в какой части спектра работают газоразрядные

Газоразрядная лампа: устройство, принцип работы, классификация

Среди большого разнообразия осветительного оборудования существуют лампы различного принципа действия. Сегодня достаточно весомую нишу в общем объеме устройств освещения занимают газоразрядные лампы. В чем заключается принцип их работы, и как они устроены, мы рассмотрим в данной статье.

Устройство и принцип работы

В сравнении с другими типами ламп, газоразрядные устройства имеют целый ряд отличий. Что сказывается и на их конструктивных особенностях, и на принципе действия. Чтобы разобраться с основами получения светового излучения в газоразрядных лампах, для начала рассмотрим их конструктивные особенности.

Принцип действия газоразрядных ламп заключается в получении светового потока от ионизации смести газа и паров металла. Рассмотрим принцип их работы на следующем примере (см. рисунок 2):

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядныеРис. 2. Принцип действия газоразрядной лампы

При подаче напряжения на светильник с газоразрядной лампой осуществляется его преобразование через пускорегулирующий аппарат (ПРА). Затем повышенное напряжение порядка 2 – 5кВ поступает на электроды лампы. Этого достаточно для пробоя газового промежутка, поэтому, сначала возникает искра, а затем загорается тлеющий разряд внутри трубки.

Температура горения разряда достигает 1300 ºС, за счет чего смесь разогревается до такого состояния, когда все свободные частицы обладают достаточной энергией для выхода за пределы атома. Физически этот процесс сопровождается планомерным повышением интенсивности светового потока по мере разогрева газоразрядной среды. При этом можно наблюдать некоторые колебания цветового спектра свечения по мере изменения диапазона излучаемой волны.

Заметьте, несмотря на то, что в конструкции самой газоразрядной лампы ПРА отсутствует, без него запустить устройство не получится. В состав пускорегулирующего аппарата входит:

В зависимости от типа газоразрядной лампы, будет отличаться и устройство ПРА, технические особенности его компонентов. Поэтому для каждого конкретного вида осветительного оборудования устанавливаются свои модули.

Чем заполняются газоразрядные лампы?

Для наполнения газоразрядных ламп применяются различные типы инертных газов, которые будут активироваться при подаче напряжения на контакты цоколя. Наиболее распространенными из них являются аргон, неон, ксенон и криптон. В некоторых моделях применяется смесь нескольких газовых для получения газоразрядной среды с заданными свойствами.

Помимо инертного газа, лампа может заполняться парами металлов, самые известные из которых натрий и ртуть. В зависимости от способа приведения газоразрядной лампы в рабочее состояние они также разделяются на несколько видов. Но, следует отметить, что наличие металла не является обязательным условием, так как на практике встречаются лампы исключительно с инертным газом – ксеноновые и неоновые. Поэтому в таких моделях в качестве наполнителя используется только газ.

Отдельной категорией являются металлогалогенные лампы, колба которых заполняется не только инертными газами и парами натрия и ртути, но и галогенидами металлов.

Классификация

Современный рынок газоразрядных источников света предоставляет достаточно большое разнообразие моделей. В зависимости от технических параметров, наполнения и других факторов можно выделить несколько категорий, по которым они будут отличаться.

Так, в зависимости от наполнения, все модели можно разделить на:

В зависимости от источника света газоразрядные лампы можно подразделить на:

В зависимости от величины давления, создаваемого газом внутри колбы, все устройства подразделяются на лампы:

Рассмотрим два последних фактора разделения газоразрядных ламп по видам более детально.

По источнику света

В зависимости от источника получения светового излучения все газоразрядное оборудование бывает индукционное, газосветное, люминесцентное. Индукционные модели приводятся в свечение посредством электродов, которые раскаляются от протекания электрического разряда. За счет чего их еще называют электродосветными лампами.

