несколько часов работа коллайдера была восстановлена.
Значительно более серьезный сбой случился 19 сентября. Один из свыше девяти тысяч магнитов вышел из сверхпроводящего состояния с мгновенной потерей тока. Произошло так называемое «гашение тока». Причиной стало нарушение электрического контакта между двумя магнитами. Возможность подобных происшествий также предусматривалась при строительстве ускорителя. Но все дальнейшие события были уже «внеплановыми».
Магнит продолжал нагреваться, и температура в секторе тоннеля, где случилась поломка, достигла 100 градусов по Кельвину (‑173С). В результате сбоя в тоннель ускорителя было выброшено около тонны жидкого гелия, который используется для охлаждения магнитов. Кроме того, в нескольких секторах кольца был нарушен вакуум.
Никакой опасности для обслуживающего персонала случившееся не представляло. Однако повторный запуск БАКа было решено отложить.
21 октября 2008 года в Женеве прошла церемония официального открытия Большого адронного коллайдера, которую было решено провести несмотря на происшествие.
Авария 19 сентября 2008 года не только внесла коррективы в расписание работы коллайдера, но и заставила руководство ЦЕРНа серьезно взяться за переоценку технологических рисков, связанных с эксплуатацией БАКа. Ее результатом стал ряд новых мер безопасности, которые уже внедряются. При этом выяснилось, что стоимость ремонтных работ на коллайдере была первоначально недооценена и может в конченом счете составить порядка 30 млн долларов.
Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились. В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.
Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.
Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.
Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса, частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.
БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.
В мае 2009 года в мировой прокат вышел приключенческий фильм «Ангелы и демоны» по мотивам одноименной книги Дэна Брауна.
ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).
Материал подготовлен на основе информации РИА Новости и открытых источников
Большой адронный коллайдер. Хроника событий
Большой адронный коллайдер (Large Hadron Collider, LHC) – ускоритель, предназначенный для разгона элементарных частиц, в частности, протонов. Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).
Идея сооружения Большого адронного коллайдера появилась в 1984 году, однако официально была одобрена лишь десять лет спустя. Строительство коллайдера началось в 2001 году, после завершения работы другого ускорителя – Большого электрон-позитронного коллайдера (Large Electron–Positron Collider, LEPC).
11 и 24 августа 2008 года на Большом адронном коллайдере прошли успешные предварительные испытания, а на 10 сентября 2008 года был намечен его запуск.
Вместе с тем, ряд ученых выразили свои опасения по поводу безопасности проводимого исследования. По их мнению, при моделировании этих процессов может возникнуть отличная от нуля вероятность выхода экспериментов из-под контроля и развития цепной реакции, которая теоретически будет способна уничтожить Землю. При этом наиболее часто упоминалась возможность появления микроскопических черных дыр с последующим захватом ими окружающей материи.
21 марта 2008 года жители штата Гавайи (США) Уолтер Вагнер (Walter Wagner) и Луис Санчо (Luis Sancho) обратились в окружной суд штата с иском, содержащим требование временного прекращения всех работ по сооружению ускорителя и проведения дополнительной экспертизы безопасности последнего. В заявлении Вагнера и Санчо в качестве ответчика был обозначен не только Европейский совет по ядерным исследованиям, но и ряд американских организаций, принимающих участие в проекте (в частности, Национальная ускорительная лаборатория им. Энрико Ферми). Иск был отклонен.
26 августа 2008 года группа европейских ученых, утверждающих, что запуск ускорителя представляет угрозу безопасности государств-участников Евросоюза и их граждан, подала жалобу в Европейский суд по правам человека. Этот иск также был вскоре отклонен.
10 сентября 2008 года успешно прошли два теста коллайдера, в ходе которых ученые смогли провести пучок протонов по кольцу БАКа по часовой стрелке и в обратном направлении.
