в каком выражении слагаемые не являются подобными
Подобные слагаемые, их приведение, примеры
Приведение подобных слагаемых является одним из наиболее употребимых тождественных преобразований. В этом разделе мы дадим определение термина, разберем, что обозначает словосочетание «приведение подобных слагаемых», рассмотрим основные правила выполнения действий и наиболее распространенные типы задач.
Определение и примеры подобных слагаемых
В большинстве учебных пособий тема подобных слагаемых разбирается после знакомства с буквенными выражениями, когда появляется необходимость проводить с ними различные преобразования.
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Слагаемые – это, как известно, составные элементы суммы. Это значит, что они могут присутствовать лишь в тех выражениях, которые представляют собой сумму. Буквенная часть – это одна или произведение нескольких букв, которые представляют собой переменные. Слагаемые с буквенной частью – это произведение некоторого числа и буквенной части. Здесь некоторое число также носит название числового коэффициента.
Буквенная часть может быть представлена не только произведением букв, но также и произвольным буквенным выражением. Например:
Обобщим изложенные выше утверждения и дадим еще одно определение подобных слагаемых.
Подобные слагаемые – это слагаемые в буквенном выражении, которые имеют одинаковую буквенную часть, а также слагаемые, которые не имеют буквенной части, если под буквенной частью понимать любое буквенное выражение.
Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые одинаковые. Если же числовые коэффициенты различаются, то подобные слагаемые будут разными.
Возьмем для примера выражение 2 · x · y + 3 · y · x и рассмотрим такой нюанс: являются ли слагаемые 2 · x · y и 3 · y · x подобными. В задачах этот вопрос может иметь следующую формулировку: одинаково ли буквенное выражение части x · y и y · x указанных слагаемых? Буквенные множители в приведенном примере имеют различный порядок, что в свете данного выше определения не делает их подобными.
К слову, в некоторых источниках при нестрогом отношении к вопросу, слагаемые из примера могут называться подобными. Но лучше не допускать таких неточностей в трактовках.
Приведение подобных слагаемых, правило, примеры
Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в три этапа:
Приведем пример таких вычислений.
Описанные три шага для экономии времени записывают в виде правила приведения подобных слагаемых. Согласно правило для того, чтобы привести подобные слагаемые, необходимо сложить их коэффициенты, а затем умножить полученный результат на буквенную часть при ее наличии.
Решение
Какие слагаемые называются подобными? на основании какого арифметического закона приводится подобные слагаемые
Ответ или решение 2
Нам нужно ответить на вопрос задачи 1) какие слагаемые называются подобными? 2) на основании какого арифметического закона приводится подобные слагаемые?
Давайте составим план ответа на вопросы
Определение подобных слагаемых
Давайте вспомним какие слагаемые в математике называются «подобными слагаемыми».
Слагаемые, содержащие одинаковую буквенную часть или вообще не содержащие переменной называются подобными.
Давайте рассмотрим выражение и определим в нем подобные слагаемые.
в данном выражении существует четыре группы подобных слагаемых.
Помня правило, что подобными есть слагаемые с одинаковой буквенной частью выпишем все группы подобных.
Правило приведения подобных слагаемых, арифметические законы, которые при этом используются
Чтобы привести подобные слагаемые нужно найти и сгруппировать подобные слагаемые.
Следующим шагом мы выносим за скобки переменную и выполняем действия с коэффициентами внутри скобок.
Арифметические законы, которые помогают нам привести подобные слагаемые есть распределительный (дистрибутивный) закон умножения относительно сложения и вычитания, которые можно записать так:
Приведем подобные в нашем выражении:
Давайте вспомним, как звучит определение подобных слагаемых.
Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.
Чтобы преобразовать выражение, которые содержат подобные слагаемые, нужно выполнить сложение этих слагаемых.
Чтобы привести подобные слагаемые нужно провести несколько преобразований:
* переставляют подобные слагаемые так, чтобы они оказались рядом друг с другом;
* после этого за скобки выносят буквенную часть подобных слагаемых;
* последним шагом производят вычисления числового выражения, образовавшегося в скобках.
Урок 42 Бесплатно Подобные слагаемые
В одном из прошлых уроков мы узнали и разобрали одно важное свойство распределительных чисел: распределительное свойство умножения относительно сложения.