В газосветных лампочках источником излучения выступают молекулы или атомы, возбуждаемые протекающим электрическим процессом. При этом в газовой среде образуется достаточное количество энергии для постоянного излучения. Люминесцентные лампы имеют специальное покрытие на поверхности колбы, содержащее люминофоры. Протекающий в газоразрядной лампе разряд активизирует частицы газа, которые, в свою очередь, воздействуют на люминофор.

По величине давления

В зависимости от величины формируемого давления внутри газоразрядного источника света все модели подразделяются на три класса:

Характеристики

Для сравнения с другими видами осветительного оборудования, необходимо детально изучить рабочие параметры газоразрядных ламп:

Утилизация

В виду наличия ртути и других загрязняющих веществ в составе лампочки, способ их утилизации в корне отличается от остальных видов ламп. Для этих целей работают специальные организации, занимающиеся сбором и дальнейшей демеркуризацией определенной категории газоразрядных ламп.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядныеРис. 8. Утилизация газоразрядных ламп

Если такая лампочка разобьется у вас дома, необходимо сразу принять для предотвращения отравления парами ртути домочадцев. Более детально об этом вы можете узнать из следующей статьи: https://www.asutpp.ru/razbilas-energosberegayuschaya-lampa.html

Преимущества и недостатки

К основным преимуществам газоразрядных источников света следует отнести:

К основным недостаткам следует отнести наличие пульсации светового потока, необходимость подключения ПРА для запуска, ограниченный диапазон рабочего напряжения, чувствительность к качеству питающего напряжения. Требуется время на разогрев, из-за чего их нецелесообразно использовать в сетях с частой коммутацией. Невозможно регулировать интенсивность свечения при помощи диммера.

Области применения

Несмотря на серьезную конкуренцию со стороны светодиодных осветительных приборов, газоразрядные источники света остаются популярными в ряде отраслей хозяйственной деятельности. Так их часто можно встретить в:

Источник

Часть 2. Классификация и характеристики

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

1. Лампы накаливания.
Классическая лампочка накаливания выглядит как сферический стеклянный шар из силикатного стекла (колба), внутри лампы находится вольфрамовая нить, при этом в полости лампы создан вакуум.
Принцип работы сводится к тому, что при прохождении электрического тока электроны разогревают вольфрамовую спираль и возникает электромагнитное тепловое излучение с эффектом свечения.
Средний КПД у таких ламп составляет около 6-8% в частности, КПД зависит от длины волны выпускаемого света, а она — от температуры нити накаливания, которая ограничена у обычных ламп.
Недостатком данных ламп является затуманивание колбы вследствие оседания вольфрама, вырвавшегося с поверхности нити накаливания лампы при высоких температурах.
Значительная длина нити накаливания лампы усложняет задачу фокусировки пучка света отражателем фары, что ограничивает видимость на дороге.
Некоторые разновидности ламп накаливания выпускались со сдвоенно спиралью.Маркировка таких ламп производится с использованием индекса R2.
Обычные классические лампочки хоть и пользовались до недавнего времени достаточно широкой популярностью, но, к сожалению, совершенно не практичны. Сейчас уже и в автомагазине практически невозможно встретить в продаже обычных лампочек накаливания, на смену которым пришли галогеновые лампы.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

2. Галогенные лампы.
Галогенные лампы решили часть проблем, связанных с обычными лампочками.
Форма лампы позволяет использовать более короткую нить накаливания, колба лампы изготовлена из кварцевого стекла.
Колба наполнена инертным газом с парами галогена(йод, бром и другие). Применение такого наполнителя позволяет осуществить физико-химическую реакцию возвращения молекул вольфрама обратно на нить накаливания галогенной лампы.
Поэтому стекло галогенных ламп не мутнеет из-за оседания вольфрама и пропускает через поверхность колбы бо́льшее количество фотонов света.Галогенные лампы позволили поддерживать более высокую температуру нити накаливания, что изменило длину волны испускаемого спектра и повысило эффективность ламп.
Стекло галогенной лампы нельзя трогать руками.
При касании мы всегда оставляем отпечатки, а с ними жир и грязь, что в свою очередь вызывает неравномерное распределение температуры по кварцевой колбе галогенной лампы. При нарушении температурного режима колба может треснуть, и лампа выйдет из строя.
На сегодняшний день галогенные лампы имеют наиболее широкое применение в автомобилях.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