12 сентября 2008 года группа хакеров из Греции взломала компьютерную систему CERN. Компьютерным взломщикам удалось получить доступ к серверам, управляющим компактным мюонным соленоидом (Compact Muon Solenoid, CMS), который занимается отслеживанием данных в ходе столкновения элементарных частиц в ускорителе БАК.
В результате кибер-атаки, хакеры повредили один из файлов CERN, а сайт cmsmon.cern.ch перестал быть доступным для пользователей.
17 сентября 2009 года работы на большом адронном коллайдере были остановлены из-за проблем с электричеством.
18 сентября 2009 года работы на большом адронном коллайдере были возобновлены.
18 сентября 2009 ученые еще раз опровергли информацию о том, что эксперименты в Большом адронном коллайдере (БАК) – самом мощном в истории ускорителе элементарных частиц, запущенном 10 сентября в Европейском центре ядерных исследований (ЦЕРН), могут привести к образованию пожирающих мир черных дыр или опасных форм материи.
«Никакого отношения к реальности это не имеет», – заявил на пресс-конференции в Новосибирске в четверг член ученого совета ЦЕРНа, член-корреспондент Российской академии наук Александр Бондарь.
19 сентября около полудня во время подготовки сектора 3-4 БАК к работе на энергии пять тераэлектронвольт произошла значительная утечка в туннель жидкого гелия, который используется для охлаждения магнитов ускорителя до сверхпроводящего состояния. 20 сентября 2009 года пресс-служба Европейской организации ядерных исследований (ЦЕРН) сообщила, что утечка жидкого гелия из системы охлаждения одного из секторов большого адронного коллайдера, произошедшая накануне, приведет к остановке ускорителя минимум на два месяца.
Также один из магнитов ускорителя вышел из сверхпроводящего состояния в обычное.
25 сентября 2008 года руководитель проекта БАК Лин Эванс (Sara Lynn Evavs) сделал заявление, согласно которому большой адронный коллайдер (БАК), торжественно запущенный 10 сентября и остановленный из-за поломки, должен возобновить свою работу к маю 2009 года.
16 октября 2008 года ЦЕРН сообщил, что расследование сентябрьской аварии на большом адронном коллайдере подтвердило, что причиной инцидента был дефект электрического соединения, связывающего два из многочисленных магнитов ускорителя.
21 октября 2008 года в одном из зданий ЦЕРН в Женеве прошла церемония официального открытия большого адронного коллайдера, которую было решено провести, несмотря на то, что вскоре после запуска ускоритель вышел из строя и был остановлен до весны будущего года. На церемонии присутствовали представители нескольких десятков стран-участников проекта.
10 ноября 2008 года журнал Time опубликовал список 50 лучших изобретений этого года. Большой адронный коллайдер занял пятое место.
15 декабря 2008 года журнал TIME назвал 10 самых главных научных событий 2008 года. Рейтинг возглавил Большой адронный коллайдер.
10 февраля 2009 года менеджмент Европейской организации ядерных исследований (ЦЕРН) утвердил предложенный ранее график нового запуска большого адронного коллайдера, согласно которому самый мощный в истории ускоритель элементарных частиц, остановленный из-за аварии в сентябре 2008 года, будет вновь запущен ровно через год – в сентябре текущего года.
Рекомендации, касающиеся запуска БАКа, были одобрены сотрудниками ЦЕРНа 6 февраля 2009 года на конференции во французском городе Шамони.
17 февраля 2009 года швейцарские СМИ сообщили о том, что американский актер Том Хэнкс (Tom Hanks) может принять участие в перезапуске Большого адронного коллайдера.
30 апреля 2009 года пресс-служба ЦЕРНа сообщила, что последний из 53 магнитов, необходимых для восстановления поврежденного при аварии в сентябре 2008 года большого адронного коллайдера, был опущен под землю, в главный туннель ускорителя.
