в каком диапазоне передаточных чисел применяются червячные передачи
Червячная передача
Содержание
Конструкция
Входной и выходной валы передачи скрещиваются, обычно (но не всегда) под прямым углом.
Функционирование
Достоинства и недостатки
Классификация
Червяки различают по следующим признакам:
Зубчатые колёса различают по следующим признакам:
Применение
Червячная передача главным образом применяется в червячных редукторах.
Достаточно часто червячные передачи используются в системах регулировки и управления — самоторможение обеспечивает фиксацию положения, а большое передаточное отношение позволяет достичь высокой точности регулирования (управления) и(или) использовать низкомоментные двигатели.
Благодаря этим же характеристикам червячные передачи и червячные редукторы широко применяются в подъёмно-транспортных машинах и механизмах (например, лебёдках)
Часто в виде червячной пары изготавливаются механизмы натяжения струн (колковая механика) музыкальных инструментов, например гитары. [4] В данном применении полезным оказывается эффект самоторможения (необратимость).
Примечания
Литература
Cм. также
См. также
Полезное
Смотреть что такое «Червячная передача» в других словарях:
Червячная передача — ЧЕРВЯЧНАЯ ПЕРЕДАЧА, механизм для передачи вращения между скрещивающимися валами посредством винта (червяка) и сопряженного с ним червячного колеса. Червячная передача обеспечивает передачу высоких нагрузок (например, в горных машинах, самолетах)… … Иллюстрированный энциклопедический словарь
ЧЕРВЯЧНАЯ ПЕРЕДАЧА — (Worm gear) передача вращения между валами с пересекающимися осями посредством винта с трапециевидной нарезкой (червяка) и зубчатого колеса (червячное колесо). Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство… … Морской словарь
червячная передача — Гиперболоидная зубчатая передача второго рода, в которой начальные и делительные поверхности зубчатых колес отличны от конических, шестерня имеет винтовые зубья, а зубчатые колеса имеют сопряженные поверхности зубьев с линейным контактом, если… … Справочник технического переводчика
ЧЕРВЯЧНАЯ ПЕРЕДАЧА — механизм для передачи вращения между скрещивающимися валами посредством винта (червяка) и сопряженного с ним червячного колеса. Применяется в силовых передачах, обеспечивает передаточное отношение до 300 и более … Большой Энциклопедический словарь
червячная передача — механизм для передачи вращения между скрещивающимися валами, в котором одним звеном является винт (червяк), а другим – червячное зубчатое колесо. Применяется в силовых передачах транспортных машин, металлорежущих станков, в металлургических… … Энциклопедия техники
червячная передача — механизм для передачи вращения между скрещивающимися валами посредством винта (червяка) и сопряжённого с ним червячного колеса. Применяется в силовых передачах, обеспечивает передаточное отношение до 300 и более. * * * ЧЕРВЯЧНАЯ ПЕРЕДАЧА… … Энциклопедический словарь
ЧЕРВЯЧНАЯ ПЕРЕДАЧА — обычно применяется для больших передаточных чисел при пересечении осей под прямым углом. Состоит из червяка (вала с винтовой нарезкой) с одним или несколькими ходами (нитками) и червячного колеса (шестерни с соответствующей червяку нарезкой). При … Сельскохозяйственный словарь-справочник
ЧЕРВЯЧНАЯ ПЕРЕДАЧА — механизм для передачи вращения между скрещивающимися валами посредством винта (червяка) и сопряжённого с ним червячного колеса (см. рис.). Имеет большое передаточное число (до 300, а иногда и более). Недостатки Ч. п.: невысокий кпд (0,5 0,85),… … Большой энциклопедический политехнический словарь
червячная передача — sliekinė pavara statusas T sritis fizika atitikmenys: angl. worm drive; worm wheel drive vok. Schneckenantrieb, m; Schneckengetriebe, n; Schneckenradgetriebe, n rus. червячная передача, f pranc. engrenage à vis sans fin, m … Fizikos terminų žodynas
В каком диапазоне передаточных чисел применяются червячные передачи
ГОСТ 2144-76
(СТ СЭВ 221-75,
СТ СЭВ 267-76,
СТ СЭВ 2820-80)
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ПЕРЕДАЧИ ЧЕРВЯЧНЫЕ ЦИЛИНДРИЧЕСКИЕ
Cylindrical worm gear pairs.
Basic parameters
Дата введения 1977-07-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого машиностроения СССР
А.Н.Овсеенко, В.П.Григорьев, Д.Н.Клауч, Б.Ф.Федотов
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 15.04.76 N 832
4. Стандарт полностью соответствует СТ СЭВ 2820-80, СТ СЭВ 267-76 и СТ СЭВ 221-76 в части используемых передаточных чисел
5. ПЕРЕИЗДАНИЕ (май 1992 г.) с Изменениями N 1, 2, 3, утвержденными в июле 1978 г., в апреле 1982 г., мае 1990 г. (ИУС 6-78, 4-82, 8-90)
6. Снято ограничение срока действия Постановлением Госстандарта СССР от 15.05.90 N 1179
1. Настоящий стандарт распространяется на ортогональные цилиндрические червячные передачи для редукторов, в том числе и комбинированных (червячно-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов, и устанавливает:
Стандарт не распространяется на червячные цилиндрические передачи для редукторов специального назначения и специальной конструкции (изменяющийся шаг червяка, гарантированное обеспечение самоторможения и др.).