3. Газоразрядные лампы.
Газоразрядные лампы появились самыми последними — в середине 90-х годов.
На вид они не отличаются от галогенных ламп, но принцип их работы совершенно другой.
Колба заполнена газом (чаще всего — это ксенон)
Поэтому лампы называются ксеноновыми. В ксеноне создаётся электрическая дуга между электродами.
Цветовая температура — это характеристика источника света, определяющая ощущаемый глазом цвет. Каждому цвету соответствует своя температура, измеряемая в градусах Кельвина (далее — К).
Глаз человека лучше всего видит при дневном свете.
Цветовая температура показывает, как должен быть нагрет газ внутри колбы, чтобы лампа светила тем или иным цветом.
Как правило, производители предлагают ассортимент из трёх основных видов цветовых температур:
• 4300 Кельвинов — «Бело-молочный»
• 5000 Кельвинов — «Белый»
• 6000 Кельвинов — «Голубой кристалл».

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Чем выше цветовая температура, тем больше лампа будет отдавать в голубой свет, а чем меньше — тем в жёлтый. Также чем выше температура ксенона, тем меньше яркость излучаемого света.
Штатный ксенон, который ставится непосредственно на заводе, имеет цветовую температуру 4300 К. При установке ксенона с цветовой температурой 5000 К потеря в яркости невелика. Поэтому многие устанавливают среднее по цвету — 5000 К.
При цвете свечения ксенона 6000 К показатель освещенности сильно падает, и в плохую погоду (дождь, снег, слякоть) освещения будет не хватать.
Минусами газоразрядных ксеноновых ламп является необходимость установки дополнительного оборудования, обеспечивающего подачу напряжения до 20000 Вольт, необходимого для создания электрической дуги.
И как ни странно, к минусам можно отнести слишком высокую интенсивность испускаемого света, которая отрицательно сказывается на безопасности дорожного движения.
Установка ксеноновых ламп должна производится в условиях автосервиса.
Колбу газоразрядных ламп также запрещено трогать руками.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Обладая рядом преимуществ перед галогеном, ксеноновые и светодиодные лампы завоевали большую популярность.
Главное преимущество ксеноновой (газоразрядной) лампы — её световой поток, который примерно в два-три раза мощнее, чем у галогенной.
Цветовая температура света ксеноновой лампы намного выше, чем у галогенной, в результате чего видимость намного лучше, чем при свете галогенных фар.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Другие приятные особенности ксенона — повышенный срок службы, до 2000-3000 часов против 400-1000 у галогеновой лампы. Это результат отсутствия в ксеноновой лампе хрупкой нити, чувствительной к тряске. Кроме того, в рабочем режиме ксенон потребляет гораздо меньший ток, что положительно сказывается на ресурсе генератора автомобиля.
Ксеноновая лампа нагревается на 40% меньше, чем галогеновая.
Дело в том, что КПД галогеновой лампы 30%, именно эти 30% и преобразуются в световую энергию, остальные 70% потребляемой энергии идут в тепло.
Ксеноновые лампы работают по совершенно другому принципу, и лишь небольшая часть энергии уходит в тепло. Так что ксенон холоднее галогена, поэтому опасность оплавления фары при работе ксеноновой лампы отсутствует.
Из недостатков ксеноновых фар можно выделить следующие:
• Дороговизна. Высокая стоимость лампы, кроме этого, в случае замены ксеноновых ламп нужно менять их в паре (со временем спектр излучения ксеноновой лампы изменяется).
• Для розжига ксеноновой лампы нужно подать на лампу напряжение около 25000 Вольт и поддерживать его на уровне 80 Вольт с частотой 300 Гц. Поэтому подключить лампу прямо к бортовой сети не получится, а значит, лампа нуждается в дополнительном блоке розжига.
• Задержка при включении (время на розжиг).