8 июня 2009 года на сайте ЦЕРНа было опубликовано сообщение, гласившее, что специалисты Европейской организации ядерных исследований (ЦЕРН) завершают ремонтные работы в поврежденном секторе большого адронного коллайдера.
19 июня 2009 года гендиректор ЦЕРНа Рольф Хойер (Rolf Heuer), выступая на заседании совета ЦЕРНа, заявил, что работы по восстановлению Большого адронного коллайдера после аварии идут в соответствии с графиком, и самый большой в мире ускоритель заработает этой осенью, хотя и на две-три недели позже, чем планировалось ранее.
Ранее сообщалось, что запуск коллайдера намечен на конец сентября текущего года.
25 июня 2009 года ЦЕРН объявил о завершении всех восстановительных работ в секторе 3-4 большого адронного коллайдера.
10 июля 2009 года ЦЕРН сообщил, что физики ЦЕРНа успешно завершили один из этапов подготовки к работе линейного ускорителя Linac 4 – одного из ключевых элементов для будущей модернизации Большого адронного коллайдера, в результате которой его проектная светимость (частота столкновений частиц) вырастет в десять раз.
Линейный ускоритель Linac 4 призван сменить Linac 2, который в настоящий момент играет роль «первой ступени» в системе ускорителей Большого адронного коллайдера.
16 июля 2009 года на официальном сайте ЦЕРНа было размещено сообщение о том, что обнаруженные на большом адронном коллайдере неполадки (нарушения герметичности в двух секторах ускорителя) заставили вновь поменять график работ и отложить повторный запуск коллайдера до середины ноября.
5 августа 2009 года официальный представитель Европейской организации ядерных исследований (ЦЕРН) Джеймс Гиллис сообщил РИА Новости об изменении стоимости ремонта большого андронного коллайдера. Он заявил, что стоимость ремонта была оценена в 37,7 млн долларов, вместо 28,7 млн. долларов, о которых сообщалось ранее.
6 августа 2009 года пресс-служба ЦЕРНа сообщила, что большой адронный коллайдер (БАК) будет вновь запущен в ноябре 2009 года лишь на половинной энергии – пучки протонов будут достигать энергии 3,5 тераэлектронвольта вместо штатных 7 тераэлектронвольт на пучок.
10 августа 2009 года официальный представитель Европейской организации ядерных исследований (ЦЕРН) Джеймс Гиллис сообщил в интервью РИА Новости, что магниты Большого адронного коллайдера не смогут работать на полной мощности после запуска, т.к. нуждаются в повторной «тренировке» при сниженной силе тока, поскольку «потеряли память» о предыдущей «тренировке».
4 сентября 2009 года на официальном сайте ЦЕРН было опубликовано сообщение о том, что специалисты учреждения приступили к охлаждению последнего из восьми секторов Большого адронного коллайдера до рабочей температуры, близкой к абсолютному нулю.
2 октября 2009 года на официальном сайте ЦЕРН было опубликовано сообщение о том, что охлаждение всех секторов Большого адронного коллайдера закончится через две недели, после этого на магниты, которые будут удерживать протоны в кольце ускорителя, начнут подавать напряжение.
Также в сообщении говорилось, что по состоянию на 2 октября 2009 года шесть из восьми секторов коллайдера уже охлаждены до рабочей температуры – 1,9 кельвина (271 градус Цельсия ниже нуля). Температура двух секторов – 3-4 и 6-7, охлаждение которых началось несколько позже, – составляет 10-20 кельвин, ток подан на магниты трех секторов.
9 октября 2009 года генеральный директор ЦЕРН Рольф Хойер на пресс-конференции заявил, что работа Большого адронного коллайдера (БАК), который должен быть запущен в середине ноября, не будет остановлена на зиму.
На той же пресс-конференции Хойер сказал, что знаменитого американского актера Тома Хэнкса, игравшего главную роль в фильме «Ангелы и Демоны», сюжет которого связан с запуском Большого адронного коллайдера, не пригласят на реальный перезапуск БАКа, хотя тот и проявил в этом большую заинтересованность.
