в какой четырехугольник нельзя вписать окружность
Вписанная окружность
Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.
Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.
Свойства вписанной окружности
В треугольник
\[ S = \frac<1><2>(a+b+c) \cdot r = pr \]
с — расстояние между центрами вписанной и описанной окружностей треугольника.
R — радиус описанной около треугольника.
r — радиус вписанной окружности треугольника.
В четырехугольник
\[ S = \frac<1><2>(a+b+c+d)\cdot r = pr \]
Примеры вписанной окружности
Примеры описанного четырехугольника:
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника:
равносторонний, равнобедренный,
прямоугольный треугольники.
Верные и неверные утверждения
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.
Можно ли вписать четырёхугольник в окружность? Когда можно вписать?
Содержание:
Почти в любой четырехугольник можно вписать окружность. Трапеция, прямоугольник и квадрат для этого подходят всегда, тогда как сложные геометрические фигуры с четырьмя углами вписываются в круг избирательно. Рассмотрим условия, при которых 4-угольник может касаться точек на окружности всеми вершинами.
Вписанный
Вписанной называется фигура, вершины которой располагаются на окружности. Все треугольники и правильные 4-угольники, вроде квадрата и прямоугольника, размещаются внутри круга, причём их вершины совмещаются с точками на окружности. Вокруг неправильной фигуры с четырьмя углами не всегда можно описать круг. Разбираемся, какие условия нужно выполнить для решения проблемы.
У квадрата и прямоугольника все углы прямые – равны 90°, но это не ключ к разгадке. Случай с параллелограммом тому подтверждение. Чем примечательны прямоугольные 4-угольники? Может дело в сумме углов?
Трапеция в круг вписывается, но только равнобедренная. Одно из её свойств – сумма внутренних углов равна 360°, а соседних – 180°. Получается, что четырехугольник можно вписать в окружность, если сумма противоположных углов равняется 180°. Проверим на практике.
Помните: правило применимо только для выпуклых фигур, расположенных по одну сторону от проходящих через все стороны прямых.
Выпуклый дельтоид вписывается в круг, когда имеет пару прямых углов – называется прямоугольным.
Задача
Известны величины двух соседних углов вписанного четырёхугольника: 65° и 83°. Вычислить размеры сразу большего, затем – меньшего из оставшихся.
Известно, что сумма противоположных углов указанной геометрической фигуры равняется 180°. Отнимем от значения сначала большую цифру, затем – меньшую, чтобы выполнить условия задачи – найти неизвестные значения в указанном порядке.
180 – 65 = 115° – больший угол, 180 – 83 = 97° – меньший.
В какой четырехугольник можно вписать окружность
Описанным называют 4-угольник, стороны которого касаются круга. Существует теорема, показывающая, когда в четырехугольник можно вписать окружность: сумма его противоположных сторон должна быть одинаковой: AB + CD = BC + AD. В случае с прямоугольником условие не выполняется.
Правило работает для дельтоида, квадрата и даже неправильного выпуклого 4-угольника, подпадающего под теорему.
В параллелограмм вписывается круг в случае, если он является ромбом.
Задача
Стороны описанной фигуры относятся как 1:2:3. Найти длину четвёртой, если периметр равняется 32 см.
Составим уравнение. Зная, что суммы противоположных сторон 4-угольника равны:
Периметр равняется суме сторон: P = AB + ВС + AD + BC либо x + 2x + 2x + 3x = 32.
Вписанный четырехугольник и его свойства (ЕГЭ 2022)
Мы видели, что вокруг всякого треугольника можно описать окружность. Вот так:
Вопрос: а можно ли получить вписанный четырехугольник?
Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?
Сейчас мы это выясним!
Вписанный четырехугольник — коротко о главном
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна \( \displaystyle 180<>^\circ \)
Если у четырехугольника есть два противоположных угла, сумма которых равна \( \displaystyle 180<>^\circ \), то такой четырехугольник вписанный.
Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна \( \displaystyle 180<>^\circ \).
\( \displaystyle \angle B+\angle D=180<>^\circ \).