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

4. Светодиодный лампы.

Одним из последних новшеств в производстве автомобильных ламп являются светодиодные лампы. Светодиодные лампы постепенно завоёвывают авторитет, благодаря интенсивному яркому свету и малой потребляемой мощности.
Качество света фар, как известно, напрямую зависит от двух составляющих — самой оптики и применяемых ламп.
Преимущества светодиодных ламп:
• Низкое энергопотребление сильно уменьшает нагрузку на электросеть автомобиля.
• Большой срок службы, от 50000 часов.
• Высокая надёжность при ударах и вибрациях из-за отсутствия нити накала.
• Большой световой поток, от 1800 до 3600 Люмен.
• Цветовая температура схожа с цветом ксенона, то есть свет белый, а не жёлтый.

Видимое излучение оцениваемое по световому ощущению, которое оно производит на человеческий глаз, называется световым излучением, а мощность такого излучения — световым потоком. единица светового потока — Люмен (Лм).

Для примера световой поток различных источников света:

• Лампа накаливания 100 Вт — 1350 Лм
• Галогенная лампа накаливания 230 В 70 Вт — 1170 Лм
• Газоразрядная лампа 35 Вт («автомобильный ксенон») — 3000-3400 Лм
• Светодиод 40-80 Вт — 6000 Лм
• Светодиодная лампа (цокольная) 4500 К, 10 Вт — 860 Лм
• Солнце — 3,63х10^28 Лм

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Тонкости при установке светодиодов.

Если у автомобиля есть бортовая система самодиагностики, то установка светодиодов может активировать функцию предупреждения о перегоревших лампочках, так как бортовой компьютер увидит снижение потребляемого тока. Для того чтобы убрать этот сигнал, нужно подключить диагностический компьютер и внести корректировки. А можно просто не обращать внимание на предупреждения.
Замена в автомобиле ламп накаливания на светодиодные лампы позволит снизить нагрузку осветительных приборов на аккумулятор (АКБ) в среднем на 85%. Кроме того, можно сэкономить и на покупках самих лампочек, которые не нужно будет больше менять раз в год или пол года. Светодиоды значительно прочнее ламп накаливания.

Источник

Что такое газоразрядные лампы

Сейчас газоразрядные источники света широко распространены. Они дают освещение улицам, применяются в качестве головного света автомобилей, неоновые вывески – это тоже газоразрядные лампы. Еще они применяются для освещения дома и офисов. Видов и форм таких источников света очень много. Внешне они могут очень сильно отличаться, но их роднят физические принципы работы – разряд между электродами в герметичной колбе. в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Устройство и принцип работы газоразрядных ламп.

Любая газоразрядный источник света представляет собой герметичную колбу, внутри которой расположены электроды. Между ними протекает разряд. В зависимости от модификации колба может быть разной формы. Материал зависит от предназначения осветителя. Наполнение также разнообразно.

Между электродами протекает разряд. Напряжения зажигания может быт существенно выше напряжения горения. Поэтому для запуска требуется пускатель. Он может быть примитивный в виде последовательно соединенных стартера и дросселя – катушки индуктивности. Но сейчас все чаще применяют электронный тип пуско-регулирующего аппарата – ЭПРА. Устройство его более сложное, но функции те же самые.

От формы, мощности, материалов изготовления, наличия люминофорного покрытия зависит применение газоразрядных лам. Следует заметить, что они чувствительны к температуре окружающей среды. При пониженных температурах розжиг становится более сложной задачей. Согласно ГОСТам, максимальное время запуска не должно превышать десяти секунд. в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Область применения ГРЛ.

ГРЛ – общепринятая аббревиатура, означает газоразрядные лампы.

Все они имеют общие физические принципы, их применение очень разнообразно. Это могут быть всем привычные осветительные лампы дневного освещения, неоновые рекламные вывески, ультрафиолетовые бактерицидные облучатели (иногда их еще называют кварцевыми), облучатели, применяемые в соляриях для загара, и даже мощные корабельные и авиационные прожекторы. Это все ГРЛ. В зависимости от мощности и предназначения используется разная пускорегулирующая аппаратура. Даже спустя более 50 лет с момента появления, они не утратили своих позиций.

