в каком классе проходят площадь круга и длину окружности
Математика. 6 класс
Конспект урока
Длина окружности. Площадь круга
Перечень рассматриваемых вопросов:
Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.
Круг – это часть плоскости, ограниченная окружностью.
Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.
Хорда – это отрезок, соединяющий две точки окружности.
Диаметр – это хорда, проходящая через центр окружности.
Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.
Теоретический материал для самостоятельного изучения
Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.
Элементы окружности: центр, радиус, диаметр.
Отрезок, соединяющий две точки окружности, называется хордой.
Диаметр – это хорда, проходящая через центр окружности.
Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)
Как измерить дину окружности?
Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).
Можно прокатить кольцо по ровной поверхности, сделав полный оборот.
Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?
Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).
Результаты измерений можно записать в таблицу в тетради.
Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.
Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.
При решении обычных задач используют приближенное значение
иногда используют π ≈ 3
Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:
Следовательно, справедливы формулы:
Круг – это часть плоскости, ограниченная окружностью.
С помощью числа π вычисляют площадь круга.
Разбор заданий тренировочного модуля
Тип 1. Ввод с клавиатуры пропущенных элементов в тексте
Впишите верный ответ.
Радиус круга равен 5 см. Найдите длину окружности С, площадь круга S.
С = 2πR = 2 ∙ 3,14 ∙ 5 = 31,4 (см).
S = πR 2 = 3,14 ∙ 5 2 = 3,14 ∙ 25 = 78,5 (см 2 ).
Ответ: 31,4 см; 78,5 см.
Тип 2. Множественный выбор
Вычислите площади заштрихованных фигур (размер 1 клетки равен 1 см 2 ).
Из круга вырезали квадрат.
Sкруга = πR 2 = 3,14 ∙ 4 2 = 3,14 ∙ 16 = 50,24 (см 2 ).
Sквадрата = а 2 = 4 2 = 16 (см 2 ).
Sзаштрих = 50,24 – 16 = 34,24 (см 2 ).
Из круга вырезали круг.
S1 = πR 2 = 3,14 ∙ 6 2 = 3,14 ∙ 36 = 113,04 (см 2 ).
S2 = πR 2 = 3,14 ∙ 3 2 = 3,14 ∙ 9 = 28,26 (см 2 ).
Sзаштрих = 113,04 – 28,26 = 84,78 (см 2 ).
Длина окружности и площадь круга. Урок в 6-м классе
Разделы: Математика
Класс: 6
Ключевые слова: площадь круга
Цель урока: формирование и развитие у учащихся личностных; регулятивных; познавательных и коммуникативных способов действия; вывести формулы длины окружности и площадь круга и показать ее применение при решении задач.
Задачи урока:
Образовательные:
Развивающие:
Воспитательные:
Тип урока: урок изучения нового материала.
Форма работы: индивидуальная, работа в парах, коллективная.
Оборудование: раздаточный материал; для практической работы: нитки, ножницы, циркуль, линейка, карандаш.
1. Практическая работа по теме «Длина окружности и площадь круга». 6 класс
Цель: Проверить знания формул вычисления длины окружности и площади круга.
Пособие: круг с ниткой.
Задания:
Оформление работы:
1) Длина нитки = длина окружности =
Оформление работы:
1) Длина нитки = длина окружности =
Историческое сообщение о числе π
π =3,141592653589793238462643…(24 знака)
Вычисление как можно большего числа точных цифр числа с помощью компьютера занимает математиков и в настоящее время. Так, в 1988 году, японский ученый Ясума Канеда вычислил 400 млн точных цифр после запятой. Это не только спортивный интерес, необходимо и для изучения случайных процессов. В школьном же курсе математики π =3,14.
День числа π (пи) отмечается любителями математики 14 марта в 1:59:26.
В это время читают хвалебные речи в честь числа π, его роли в жизни человечества, рисуют антиутопические картины мира без π, пекут и едят «пирог» с изображением греческой буквы «пи» или с первыми цифрами самого числа, пьют напитки и играют в игры, начинающиеся на «пи», решают математические головоломки и загадки, водят хороводы вокруг предметов, связанных с этим числом.