Сегодня мы подробно посмотрим, как оно позволяет нам раскрывать скобки и приводить подобные слагаемые, а также в целом упрощать выражение.
Раскрытие скобок
Распределительное свойство умножения справедливо для любых чисел a, b и c.
Также мы уже упоминали, что это свойство можно обобщить, во-первых, для большего числа слагаемых, во-вторых, в роли общего множителей могут выступать не только числа, но и выражения.
Сейчас подробно посмотрим на примерах.
Пример:
Посмотрим на выражение \(\mathbf<(\frac<15><37>+\frac<19><74>)\cdot74>\)
Мы можем сначала посчитать выражение в скобках, а можем сначала раскрыть скобки, избавившись от дробей, а затем выполнить сложение.
Воспользуемся вторым способом:
В данном случае мы имели выражение, максимально близкое к тому, что мы видим в формулировке распределительного свойства.
Теперь рассмотрим такое выражение: \(\mathbf<(1001-65):13>\)
Тут мы видим вычитание вместо сложения и деление вместо умножения.
Но мы уже умеем заменять вычитание на сложение, заменяя вычитаемое на слагаемое, противоположное вычитаемому:
Также и деление мы умеем заменять на умножение, заменяя делитель на множитель, обратный делителю:
Теперь мы получили выражение, соответствующее формулировке распределительного свойства.
Применим же свойство и найдем значение выражения.
Заметим, что хоть мы и заменяли вычитание на сложение, в конце мы все равно вычитали.
Также несмотря на то, что мы заменяли деление на умножение, в конце мы все равно делили.
Распределительное свойство также работает и в таком виде:
Также важно понимать, что распределительное свойство может работать не только с двумя числами, но и с любым другим их количеством.
Три точки обозначают любое количество слагаемых от нуля до бесконечности.
Аналогично предыдущему примеру, слагаемые в скобках могут быть с разными знаками. В таком случае они будут с такими же знаками и в правой части равенства.
Пример:
Раскроем скобки в выражении \(\mathbf<(a+b+c+d)\cdot x>\) :
Также важно понимать, что на месте a, b и других букв в скобках могут стоять любые другие выражения.
Пример:
Также и множитель снаружи скобок может быть не только числом или скобкой, а любым другим выражением, например, как в этом примере ax и bx являются произведениями двух множителей.
Как мы сказали, множитель может быть любым выражением, например, выражением в скобках. Рассмотрим еще такой пример.
Пример:
Раскроем скобки в выражении \(\mathbf<(a+b)(c+d)>\) :
Тут можно действовать в любом порядке: можно считать первую скобку общим множителем, раскрывая вторую, а можно и наоборот.
Мы будем сейчас раскрывать вторую скобку, то есть (\(\mathbf\)) будет общим множителем:
Теперь общими множителями для первой и второй скобок будут с и d соответственно:
Промежуточный шаг можно было пропустить, так как скобки не несли в нем смысла, но оставим его здесь для наглядности.
Пройти тест и получить оценку можно после входа или регистрации
Вынесение общего множителя
Распределительное свойство умножения относительно сложения помогает нам выносить общий множитель, то есть, смотря на формулировку, мы из правой части переходим в левую.
Сразу скажем, что по аналогии с раскрытием скобок, мы не должны пугаться вычитания и деления, а должны, если сомневаемся, заменять их на сложение и умножение соответственно.
Пример:
Вынесем общий множитель в выражении \(\mathbf
Мы видим, что выражение состоит из трех слагаемых, каждое из которых является произведением.
В каждом из этих произведений есть множитель а.
Его мы и будем выносить.
В данном случае не стояла задача раскрывать скобки. Мы это сделали, чтобы ответ выглядел более законченным
Также можно выносить несколько множителей одновременно.
Пример:
Вынесем общие множители в выражении \(\mathbf
В данном случае в выражении три произведения, в каждом из которых есть множитель а и с, вынесем их:
Кстати, всегда можно проверить себя, раскрыв скобки и убедившись в равенстве полученного выражения и исходного.
Как мы уже сказали, в роли множителей могут выступать всевозможные выражения, а не только числа или произведения. Покажем на примере.
Пример:
Вынесем общие множители в выражении \(\mathbf
Мы видим, что общий множитель есть у первых двух слагаемых и у вторых двух соответственно, вынесем их.