Автомобильный ксенон – это тоже ГРЛ.

Их можно даже встретить в мониторах, телевизорах, дисплеях ноутбуков. Они обеспечивают подсветку жидкокристаллических экранов. Хотя надо признать, сейчас все реже.

По энергопотреблению они занимают промежуточное место между тепловыми источниками света и осветительными светодиодами. Характеризуются длительным сроком службы.

Виды газоразрядных ламп.

По давлению различают:

Газоразрядные лампы низкого давления.

Люминесцентные лампы (ЛЛ) – предназначены для освещения. Представляют собой трубку, покрытую изнутри люминофорным слоем. На электроды подается импульс высокого напряжения (обычно от шестисот вольт и выше). Электроды разогреваются, между ними возникает тлеющий разряд. Под воздействием разряда начинает излучать свет люминофор. То, что мы видим – это свечение люминофора, а не сам тлеющий разряд. Они работают при низком давлении.

Подробнее о люминесцентных лампах — тут
в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Компактные люминесцентные лампы (КЛЛ) принципиально ничем не отличаются от ЛЛ. Различие только в размерах, форме колбы. Плата с электроникой для запуска, как правило, встроена в сам цоколь. Все направлено на миниатюризацию.

Подробнее об устройстве КЛЛ — тут в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Лампы подсветки дисплеев также не имеют принципиальных отличий. Питаются от инвертора.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Индукционные лампы. Этот тип осветителя не имеет никаких электродов в свое колбе. Колба традиционно заполнена инертным газом (аргон) и парами ртути, а стенки покрыты слоем люминофора. Ионизация газа происходит под действие высокочастотного (от 25 кГц) переменного магнитного поля. Сам генератор и колба с газом могут составлять одно целое устройство, но есть и варианты разнесённого изготовления. в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Газоразрядные лампы высокого давления.

Существуют и приборы высокого давления. Давление внутри колбы превышает атмосферное.

Дуговые ртутные лампы (сокращенно ДРЛ) ранее применялись для наружного уличного освещения. В настоящее время применяются все реже. На смену им приходят металлогалогеновые и натриевые источники света. Причина – низкая эффективность.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Внешний вид лампы ДРЛ

Дуговые ртутные лампы с йодидами (ДРИ) содержат горелку в виде трубки из плавленого кварцевого стекла. В ней находятся электроды. Сама горелка наполнена аргоном – инертным газом с примесями ртути и йодидов редкоземельных металлов. Может содержать цезий. Сама горелка размещена внутри колбы из жаропрочного стекла. Из колбы выкачан воздух, практически горелка находится в вакууме. Более современные оснащаются горелкой из керамики – она не темнеет. Применяются для освещения больших площадей. Типичные мощности от 250 до 3500 Вт. в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Дуговые натриевые трубчатые лампы (ДНаТ) имеют вдвое большую светоотдачу в сравнении с ДРЛ при тех же потребляемых мощностях. Эта разновидность предназначена для уличного освещения. Горелка содержит инертный газ – ксенон и пары ртути и натрия. Эту лампу можно сразу узнать по свечению – свет имеет оранжево-желтый или золотистый оттенок. Отличаются довольно большим временем перехода в выключенное состояние (около 10 минут). в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Дуговые ксеноновые трубчатые источники света характеризуются белым ярким светом, спектрально близким к дневному. Мощность лам может достигать 18 кВт. Современные варианты выполнены из кварцевого стекла. Давление может достигать 25 Атм. Электроды изготавливаются из вольфрама, легированного торием. Иногда применяется сапфировое стекло. Такое решение обеспечивает преобладание ультрафиолета в спектре.