Параллелограмм, вписанный в окружность – непременно прямоугольник, и центр окружности совпадает с точкой пересечения диагоналей.
Вписанный четырехугольник — определения и теоремы
Вот оказывается, что это неправда!
НЕ ВСЕГДА четырехугольник можно вписать в окружность.
Есть очень важное условие:
Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма двух его противоположных углов равна \( \displaystyle 180<>^\circ \).
На нашем рисунке: \( \displaystyle \alpha +\beta =180<>^\circ \)
Посмотри, углы \( \displaystyle \alpha \) и \( \displaystyle \beta \) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами \( \displaystyle \varphi \) и \( \displaystyle \psi \)? Они вроде бы тоже противоположные?
Можно ли вместо углов \( \displaystyle \alpha \) и \( \displaystyle \beta \) взять углы \( \displaystyle \varphi \) и \( \displaystyle \psi \)?
Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет \( \displaystyle 180<>^\circ \).
Оставшиеся два угла тогда сами собой тоже дадут в сумме \( \displaystyle 180<>^\circ \). Не веришь? Давай убедимся.
Пусть \( \displaystyle \alpha +\beta =180<>^\circ \). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, \( \displaystyle 360<>^\circ \).
То есть \( \displaystyle \alpha +\beta +\varphi +\psi =360<>^\circ \) — всегда! \( \displaystyle 180<>^\circ \)
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна \( \displaystyle 180<>^\circ \)
Если у четырехугольника есть два противоположных угла, сумма которых равна \( \displaystyle 180<>^\circ \), то такой четырехугольник вписанный.
Доказательство смотри чуть дальше.
А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна \( \displaystyle 180<>^\circ \).
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?
Вписанный параллелограмм
Попробуем сперва «методом научного тыка»:
Вот как-то не получается. Теперь применим знание:
Предположим, что нам как-то удалось посадить на параллелограмм \( \displaystyle ABCD\) окружность. Тогда непременно должно быть: \( \displaystyle \alpha +\beta =180<>^\circ \), то есть \( \displaystyle \angle B+\angle D=180<>^\circ \).
А теперь вспомним о свойствах параллелограмма: у всякого параллелограмма противоположные углы равны.
То есть \( \displaystyle \angle B = \angle D\).
У нас получилось, что
\( \displaystyle \left\< \begin
А что же углы \( \displaystyle A\) и \( \displaystyle C\)?
Ну, то же самое конечно.
\( \displaystyle ABCD\) – вписанный → \( \displaystyle \angle A+\angle C=180<>^\circ \) → \( \displaystyle \angle A=90<>^\circ \)
\( \displaystyle ABCD\) — параллелограмм→ \( \displaystyle \angle A=\angle C\) → \( \displaystyle \angle C=90<>^\circ \)
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырёхугольники и их свойства
Теорема 1 доказана.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||
Окружность, описанная около ромба | ||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||
Окружность, описанная около трапеции | ||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||
Окружность, описанная около дельтоида | ||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||
Произвольный вписанный четырёхугольник | ||
Окружность, описанная около ромба | ||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||
Окружность, описанная около трапеции | ||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||
Окружность, описанная около дельтоида | ||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||
Произвольный вписанный четырёхугольник | ||
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты: где a, b, c, d – длины сторон четырёхугольника, Теорема ПтолемеяДокажем, что справедливо равенство: Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4). откуда вытекает равенство:
Вписанная в четырехугольник окружностьОписанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник. Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности? В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
И обратно, если суммы противоположных сторон четырехугольника равны: то в четырехугольник ABCD можно вписать окружность. Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис.
AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD, то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д. 3. Точки касания вписанной окружности, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины.
5. Площадь четырехугольника связана с радиусом вписанной в него окружности формулой где p — полупериметр четырехугольника. Так как суммы противолежащих сторон описанного четырехугольника равны, полупериметр равен любой из пар сумм противолежащих сторон. Например, для четырехугольника ABCD p=AD+BC или p=AB+CD и Соответственно, радиус вписанной в четырехугольник окружности равен
|