Получается, что выражение состоит из двух слагаемых, каждое из которых является произведением, и в каждом из этих произведений есть множитель \(\mathbf<(a+b>\), вынесем его:
Так мы получили ответ.
Пройти тест и получить оценку можно после входа или регистрации
Приведение подобных слагаемых
В заголовке мы упомянули два новых термина, поэтому сначала дадим им определения.
Подобными слагаемыми называют такие слагаемые, которые имеют одинаковую буквенную часть.
Пример:
Посмотрим, какие есть подобные слагаемые в выражении \(\mathbf<12ab+2b+3ab+5\frac<1><2>b+0.2b>\)
У первого и третьего слагаемого буквенная часть равна \(\mathbf
У второго, четвертого и пятого слагаемого буквенная часть равна \(\mathbf\), эти три слагаемых являются подобными.
Если же мы зададимся вопросом, являются ли подобными первые два слагаемых, то ответ будет отрицательным.
В самом деле, их буквенные части отличаются: \(\mathbf
Внимательный читатель заметит, иногда \(\mathbf
Нередко для удобства подобные слагаемые подчеркивают, причем каждую группу подобных слагаемых подчеркивают разным типом подчеркиваний:
Теперь зная, что такое подобные слагаемые, приступим к их сложению (приведению).
Чтобы привести (сложить) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.
Пример:
Возьмем то же выражение и приведем в нем подобные слагаемые.
Как вы видите, процесс очень похож на вынесение общего множителя. В данном случае общим множителем для подобных слагаемых является их одинаковая буквенная часть.
Если мы видим в сумме слагаемое со знаком «минус» перед ним, то и коэффициенты мы будем складывать с этим же знаком.
Пример:
Приведем подобные слагаемые в выражении \(\mathbf<5c+4a-2c+3a>\)
Также достаточно часто встречаются задания вида «раскройте скобки и приведите подобные слагаемые».
Пример:
Раскроем скобки и приведем подобные слагаемые в выражении \(\mathbf<5a(c+3d)-4c(a-d)>\)
В целом, ничего нового в этом задании нет, надо просто аккуратно применить те приемы, которые мы уже освоили.
Пройти тест и получить оценку можно после входа или регистрации
Дополнительная информация
Мы уже говорили про математику в литературе, но речь была про малоизвестные случаи.
Наш урок имеет порядковый номер 42, а это число является крайне популярным в культуре!
Известно оно стало из-за книги Дугласа Адамса «Автостопом по галактике».
В ней сверхразумная раса существ создала мощный компьютер с названием «Думатель» (Deep Thought) с одной лишь целью: найти «Окончательный Ответ на величайший вопрос Жизни, Вселенной и Всего Такого».
После семи с половиной миллионов лет работы компьютер выдал один ответ: число 42.
Дальше отрывок из книги, как отреагировали существа:
“— Сорок два! — взвизгнул Лунккуоол. — И это всё, что ты можешь сказать после семи с половиной миллионов лет работы?
— Я всё очень тщательно проверил, — сказал компьютер, — и со всей определённостью заявляю, что это и есть ответ. Мне кажется, если уж быть с вами абсолютно честным, то всё дело в том, что вы сами не знали, в чём вопрос.
— Но это же великий вопрос! Окончательный вопрос жизни, Вселенной и всего такого! — почти завыл Лунккуоол.
— Да, — сказал компьютер голосом страдальца, просвещающего круглого дурака. — И что же это за вопрос? “
Книга оказалась крайне популярной и читающее сообщество начало гадать, что могло означать это число, какой смысл вкладывал автор.
Но само число стало частью культуры, и, например, в сообществе программистов, часто можно встретить примеры с именно этим числом.
Заключительный тест
Пройти тест и получить оценку можно после входа или регистрации
Тест с ответами: “Коэффициент. Подобные слагаемые”
2. Один из этапов проведение сложения слагаемых:
а) перестановка слагаемых таким образом, чтобы подобные слагаемые оказались далеко друг от друга
б) перестановка слагаемых таким образом, чтобы подобные слагаемые оказались рядом +
в) взятие в скобки буквенной части
4. Один из этапов проведение сложения слагаемых:
а) вынесение за скобки буквенной части +
б) взятие в скобки буквенной части
в) перестановка слагаемых таким образом, чтобы подобные слагаемые оказались далеко друг от друга
5. Приведите подобные слагаемые в сумме: 4a-b+8a-3b+ab:
а) 12a-3b+ab
б) 17ab
в) 12a-4b+ab +
6. Один из этапов проведение сложения слагаемых:
а) вычисление значения числового выражения, которое осталось за скобками
б) вычисление значения числового выражения, которое осталось в скобках +
в) взятие в скобки буквенной части
7. Является ли число 0,5 коэффициентом произведения 0,5x⋅ 2:
а) да
б) отчасти
в) нет +
8. Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить:
а) на общую буквенную часть +
б) на сумму в скобках
в) на произведение за скобками
9. Определите знак коэффициента: 2x⋅(-y)⋅(-14x)⋅(-5):
а) плюс
б) оба варианта верны
в) минус +
10. Подобные слагаемые могут отличаться только:
а) буквами
б) своими числовыми коэффициентами +
в) знаками
11. Раскройте скобки и приведите подобные слагаемые: 3x-(a-x):
а) 4x-a +
б) 2x+a
в) 4x+a
12. Приведением подобных слагаемых:
а) усложняем выражение
б) упрощаем выражение +
в) зависит от условия задачи
14. Одним из наиболее часто используемых тождественных преобразований является:
а) поиск коэффициента
б) определение степени коэффициента
в) приведение подобных слагаемых +
16. Числовой множитель при буквенном выражении, известный множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине:
а) подобное слагаемое
б) коэффициент +
в) числитель
18. Если чисел несколько, нужно их перемножить, упростить выражение и таким образом будет получен:
а) результат
б) коэффициент +
в) подобное слагаемое
20. Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется:
а) числовым коэффициентом определения
б) числовым коэффициентом выражения +
в) числовым коэффициентом значений
21. Раскройте скобки и приведите подобные слагаемые: 3х – (х+3):
а) 2х-3 +
б) 2х+3
в) 4х+3
22. Подобные слагаемые в многочлене называют:
а) подобными схемами многочлена
б) подобными членами многочлена +
в) подобными свойствами многочлена
24. Слагаемые, которые имеют одинаковую буквенную часть:
а) различные слагаемые
б) подобные слагаемые +
в) одинаковые слагаемые
25. Отдельно скажем, что подобные слагаемые могут быть:
а) дополнительными
б) основными
в) одинаковыми +
26. Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые:
а) разные
б) одинаковые +
в) зависит от условия задачи
27. Если числовые коэффициенты различаются, то подобные слагаемые будут:
а) разными +
б) одинаковыми
в) зависит от условия задачи
28. Отдельно скажем, что подобные слагаемые могут быть:
а) главными
б) разными +
в) второстепенными
29. Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в … этапа:
а) три +
б) два
в) четыре
30. Чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить:
а) на числовую часть
б) на буквенную часть +
в) зависит от условий задачи
Как приводить подобные слагаемые. примеры
Определение и примеры подобных слагаемых.
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента, и буквенной части.
Вот теперь можно привести примеры подобных слагаемых. Рассмотрим сумму двух слагаемых 3·a и 2·a вида 3·a+2·a. Слагаемые в этой сумме имеют одинаковую буквенную часть, которая представлена буквой a, поэтому, согласно определению эти слагаемые являются подобными. Числовыми коэффициентами указанных подобных слагаемых являются числа 3 и 2.
Еще пример: в сумме 5·x·y3·z+12·x·y3·z+1 подобными являются слагаемые 5·x·y3·z и 12·x·y3·z с одинаковой буквенной частью x·y3·z. Заметим, что в буквенной части присутствует степень y3, ее присутствие не нарушает данное выше определение буквенной части, так как она, по сути, является произведением y·y·y.
Отдельно отметим, что числовые коэффициенты 1 и −1 у подобных слагаемых часто не записываются явно. Например, в сумме 3·z5+z5−z5 все три слагаемых 3·z5, z5 и −z5 являются подобными, они имеют одинаковую буквенную часть z5 и коэффициенты 3, 1 и −1 соответственно, из которых 1 и −1 явно не видны.
Дальше из контекста указанного выше учебника становится видно дополнение к определению подобных слагаемых – слагаемые в буквенном выражении, не имеющие буквенной части, также называют подобными.
Исходя из этого, в сумме 5+7·x−4+2·x+y подобными слагаемыми являются не только 7·x и 2·x, но и слагаемые без буквенной части 5 и −4.
Аналогично, подобными слагаемыми в выражении 4·(x2+x−1/x)−0,5·(x2+x−1/x)−1 можно считать слагаемые 4·(x2+x−1/x) и −0,5·(x2+x−1/x), так как они имеют одинаковую буквенную часть (x2+x−1/x).
Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.
Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.
Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).
В заключение этого пункта обсудим один очень тонкий момент. Рассмотрим выражение 2·x·y+3·y·x. Являются ли слагаемые 2·x·y и 3·y·x подобными? Этот вопрос можно формулировать и так: «одинаковы ли буквенные части x·y и y·x указанных слагаемых»? Порядок следования буквенных множителей в них различен, так что фактически они не одинаковые, следовательно, слагаемые 2·x·y и 3·y·x в свете введенного выше определения не являются подобными.
Однако достаточно часто такие слагаемые называют подобными (но для строгости лучше этого не делать). При этом руководствуются вот чем: согласно переместительному свойству умножения перестановка множителей в произведении не влияет на результат, поэтому исходное выражение 2·x·y+3·y·x можно переписать в виде 2·x·y+3·x·y, слагаемые которого подобны. То есть, когда говорят о подобных слагаемых 2·x·y и 3·y·x в выражении 2·x·y+3·y·x, то имеют в виду слагаемые 2·x·y и 3·x·y в преобразованном выражении вида 2·x·y+3·x·y.
Приведение подобных слагаемых, правило, примеры
Преобразование выражений, содержащих подобные слагаемые, подразумевает выполнение сложения этих слагаемых. Это действие получило особое название — приведение подобных слагаемых.
Приведение подобных слагаемых проводится в три этапа:
Разберем записанные шаги на примере. Приведем подобные слагаемые в выражении 3·x·y+1+5·x·y. Во-первых, переставляем слагаемые местами так, чтобы подобные слагаемые 3·x·y и 5·x·y оказались рядом: 3·x·y+1+5·x·y=3·x·y+5·x·y+1. Во-вторых, выносим буквенную часть за скобки, получаем выражение x·y·(3+5)+1. В-третьих, вычисляем значение выражения, которое образовалось в скобках: x·y·(3+5)+1=x·y·8+1. Так как числовой коэффициент принято записывать перед буквенной частью, то перенесем его на это место: x·y·8+1=8·x·y+1. На этом приведение подобных слагаемых завершено.
Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых: чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).
Решение предыдущего примера с использованием правила приведения подобных слагаемых будет короче. Приведем его. Коэффициентами подобных слагаемых 3·x·y и 5·x·y в выражении 3·x·y+1+5·x·y являются числа 3 и 5, их сумма равна 8, умножив ее на буквенную часть x·y, получаем результат приведения этих слагаемых 8·x·y. Осталось не забыть про слагаемое 1 в исходном выражении, в итоге имеем 3·x·y+1+5·x·y=8·x·y+1.
Для закрепления материала рассмотрим решение еще одного примера.
Приведите подобные слагаемые: 0,5·x+1/2+3,5·x−1/4.
Сначала приведем подобные слагаемые 0,5·x и 3,5·x. По правилу складываем их коэффициенты 0,5+3,5=4 (при необходимости изучите статью сложение десятичных дробей), и этот результат умножаем на буквенную часть, получаем 4·x.
Теперь приводим подобные слагаемые без буквенной части 1/2+(−1/4)=1/2−1/4=1/4. Здесь нам придется применить правило сложения чисел с разными знаками, после чего выполнить вычитание обыкновенных дробей. Имеем 1/2+(−1/4)=1/2−1/4=1/4.
В итоге имеем 0,5·x+1/2+3,5·x−1/4=4·x+1/4.
Краткая запись решения может быть такой: 0,5·x+1/2+3,5·x−1/4=(0,5·x+3,5·x)+(1/2−1/4)=4·x+1/4.
В заключение разговора про приведение подобных слагаемых отметим, что это действие базируется на распределительном свойстве умножения относительно сложения, которое выражается равенством a·(b+c)=a·b+a·c. При приведении подобных слагаемых это равенство используется справа налево, то есть, в виде a·b+a·c=a·(b+c).