Световой поток создается плазмой около отрицательного электрода. Если в состав паров входит ртуть, то свечение возникает возле анода и катода. К этому типу относят и вспышки. Типичный пример – ИФК-120. Их можно опознать по дополнительному третьему электроду. Благодаря своему спектру они отлично подходят для фотодела.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Металлогалогенные газоразрядные лампы (МГЛ) характеризуются компактностью, мощностью и эффективностью. Зачастую применяются в осветительных приборах. Конструктивно представляют собой горелку, помещенную в вакуумную колбу. Горелка изготовлена из керамики, либо кварцевого стекла и заполнена парами ртути и галогенидами металлов. Это необходимо для корректировки спектра. Свет излучается плазмой между электродами в горелке. Мощность может достигать 3.5 кВт. В зависимости от примесей в парах ртути возможен разный цвет светового потока. Обладают хорошей светоотдачей. Сроком эксплуатации может достигать 12 тысяч часов. При этом имеет хорошую цветопередачу. Долго выходит на рабочий режим – около 10 минут. в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Достоинства и недостатки газоразрядных ламп.

Вывод

Несмотря на все свои достоинства и недостатки, газоразрядные лампы еще долгое время не выйдут из обихода. Особенно они незаменимы там, где требуется спектр приближенный к солнечному. Для мощных осветителей – это пока универсальный вариант, так соотношение всех характеристик и цены отличает их от иных типов освещения.

Источник

Газоразрядные лампы. Что такое и как работают

Газоразрядная лампа – это прибор, передающий энергию в виде потока света, видимого человеческому глазу. Независимо от типа это оборудование работает за счет электрического разряда в газах, парах металлов или их смеси.

Преимущество – возможность получить высокую эффективность при минимальных затратах электроэнергии. Цвет зависит наполнения колбы.

Средний срок службы от 3-х до 20-и тысяч часов. В зависимости от интенсивности свечения электродов разрядные лампы монтируются не только на открытом воздухе, но и в помещениях. При использовании в быту желательна установка в закрытые светильники, оборудованные защитным стеклом.

Устройство

Все газоразрядные светильники состоят из:

Эксплуатация невозможна без ПРА (пуско-регулирующего аппарата). Особенность принципа работы – необходимость в балласте, обеспечивающем независимость от перепадов напряжения.

Внимание! Без регулирующей системы газоразрядные лампы не способны долго служить.

Принцип работы лампочки

Главные элементы электроды – через них пуско-регулирующая система передает электроэнергию. Импульс пробивает газ между электродами, стабилизатор ограничивает силу тока (сила тока обратно пропорциональна напряжению), наполнение начинает излучать свечение, которое становится ярче по мере нагревания.

Источник света полностью загорается примерно через 2 минуты. Этот период времени требуется для полного испарения наполнения. Время загорания зависит так же от температуры окружающей среды. Для ускорения процесса некоторые производители монтируют в горелку несколько электродов.

Спектр излучения варьирует в широких пределах – от ультрафиолета до инфракрасных лучей. Яркость зависит от давления, вида наполнения, размеров колбы. Чем она меньше, тем интенсивнее свет.

Виды газоразрядных ламп

Для классификации газоразрядных источников света используются различные критерии: наполнение и форма колбы, конструкция электродов, давление.

По типу наполнения газоразрядные источники света делятся на 3 вида:

Из газов используется неон, криптон, ксенон, гелий, аргон или их смеси. Самые распространенные металлы ртуть и натрий. Большинство производителей используют пары ртути, хотя натрий эффективнее. Нередко газ и пары ртути применяются одновременно. Разряд дуговой, импульсный или тлеющий.

Люминесцентные изделия разделяются по внутреннему давлению:

Производители предлагают колбы и электроды различной конструкции, системы для принудительного охлаждения.

Высокого давления

Источники света с высоким давлением (более атмосферы) подключаются к сети 220/380 В, мощность приборов может достигать нескольких десятков киловатт. Характеристики практически не зависят от температуры среды. Слишком высокая или слишком низкая температура меняет лишь период разгорания. Срок службы до 20-и тыс. часов, цоколь Е27 (для мощности 127 В) или Е40 (для остальных).