17 октября 2009 года специалисты ЦЕРНа завершили охлаждение всех восьми секторов Большого адронного коллайдера до рабочей температуры – 1,9 кельвина (271 градус Цельсия ниже нуля).
26 октября 2009 года впервые после произошедшей больше года назад аварии пучки элементарных частиц вернулись в главное кольцо Большого адронного коллайдера – физики ЦЕРН успешно протестировали систему инжекции протонов и ионов свинца и провели их по одному из восьми секторов ускорителя.
3 ноября группа, называющая себя Committee on CERN Experimental Dangers («Комитет по оценке опасности экспериментов в ЦЕРНе» – ConCERNed) направила жалобу в комитет ООН по правам человека, призывая остановить коллайдер, так как он угрожает жизни на Земле и тем самым нарушает права человека.
3 ноября физики из ЦЕРН, готовящие к новому запуску Большой адронный коллайдер, столкнулись с необъяснимым повышением температуры в секторах ускорителя. Проверка показала, что неполадки в системе охлаждения были вызваны необычной причиной – кусок зачерствевшего хлеба мешал нормальной работе высоковольтного устройства, питавшего систему охлаждения.
Позже было объявлено, что происшествие не повлияет на сроки запуска коллайдера.
Материал подготовлен на основе информации РИА Новости
Действующие коллайдеры разных стран
Большой адронный коллайдер, работающий в Швейцарии – самый известный ускоритель в мире. Этому немало способствовала шумиха, поднятая мировой общественностью и журналистами вокруг опасности этого научного проекта. Многие полагают, что это единственный коллайдер в мире, но это далеко не так. Кроме закрытого в США теватрона, на данный момент в мире существует пять работающих коллайдеров.
Подобный этому, ускоритель тяжелых ионов, строится в России в Дубне. На этом коллайдере NICA российские физики намерены исследовать кварк-глюонную плазму.
В 1999 году был запущен коллайдер Дафне в лаборатории Фраскатти (Италия), стоимость его была примерно 1/5 млрд. дол., а максимальная мощность – 0, 51 ТэВ. Это был один из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это Дафне окрестили фабрикой частиц или ф-фабрикой.
За два года до запуска БАК, в 2006 году Китай запустил собственный коллайдер ВЕРС II, с мощностью 2,5 ТэВ. Стоимость этого строительства была рекордно низкой и составила 0,08 млрд. дол. Но для бюджета этой развивающейся страны такая сума была немалой; правительство Китая выделило эти средства, понимая, что без развития фундаментальных отраслей науки невозможно развитие современной промышленности. Тем более актуально вложение средств в эту область экспериментальной физики в свете истощения природных ресурсов и увеличивающейся потребности в энергоносителях.
Не только бозон Хиггса: что еще нашли в Большом адронном коллайдере
В этом году адронным коллайдерам исполнилось 50 лет. 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings. За последние 10 лет на Большом адронном коллайдере открыты 50 новых частиц, а не только известный бозон Хиггса. Рассказываем, что это за частицы.
Читайте «Хайтек» в
Сколько новых частиц открыты на Большом адронном коллайдере?
Самым известным открытием, конечно же, является бозон Хиггса. Менее известен тот факт, что за последние 10 лет эксперименты на БАК (Большом адронном коллайдере) также обнаружили более 50 новых частиц, называемых адронами. По совпадению, число 50 появляется в контексте адронов дважды, поскольку в 2021 году исполняется 50 лет адронным коллайдерам: 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings, что сделало его первым ускорителем в мире. История возникновения столкновений между двумя противоположно вращающимися пучками адронов.
Что такое адроны?
Так что же это за новые адроны, которых всего 59? Давайте начнем с самого начала: адроны не являются элементарными частицами — физики знают это с 1964 года, когда Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили то, что сегодня известно как модель кварков. Она представила адроны как составные частицы, состоящие из новых типов элементарных частиц — кварков.
Кварки рождаются свободными, но встречаются только связанными…
Фрэнк Вилчек,
лауреат Нобелевской премии по физике за за открытие асимптотическое свободы в теории сильных взаимодействий, 2004 г.
Сам термин «адрон» происходит от греческого «хадрос» («сильный») и отражает свойство адронов участвовать в сильных взаимодействиях. Это короткодействующие фундаментальные взаимодействия, связывающие кварки внутри нуклонов и других адронов. Сила этого взаимодействия намного превосходит силу трех других фундаментальных взаимодействий — электромагнитного, слабого и гравитационного.
Адроны — связанные системы кварков и антикварков. Они существуют двух типов — барионы и мезоны.
Как появляются новые адроны?
Но точно так же, как исследователи все еще открывают новые изотопы спустя 150 лет после того, как Менделеев создал периодическую таблицу, исследования возможных составных состояний, образованных кварками, все еще являются активной областью физики элементарных частиц.
Причина этого кроется в квантовой хромодинамике, или КХД, теории, описывающей сильное взаимодействие, которое удерживает кварки вместе внутри адронов. У этого взаимодействия есть несколько любопытных особенностей, включая тот факт, что сила взаимодействия не уменьшается с расстоянием. Это приводит к свойству, которое запрещает существование свободных кварков вне адронов — ограничение цвета. Такие особенности делают эту теорию очень сложной с математической точки зрения.
Фактически до настоящего времени само ограничение цвета не было доказано аналитически. И у ученых до сих пор нет способа точно предсказать, какие комбинации кварков могут образовывать адроны.
Что мы знаем об адронах?
Еще в 1960-х годах было уже более 100 известных разновидностей адронов. Их обнаружили в экспериментах на ускорителях и в экспериментах с космическими лучами. Модель кварков позволила физикам описать весь «зоопарк» как разные составные состояния всего трех разных кварков: верхнего, нижнего и странного. Все известные адроны могут быть описаны либо как состоящие из трех кварков (образующих барионы), либо как кварк-антикварковые пары (образующие мезоны). Но теория также предсказывала другие возможные устройства кварков.
Уже в оригинальной статье Гелл-Манна о кварках 1964 года идея частиц, содержащих более трех кварков, считалась возможной. Сегодня ученые знают, что такие частицы действительно существуют. И все же потребовалось несколько десятилетий, чтобы экспериментально подтвердить первые четырехкварковые и пятикварковые адроны, или тетракварки и пентакварки.
Полный список из 59 новых адронов, обнаруженных на БАК, показан на изображении ниже.
Некоторые из этих частиц являются пентакварками, некоторые — тетракварками, а некоторые — новыми (возбужденными) состояниями барионов и мезонов с более высокой энергией.
Открытие этих новых частиц вместе с измерениями их свойств по-прежнему дает важную информацию для проверки границ кварковой модели. В свою очередь, это позволяет исследователям углубить понимание сильного взаимодействия, проверить теоретические предсказания и настроить модели. Стоит отметить, что это особенно важно для исследований, проводимых на БАК. Дело в том, что сильное взаимодействие отвечает за большинство того, что происходит при столкновении адронов. Чем лучше ученые поймут сильное взаимодействие, тем точнее будет моделирование этих столкновений. В итоге шансы увидеть небольшие отклонения от ожиданий, которые могут намекать на возможные новые физические явления, вырастут.
Первый адрон, открытый на БАК (LHC), χb (3P), был открыт ATLAS, а самые последние включают новый возбужденный красивый странный барион, наблюдаемый CMS, и четыре тетракварка, обнаруженные LHCb.
Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в середине 70-х годов после экспериментального подтверждения существования кварков.
Фермион — частица или квазичастица с полуцелым значением спина, собственного момента импульса элементарных частиц.