2. Практические задачи
1.Найти радиус колеса, у которого длина окружности 125,6 см.
Решение: R= 125,6:( 2*3,14)=20 см.
2. Найти длину окружности круглой комнаты, если диаметр её D = 5,5 м.
Решение: С=5,5*3,14=17,27 см
Ход урока
1. Организационный момент (1-2 минуты)
Я рада вас всех видеть. Чтобы начать работу, проверим, всё ли готово к уроку.
2. Постановка цели и мотивация (3-5 минут)
Ребята, давайте перед практической работой сделаем разминку. Сядьте ровно.
Покажите мне руками маленькую окружность. А теперь представьте, что наша окружность раздувается, становится все больше и больше. Показываем, вот какая получилась окружность. А теперь поднимаем эту окружность над собой и держим над головой. Представим, что подул ветер и наша окружность наклоняется сначала влево, потом вправо. А теперь представим, что окружность превратилась в воздушный шарик и отпускаем ее.
Молодцы! Приступаем к работе!
Практическая работа №1 (15 минут)
Учащиеся выполняют практические задания по команде учителя и записывают свои наблюдения (учитель может все проделывать на доске, если класс не достаточно подготовлен к самостоятельной работе, или предложить ученикам работать в парах).
Если бы мы, ребята, еще более точно измерили длину окружности, ее диаметр и более точно выполнили вычисления длины окружности к ее диаметру, то получили бы число 3,14…. Это число математики обозначают буквой π (пи).
Индивидуальная работа. Каждый работает самостоятельно, используя указания учителя, делают соответственные записи в тетради.
C/d = 292 : 90 = 3, 2444)
Далее ученики называют свои результаты и замечают, что, хотя окружности были построены у всех разные, отношения длины к диаметру получились примерно одинаковые отношения больше 3, но меньше 4. Значит, можно записать:
Другой способ вывода формулы площади круга вы найдете в учебнике.
Необходимо распределить слова на две группы «Окружность» и «Круг».
На доске, стенах класса с помощью магнитов и скотча прикреплены слова, ученики одновременно по команде учителя распределяют слова по группам. Время выполнения ограниченно.
(Плоская тарелка, блин, пяльцы для вышивания, резинка для волос, компакт-диск, покрышка для колес, обруч (халахуп), кольцо, бублик, колечко колбасы).
6 класс. Математика. Длина окружности. Площадь круга
6 класс. Математика. Длина окружности. Площадь круга
Вопросы
Задай свой вопрос по этому материалу!
Поделись с друзьями
Комментарии преподавателя
1. Смысл понятия длина окружности
Рассмотрим чертеж. Перед нами окружность с центром в точке О и отрезок АВ, который соединяет две точки окружности и проходит через ее центр. Мы помним, что он называется диаметр. Длину окружности принято обозначать буквой С, а длину диаметра буквой d.
Чтобы уяснить смысл понятия длина окружности, выполним мысленный эксперимент. Представьте себе окружность, изготовленную из тонкой проволоки. Если разрезать проволоку и выпрямить ее, то длина выпрямленного куска проволоки и будет длиной окружности.
2. Отношение длины окружности к ее диаметру. Формула длины окружности
Отношение длины окружности к ее диаметру – число постоянное. Этот факт был обнаружен экспериментально. Еще египтяне заметили, если делить длину окружности на ее диаметр, то всегда получается одно и то же число. В Древнем Египте думали, что это число – три, то есть длина окружности в три раза больше диаметра. Затем люди нашли более точное значение для этого отношения: или
. В этом случае длина окружности в
раза больше диаметра. Позднее выяснилось, что
— это достаточно точное, но все-таки приблизительное значение. Более того, потребовалось ввести особое число – число π. Итак, верным является утверждение: «длина окружности в π раз больше диаметра»
Мы знаем, что диаметр в два раза больше радиуса, тогда у нас появляется формула:
Если радиус умножить на два и на π, то мы получим длину окружности.
3. Число π
В грубом приближении число π равно трем.
С точностью до сотых: π = 3,14.
С точностью до десятитысячных: π = 3,1416
Можно записать приближенное значение числа π с точностью до миллионных, до миллиардных, но записать, чему точно равно число π с помощью цифр нельзя! Оказалось, что это число нельзя выразить обыкновенной дробью. Поэтому в формулах используют букву π, а для практических вычислений приближенное значение.
4. Задача на применение формулы длины окружности
Окружность арены во всех цирках мира имеет длину 40,8 м. Найдите диаметр арены, если .
Запишем формулу и подставим известные значения букв. Вместо π мы подставили его приближенное значение, поэтому мы заменили знак равно, который был в формуле, на знак приближенно равно. Выполнив несложные преобразования, получим, что диаметр приблизительно равен 13,6м.
Заметим, что три – это грубое приближение числа π. Попробуем в рассмотренной задаче подставить более точное значение. Пусть .
Тогда, чтобы найти диаметр, нужно разделить 40,8 на 3,14. Выполним деление. Можно, например, воспользоваться калькулятором. Получим, что диаметр составляет 12,99м.
Видно, что ошибка составила 61 см. Это значительная ошибка. Если вместо числа π подставить его значение с точностью до десятитысячных, то вновь полученный результат будет отличаться от предыдущего на 7 мм. Разница в 7мм для данной задачи несущественна.
Вывод: В рассмотренной задаче оптимальным было значение π с точностью до сотых. Такую точность используют при решении большинства практических задач.
5. Формула площади круга
Для вывода этой формулы наших математических знаний пока недостаточно. Поэтому мы ограничимся некоторыми рассуждениями на эту тему, а для решения задач будем использовать готовую формулу. Как получают эту формулу, вы узнаете в старших классах. Рассмотрим чертеж.
Перед нами круг с центром в точке О и два квадрата АВСD и EFKM. Радиус круга равен r, поэтому длина стороны большего квадрата равна 2r, а его площадь равна . Маленький квадрат своими диагоналями разбивается на четыре равных прямоугольных треугольника. Площадь каждого такого треугольника
. Значит, площадь маленького квадрата
. Ясно, что площадь круга больше площади маленького квадрата и меньше площади большого квадрата. Можно сказать, что площадь круга примерно равна
. На уроках математики в старших классах будет доказано, что
.
6. Задача на применение формулы площади круга
Диаметр круга равен 14 см. найдите его площадь, если .
Сначала найдем радиус круга. Для этого разделим диаметр пополам. Получим, что радиус равен 7см. Подставим в формулу вместо букв их значения. Сократим полученную дробь на 7. Итак, площадь круга примерно равна 154 .
Урок 25 Бесплатно Длина окружности и площадь круга
На этом уроке мы рассмотрим одни из самых древнейших геометрических фигур: окружность и круг.
Определим, какими элементами характеризуются круг и окружность, в чем сходство и различие этих фигур.
Узнаем, как рассчитать длину окружности и площадь круга.
Окружность и круг
Мы часто встречаем такие понятия, как окружность и круг.
Давайте попробуем разобраться, что называют окружностью, а что кругом.
Центр окружности— это точка, которая находится на одинаковом расстоянии (равноудаленная) от любой точки окружности, ее обозначают обычно заглавной буквой О.
Свои имена окружность и круг приобрели не сразу.
В древние времена специальных названий для этих фигур не существовало. Люди пытались описать различные геометрические формы, сравнивая объекты. Например, говоря про что-то круглое, говорили: «такой, как солнце» или «такой, как орех» и т.п.
Только в Древней Греции окружность и круг приобрели себе свои названия.
Круг всегда привлекал к себе внимание как самая простая фигура из кривых, но самая загадочная.
У меня есть дополнительная информация к этой части урока!
Древние греки считали круг и окружность символом бесконечности и совершенства. Поражало то, что в каждой своей точке окружность устроена одинаково, представляя собой бесконечную линию, которая движется сама по себе.
У древних славян еще за долго до христианства круг был символом солнца.
Символика круга в различных религиях сопоставляется с целостностью, вечностью и бесконечной мудростью.
У буддистов круг символизирует единство внутреннего и внешнего мира.
В христианстве круг служит эталоном божественного и духовного совершенства.
В живой и неживой природе круги и окружности встречаются как на макроуровнях, так и на микроуровнях. Например, движение электронов вокруг атомного ядра; вращение планет вокруг солнца; распространение волн на воде от упавшего груза; образование солнечного и лунного гало; срез дерева; зрачок глаза у человека и многое другое.
Рассмотрим подробней элементы, характерные для окружности.
Радиус окружности— это отрезок, соединяющий центр окружности и любую другую точку, расположенную на линии окружности.
С латинского радиус (radius)- луч, спица колеса. Радиус не сразу приобрел себе такое название.
Слово радиус впервые встречается в 1569 году у французского ученого П. Рамуса, а общепризнанным становится к концу XVII века.
Радиус обозначается маленькой латинской буквой (r) или заглавной (R).
В окружности можно провести столько же радиусов, сколько точек имеет линия окружности; все эти радиусы равны.
Обычно диаметр обозначают латинской маленькой буквой d или заглавной D.
По величине диаметр равен двум радиусам, лежащим на одной прямой.
d = 2r
Следовательно, радиус- это половина диаметра.
r = d: 2
Пример 1
Радиус окружности равен 6 см.
Чему равен диаметр окружности?
r = 6 см
Решение:
d = 2r
d = 2r= 2*6 = 12 (см) диаметр окружности
Ответ: d= 12 см
Пример 2
Диаметр окружности равен 12 см.
Чему равен радиус окружности?
d = 12 см
Решение:
r = d : 2
r = 12 : 2 = 6 (см) радиус окружности
Ответ: r = 6 см
У меня есть дополнительная информация к этой части урока!
Образовались две дуги: \(\mathbf<\cup AB\ и\ \cup BA>\)
Отрезок, который соединяет любые две точки на окружности (отрезок секущей), называется хордой.
На рисунке отрезок MN является хордой.
Если хорда проходит через центр окружности, то она является самой большой хордой для этой окружности. По своей сути она является диаметром для данной окружности и делит окружность на две равные дуги.
По мере удаления хорды от центра размеры ее уменьшаются, а дуги делятся на большую и малую.
АВ— самая большая хорда окружности- диаметр окружности.
CD, N1M1, NM, FE— хорды окружности.
Хорды окружности, удаленные на равные расстояния от центра, равны.
Хорды NM и N1M1 равны.
Если две хорды пересекаются в точке, то их отрезки пропорциональны.
Важно отметить, что все рассмотренные элементы окружности одинаковы и для круга.
Пройти тест и получить оценку можно после входа или регистрации
Длина окружности и площадь круга
Давайте выясним, что такое длина окружности и как ее определить.
Представьте, что окружность обернута нитью.
Если разрезать эту нить в некоторой точке и размотать ее, то длина нитки будет равна длине окружности.
Обычно длина окружности обозначается заглавной буквой С
Длина окружности (С) зависит от длины ее диаметра (d)
Обратите внимание на рисунок.
Вы можете заметить, что чем больше диаметр, тем больше длина окружности.
Из этого следует, что длина окружности прямо пропорционально зависит от диаметра окружности.
А значит, для любых окружностей отношение длины окружности (С) к длине диаметра (d) является числом постоянным.
Это число (коэффициент пропорциональности) обозначают греческой буквой \(\mathbf<\pi>\), читается «пи».
С— это длина окружности
d— диаметр окружности
запишем отношение \(\mathbf
отсюда следует, что длина окружности равна
Так как диаметр окружности вдвое больше радиуса d = 2r, получим еще одну формулу для вычисления длины окружности
Число \(\mathbf<\pi>\)- это иррациональное число, т.е. число, которое представлено в виде бесконечной непериодической десятичной дроби.
У меня есть дополнительная информация к этой части урока!
История числа \(\mathbf< \pi>\) насчитывает около 4 тысячелетий.
Одно из первых доказательств древнего существования этого числа \(\mathbf< \pi>\) заключено в папирусе Ахмеса, в одном из старейших задачников (1650 год до н.э.), найденного в Древнем Египте.
В папирусе дано достаточно точное, особенного для того времени, значение числа, равного 3,1605.
Точнее число \(\mathbf< \pi>\) рассчитал древнегреческий математик Архимед. Он приближенно представил значение константы в виде обыкновенной дроби \(\mathbf<\frac <22><7>>\)
Архимеду удалось найти точное приближение числа \(\mathbf< \pi>\) (т.е. узкий числовой промежуток к которому принадлежит число \(\mathbf< \pi>\)).
Пройти тест и получить оценку можно после входа или регистрации
Решения задач по теме «Длина окружности и площадь круга»
Рассмотрим примеры решения задач
Задача 1
Найдите длину окружности, если ее радиус равен 4 см.
Число \(\mathbf<<\pi>>\) округлите до сотых.
r = 4 см
Решение:
Подставив в формулу известные значения радиуса и постоянной \(\mathbf<\pi>\), получим:
Ответ: \(\mathbf
Задача 2
Длина окружности надувного бассейна 15,7м.
Найдите диаметр этого бассейна.
Число \(\mathbf<\pi>\) округлите до сотых.
C = 15,7 м
Решение:
Подставив в формулу известные значения длины окружности и постоянной \(\mathbf<\pi>\), получим:
Ответ: \(\mathbf
Задача 3
Диаметр окружности равен 6 см.
Найдите площадь круга, ограниченного этой окружностью.
Значение числа \(\mathbf<\pi>\) округлить до сотых.
d = 6 cм
Решение:
\(\mathbf<4><\cdot>3,14<\cdot>6^2 = \frac <3,14<\cdot>36> <4>> = 3,14<\cdot>9=28,26\) (cм 2 ) площадь круга
Ответ: \(\mathbf\) (см 2 )
Задача 4
Вычислите площадь полукруга, если радиус круга равен 5 см.
Значение \(\mathbf<\pi >\) округлить до целых.
r = 5 cм
Решение:
Площадь круга найдем по формуле:
Площадь полукруга будет равна половине площади всего круга.
Следовательно, формула для расчета площади полукруга получится вида:
Подставим в формулу известные значения радиуса круга и постоянной \(\mathbf<\pi>\), получим:
\(\mathbf
Ответ: \(\mathbf
Задача 5
Найдите площадь круга, если известна длина окружности С.
Длина окружности С
Решение:
Длина окружности выражается формулой:
Выразим неизвестный радиус окружности через длину окружности:
Площадь круга определяем по формуле:
Подставим, полученные выражения для радиуса окружности, в формулу площади круга, получим:
Сократим полученную дробь:
У меня есть дополнительная информация к этой части урока!
Кроме вычислительных задач, существуют задачи на построение окружности и круга.
Окружность и круг можно начертить с помощью чертежного инструмента, который называется циркуль.
В переводе с латинского языка circulus означает «окружность», «круг».
Циркуль использовали еще с древности, много тысяч лет назад, об этом свидетельствуют найденные на раскопках находки, изображения.
Циркуль представляет собой две одинаковые по длине «ножки». На конце одной из них игла, а на второй- грифель.
Есть циркуль, у которого вместо «ножки» с грифелем помещается карандаш.
Рассмотрим, как построить окружность (круг) на бумаге с помощью циркуля и линейки.
Если задан радиус окружности (круга), то в нулевую отметку на линейке ставим иголку циркуля, другая «ножка» циркуля с грифелем в точку на линейке, равной по значению заданному радиусу.
Не отрывая грифеля второй «ножки» циркуля от бумаги проводим окружность с заданным радиусом.
Если в задаче задан диаметр, то, прежде чем совершать замер по линейке, необходимо диаметр разделить пополам.
Таким образом, устанавливаем раствор циркуля по линейке на расстояние d:2 = r и чертим окружность по выше изложенной схеме.
Данный способ построения окружности (круга) может быть применен и на бумаге, если под рукой не оказалось циркуля.
В качестве колышка берется кнопка, к ней привязывается нить определенной длинны (длина нити равна значению заданного радиуса), ко второму концу привязывается карандаш
Пройти тест и получить оценку можно после входа или регистрации