Отличие от изделий с низким давлением – повышенная мощность и компактные размеры.

Низкого давления

Для источников света с низким давлением (менее атмосферы) характерна колба в виде трубы. Покрытие флуоресцентное или люминесцентное. Наполнение – аргон, неон или натрий, электроды из вольфрама, покрытого кальцием, стронцием, барием. Эти газовые лампы используются для освещения помещений.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 104 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 106 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Рисунок 6. Газоразрядная лампа высокого давления

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Сферы применения ГРЛ

Этот вид осветительных приборов отличается широтой сфер применения.

На улицах они освещают:

Люминесцентные пампы используются в офисах, школах, больницах, кинотеатрах, освещают витрины магазинов, рабочие места на промышленных предприятиях, устанавливаются в профессиональное световое оборудование театров, фонари для подводного плавания, фары.

Изделия с цоколем Е27 и Е14 используются в быту.

Характеристики

Необходимо знать

Области применения

Преимущества

Недостатки

Что нужно знать об индикаторных видах ламп

Индикаторная газовая лампа – это прибор с анодом и холодным катодом в виде цилиндра, стержня или диска, изготовленного из железа, алюминия, молибдена, никеля. При включении создается тлеющий заряд, излучающий оранжевый или красный цвет. Декоративные индикаторы оснащены балластовым редуктором и подключаются к бытовой сети 220 вольт. Для оснащения сигнальных источников света колба изнутри покрывается составом, превращающим красное излучение в зеленое. Для подсветки неоновые малогабаритные лампочки монтируются вместе со светодиодными.

Индикаторные лампы широко применяются в знаках. У них один анод и до 12-и катодов в форме букв или цифр. Такой знак хорошо виден на относительно большом расстоянии.

Подобное освещение используется:

В быту яркий пример индикаторных лампочек – елочные гирлянды и небольшие светильники. Это осветительное оборудование компактное, экономичное, служит долго.

Как выбирать газовую лампу

При выборе необходимо знать характеристики 3-х групп ламп:

Металлогалогенные газоразрядные светильники содержат пары ртути и металлов. Давление высокое, свечение мощное и яркое. Колба из боросиликатного стекла отсекает ультрафиолетовые лучи. В моделях, используемых в промышленности, колба может отсутствовать. Мощность 70-2000 ватт, цоколь один или два.

Цвет близок к белому, но с оттенками, зависящими о наполнения:

Доступны модели, в которых 90% белого цвета, и лампочки для подсветки аквариумов и парников с особым спектром. Для человека эти приборы более благоприятны, чем люминесцентные и натриевые.

Натриевые модели отличаются высокой светоотдачей компактными размерами. Срок службы от 25-и тыс. часов, спад потока света 10-20%. Некоторые производители к натриевым соединениям добавляют ксенон, что позволяет получить белое свечение. Модели с высокой мощностью монтируются в основном вне помещений. Из Европы поставляются лампочки с мощностью до 35 Вт, предназначенные для жилых помещений.

Принцип работы газоразрядной лампы

При проверке производительности лампы нужно соблюдать некоторые рекомендации:

Чем отличаются светодиодные светильники?

в какой части спектра работают газоразрядные. Смотреть фото в какой части спектра работают газоразрядные. Смотреть картинку в какой части спектра работают газоразрядные. Картинка про в какой части спектра работают газоразрядные. Фото в какой части спектра работают газоразрядные

Плюсы и минусы изделий

К преимуществам газоразрядных источников света относят:

При выборе учитываются и недостатки:

Достоинств все же больше, чем недостатков. Цена полностью компенсируется экономичностью и длительным сроком службы.

Вывод

Несмотря на все свои достоинства и недостатки, газоразрядные лампы еще долгое время не выйдут из обихода. Особенно они незаменимы там, где требуется спектр приближенный к солнечному. Для мощных осветителей – это пока универсальный вариант, так соотношение всех характеристик и цены отличает их от иных типов освещения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *