в какой стране был изобретен микроскоп
История создания микроскопа.
История создания микроскопа
Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.
Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.
А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности.
Изобретатель: Захариус Йансен
Страна: Голландия
Время изобретения: 1595 г.
Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.
Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.
Микроскоп (от греческого mikros — малый и skopeo — смотрю) — оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.
Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.
Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.
Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы
для создания сложных микроскопов. Фокусировка на исследуемом
объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.
В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.
Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609—1610), изменяя расстояние между объективом и окуляром.
Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.
В 1625 г. членом Римской «Академии зорких» («Akudemia dei lincei») И. Фабером был предложен термин «микроскоп». Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге «Micrographia» Гук описал устройство микроскопа.
В 1681 г. Лондонское королевское общество на своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673—1677). Он писал:»С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши.»
Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.
В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.
В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу — неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.
Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.
Чем отличается поток распространяющихся волн — идея Гюйгенса — от потока несущихся мелких частиц — идея Ньютона? Двумя признаками:
1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции, это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц — это всегда двойной поток, двойной свет.
2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция.
Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до «одного цвета», до «двух полос», он также измерил длину волны — это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.
Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.
Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.
В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях — в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.
В 70-х годах 19 века победоносное шествие микроскопии связано с именем немецкого физика-оптика и астронома Эрнста Карла Аббе (Ernst Karl Abbe).
Достигнуто было следующее:
Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.
Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.
В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.
Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.
Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана — Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме — созданы были вновь методы плавки стекла, и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.
Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов — это длина волны. Нельзя видеть объекты меньше полудлины волны — утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.
Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны.
Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Микроскоп
Кроме видимого окружающего мира, существует мир невидимый, таинственный, микроскопический. Сотни и даже тысячи лет человек шел по пути открытия прибора, который позволил заглянуть ему в сокровенные глубины природы — туда, где все начинается, складывается, подобно мозаичным узорам, из мельчайших деталей в удивительные картины бытия и проявляется многообразием форм и структур.
Таким прибором оказался микроскоп. Поначалу совсем простой, изготовленный из подручных материалов увлеченными учеными и любознательными людьми-экспериментаторами, микроскоп стал тем инструментом познания, благодаря которому человечество совершило рывок на пути к величайшим открытиям. Микроскоп показал людям, что существует еще невидимый, такой же насыщенный и многообразный, мир микроорганизмов: грибов, растений и беспозвоночных.
Микроскоп изменил представление о строении всего живого, люди узнали о клетках и вирусах. С годами интерес к этому удивительному изобретению лишь возрастал. В нем были заинтересованы уже не только ученые, но и врачи, ювелиры, детективы, работники различных промышленных предприятий и санитарных служб.
Благодаря стремительному развитию техники микроскопы постоянно совершенствуются, дополняются новыми приспособлениями, находят применение в разных областях.
В наше время этот замечательный прибор стал доступен любому человеку, который желает изучить микромир. Исследования можно проводить в домашних условиях, и это бесценный опыт для познающего микромир.
Микроскоп позволяет погрузиться в микровселенную живой и неживой природы, пойти по следам великих ученых и исследовать наиболее интересные объекты. Кроме возможности наблюдения, микроскоп заставляет задуматься о закономерностях различных процессов, найти причины и следствия явлений природы, понять, как устроено все живое, обнаружить сходства и различия живых организмов.
Прибор позволяет выявить микроскопических виновников заболеваний человека, животных и растений. Например, зная, как выглядят галловые клещи, получится определить, заражено ли растение, и спасти его от гибели.
Имея дома микроскоп, можно следить за жизнью мельчайших живых существ, снимать с помощью видеокамеры фильмы о микромире, вести заметки своих наблюдений, экспериментировать и, возможно, стать на путь очередного научного открытия.
История создания микроскопа
Создание микроскопа имеет многовековую историю. Прибор прошел путь от простой трубки, в которую едва что-то можно было рассмотреть, до электронного устройства огромной мощности с большими увеличительными возможностями.
Поскольку ранее наукой интересовались богатые люди, заказанные ими единичные экземпляры микроскопов украшались дорогими камнями и золотом, футляры для их хранения изготавливались из слоновой кости и ценного дерева.
В настоящее время существует множество микроскопов, они находят применение в разных сферах деятельности человека: медицине, промышленности, археологии, электронике и др.
Микроскоп Захария Янссена (XVI век)
Первый микроскоп создал нидерландский мастер по изготовлению очков Захарий Янссен. Это была обычная трубка с двумя линзами на концах. Настройку изображения выполняли, выдвигая трубку (тубус). Этот простой микроскоп стал основой для создания более сложных приборов.
Микроскоп Гука (середина XVII века)
Роберт Гук собрал очень удобную модель микроскопа: тубус можно было наклонять. Чтобы получить хорошее освещение, ученый придумал специальную масляную лампу и стеклянный шар, который наполнялся водой.
Микроскоп Галилея (начало XVII века)
Галилео Галилей доработал трубу Янссена, заменив одну из выпуклых линз на вогнутую. При выдвижении тубуса этот микроскоп служил еще и телескопом. Предположительно микроскоп Галилея изготовил мастер Джузеппе Кампаньи из дерева, картона и кожи и поставил на трехногую подставку из металла.
Микроскоп Левенгука (середина XVII века)
Изобретение Левенгука представляло собой две небольшие пластины, между которыми крепилась крошечная линза, а исследуемый объект помещался на иглу. Передвигать иглу можно было с помощью специального винта. Микроскоп мог увеличить изображение в 300 раз, что было немыслимо для той поры.
Микроскоп Иоганна ван Мушенбрука (конец XVII века)
Иоганн ван Мушенбрук создал необычный и простой в использовании микроскоп. Линза и держатель крепились с помощью подвижных соединений, названных «орехами Мушенбрука». Это придавало микроскопу большую гибкость.
Микроскоп Дреббеля (XVII век)
Микроскоп Дреббеля — это позолоченная труба, которая находилась в строго вертикальном положении. Работать за таким микроскопом было не очень удобно.
Микроскоп фирмы Шевалье (XIX век)
Наука шагнула далеко вперед. Фирма Шевалье стала производить микроскопы, объектив которых состоял уже не из одной простой, а из многих специально отшлифованных ахроматических линз. Это позволяло достигать большой мощности и передавать изображение без искажений и более четко.
Электронный микроскоп (XX век)
Появляются электронные микроскопы. Ученые заменили пучок света на поток микрочастиц — электронов. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, они управляют движением электронов с помощью магнитного поля.
USB-микроскоп (конец XX века)
USB-микроскоп — это небольшой цифровой прибор, который присоединяется к компьютеру через USB-порт. Вместо окуляра — маленькая веб-камера, которая посылает изображение прямо на монитор компьютера.
Как устроен микроскоп
Приобретая микроскоп, вы сможете расширить границы своих возможностей, заглянуть в микрокосмос и изучить его обитателей. Попробуйте стать исследователями окружающего мира, однако первым делом познакомьтесь с устройством микроскопа и правилами, которые необходимо соблюдать при работе с ним.
Для того чтобы правильно использовать световой микроскоп, необходимо знать его строение и понимать принцип работы.
Если посмотреть на микроскоп в целом, то это всего лишь очень сильное увеличительное стекло. Увеличивает микроскоп с помощью нескольких линз, одна часть которых находится в окуляре, а другая — в объективе. Мощность линз всегда указана на их оправе. Для того чтобы узнать мощность вашего микроскопа, необходимо перемножить цифры на объективе и окуляре. Так, если микроскоп имеет окуляр с 20-кратным увеличением и объектив 4, то он дает увеличение в 80 раз. Современные световые микроскопы могут увеличивать в 1500–3000 раз. Однако для домашней лаборатории вам вполне хватит максимального увеличения до 800 раз.
Итак, перейдем к строению микроскопа.
Окуляр находится в длинной полой трубке, которая называется тубус. При желании вы можете сменить окуляр на более мощный — он легко извлекается из тубуса.
Вы можете сами выбрать силу увеличения — для этого достаточно всего лишь покрутить диск с объективами до щелчка. Поскольку сила линз указана на оправе, только вам решать, сильнее или слабее делать увеличение.
На другом конце тубуса имеется вращающийся диск, на котором расположены объективы. У современных микроскопов их сразу несколько — два, три и более.
Под объективом находится предметный столик. Как понятно из названия, это то самое место, куда необходимо помещать исследуемые объекты. С обеих сторон микроскопа есть два больших винта, они нужны для того, чтобы приближать или отдалять предмет от объектива, — так настраивается резкость. Под предметным столиком вы найдете зеркало, очень важную часть микроскопа. С помощью зеркала свет направляется на объект, лежащий на предметном столике. Так можно настроить яркость. Все элементы микроскопа организуются в единую целостную систему благодаря штативу — крепкой металлической конструкции.
В большинство микроскопов встроена лампочка, которая направляет необходимый поток света, так что вам не надо заботиться об освещении. Кроме того, есть бинокулярные микроскопы (с двумя окулярами), которые более удобны, чем монокулярные (с одним окуляром). К тому же первые берегут наше зрение: глаза устают значительно меньше, поскольку нагрузка на них распределяется равномерно.
Есть микроскопы, в предметные столики которых встроены два маленьких винта — это позволяет плавно передвигать предметный столик с объектом изучения, а не сдвигать его руками во время работы.
Если у вас дома есть компьютер, обзаведитесь цифровым микроскопом. Это даст возможность выводить изображения на экран монитора, раскрашивать, подписывать и сохранять их. Будет здорово, если вам удастся снять видеоизображение и создать свой собственный фильм!
Правила работы
Приступая к работе с микроскопом, необходимо усвоить несколько несложных правил и подготовить некоторые приборы и вещества. Вам понадобятся предметное и покровное стекла, пипетка, пинцет, игла, а также вода, спирт, водный раствор йода (для окраски). Продаются готовые наборы для работы с микроскопом, которые вы можете использовать в своих исследованиях. В зависимости от специализации в набор могут входить и готовые микропрепараты, некоторые из них перечислены ниже.
Первое, что надо сделать, — это удобно разместить микроскоп на столе, возле окна. Будет еще лучше, если рядом вы поставите яркую настольную лампу. Поверните микроскоп ручкой штатива к себе.
Теперь нужно добиться правильного освещения. Для этого смотрите в окуляр и поверните зеркальце под предметным столиком к окну или другому источнику света так, чтобы отраженные от зеркала лучи попадали в объектив, а поле зрения в окуляре было наиболее освещенным.
Положите предмет, который собираетесь рассмотреть, на предметный столик — прямо над отверстием. Вращая винт и наблюдая сбоку за расстоянием между объективом и объектом, опустите объектив почти до соприкосновения с объектом. Готово!
Ну а теперь смотрите в окуляр и очень медленно вращайте на себя и от себя винт фокусировки, пока изображение не станет четким.
Изобретение микроскопа
В последние десятилетия микроскоп стал чем-то обыденным. Когда-то его можно было встретить только в медицинских лабораториях и научно-исследовательских институтах, теперь же микроскоп продается во многих магазинах. Купить его может каждый желающий. А вот полвека назад о микроскопе в его современном понимании еще никто не знал. Хотя первые шаги в этом направлении были сделаны аж в Древнем Риме. В то время для увеличения мелких предметов широко использовались наполненные водой сосуды. И, возможно, именно с этого момента и началась история современного микроскопа.
Так кто изобрел микроскоп на самом деле?
Историки так и не определились, кто же истинный изобретатель микроскопа. В разные эпохи авторство приписывали самым разным современникам. Некоторые имена на слуху до сих пор. Это и Галилео Галилей, и Кристиан Гюйгенс, и Антони ван Левенгук. Давайте пойдем по порядку.
В далеком 1538 году итальянский врач Г. Фракосторо впервые предложил совместить несколько линз, чтобы сложить их увеличение. Это не было созданием микроскопа, но дало толчок к широкому применению составных линз. А вот они уже повлияли на изобретение микроскопа.
В 1590 году с заявлениями о создании удивительного увеличительного прибора выступил голландский мастер очков Ханс Янсен. Мол, его сын, Захарий Янсен, изобрел микроскоп. К сожалению, историки не в состоянии сейчас сказать, правда это или ложь. Захарию в те времена обвиняли и в краже чужой интеллектуальной собственности, и в фальшивомонетничестве. Были и те, кто свидетельствовал в его пользу. Но нам спустя 400 лет практически невозможно узнать, действительно ли Захарий автор микроскопа.
В 1609 году пришло время тех самых составных микроскопов. Галилео Галилей создал увеличительный прибор из выпуклой и вогнутой линз и представил его широкой публике в Академии деи Личеи. Через десять лет нидерландский изобретатель Корнелиус Дреббель улучшил конструкцию Галилея и создал микроскоп с двумя выпуклыми линзами. А изобретение Кристиана Гюйгенса в конце 1600-х годов произвело небольшую революцию. Он смог создать двухлинзовую систему окуляров, которая регулировалась ахроматически. Окуляры Гюйгена и по сей день широко используются в микроскопии.
В ряду имен возможных создателей микроскопа есть и имя Роберта Гука. В 1665 году этот английский изобретатель создал собственный микроскоп, испытал его в деле и первым открыл органическую клетку.
Нельзя не упомянуть и Антони ван Левенгука (1632–1723 гг.). В отличие от своих предшественников и коллег, в своих изобретениях он использовал только одну линзу, но чрезвычайно сильную. И пусть пользоваться его микроскопами было не очень удобно, уровень увеличения и детализация изображения у микроскопов Левенгука были на самом высоком уровне. Именно Левенгук смог привлечь к микроскопам внимание биологов тех лет, что дало толчок развитию всей науке в целом.
Поэтому однозначного ответа на вопрос «Кто изобрел микроскоп?», пожалуй, не существует. В развитие микроскопного дела внесли вклад лучшие ученые и изобретатели разных эпох.
4glaza.ru
Август 2017
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.