(Измененная редакция, Изм. N 3).
2. Межосевые расстояния должны соответствовать указанным значениям:
1-й ряд: 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500 мм;
2-й ряд: 45; 56; 71; 90; 112; 140; 180; 224; 280; 355; 450 мм.
1. Значения ряда 1 следует предпочитать значениям ряда 2.
2. (Исключено, Изм. N 3).
3. Номинальные передаточные числа должны соответствовать указанным значениям:
1-й ряд: 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100;
2-й ряд: 9; 11,2; 14; 18; 22,4; 28; 35,5; 45; 56; 71; 90.
1. Значения ряда 1 следует предпочитать значениям ряда 2.
2. Передаточные числа 90 и 100 применять не рекомендуется.
2, 3. (Измененная редакция, Изм. N 1, 3).
4. Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 4%.
Примечание. Для нормализованных редукторов общемашиностроительного применения допускается в технически обоснованных случаях отклонение фактических значений передаточных чисел от номинальных до 6,3%.
(Измененная редакция, Изм. N 3).
5. (Исключен, Изм. N 3).
6. Червяки передач, за исключением случаев, обусловленных кинематикой привода, должны иметь линию витка правого направления.
Червячные передачи
Червячные передачи применяют для передачи вращательного движения между валами, у которых угол скрещивания осей обыч¬но составляет 0 = 90° (рис.2.5.1).
Рисунок 2.5.1. Червячная передача: 1 — червяк; 2 — венец червячного колеса.
В большинстве случаев веду¬щим является червяк, т. е. короткий винт с трапецеидальной или близкой к ней резьбой.
Для облегания тела червяка венец червячного колеса имеет зубья дугообразной формы, что увеличивает длину контактных линий в зоне зацепления.
Червячная передача — это зубчато-винтовая передача, дви¬жение в которой осуществляется по принципу винтовой пары.
6.1.2 Область применения червячных передач
Червячные передачи применяют при небольших и средних мощностях, обычно не превышающих 100 кВт. Приме¬нение передач при больших мощностях неэкономично из-за срав¬нительно низкого к. п. д. и требует специальных мер для охлажде¬ния передачи во избежание сильного нагрева. Червячные передачи широко применяют в подъемно-тран¬спортных машинах, троллейбусах и особенно там, где требуется высокая кинематическая точность (делительные устройства стан¬ков, механизмы наводки и т. д.). Червячные передачи во избежание их перегрева предпочти¬тельно использовать в приводах периодического (а не непрерыв¬ного) действия.
Теги; Червячные передачи, червячный вал, венец червячный, бронзовый червяк, винтовая передача, червячная передача, винт червячый, червячная шестерня, червяк редуктора червяк, шестерни, червячный венец, колесо червячное
Червячные передачи применяют для передачи вращательного движения между валами, у которых угол скрещивания осей обыч¬но составляет 0 = 90° (рис.2.5.1).
Рисунок 2.5.1. Червячная передача: 1 — червяк; 2 — венец червячного колеса.
В большинстве случаев веду¬щим является червяк, т. е. короткий винт с трапецеидальной или близкой к ней резьбой.
Для облегания тела червяка венец червячного колеса имеет зубья дугообразной формы, что увеличивает длину контактных линий в зоне зацепления.
Червячная передача — это зубчато-винтовая передача, дви¬жение в которой осуществляется по принципу винтовой пары.
6.1.2 Область применения червячных передач
Червячные передачи применяют при небольших и средних мощностях, обычно не превышающих 100 кВт. Приме¬нение передач при больших мощностях неэкономично из-за срав¬нительно низкого к. п. д. и требует специальных мер для охлажде¬ния передачи во избежание сильного нагрева. Червячные передачи широко применяют в подъемно-тран¬спортных машинах, троллейбусах и особенно там, где требуется высокая кинематическая точность (делительные устройства стан¬ков, механизмы наводки и т. д.). Червячные передачи во избежание их перегрева предпочти¬тельно использовать в приводах периодического (а не непрерыв¬ного) действия.
6.1.3 Достоинства червячной передачи
1) Плавность и бесшум¬ность работы.
2) Компактность и сравнительно небольшая мас¬са конструкции.
3) Возможность большого редуцирования, т. е. получения больших переда¬точных чисел (в отдельных случаях в не силовых передачах до 1000).
4) Возможность получе¬ния самотормозящей передачи, т. е. допускающей передачу дви¬жения только от червяка к колесу. Самоторможение червячной передачи позволяет выполнить механизм без тормозного устрой¬ства, препятствующего обратному вращению колеса.
5) Высокая кинематическая точность.
6.1.4 Недостатки червячной передачи
1) Сравнительно низкий к. п. д. вследствие сколь¬жения витков червяка по зубьям колеса.
2) Значительное выделе¬ние теплоты в зоне зацепления червяка с колесом.
3) Необходи¬мость применения для венцов червячных колес дефицитных ан¬тифрикционных материалов.
4) Повышенное изнашивание и склонность к заеданию.
6.1.5 Классификация червячных передач
В зависимости от формы внешней поверхности червяка (рис.2.5.2) передачи бывают с цилиндрическим (а) или с глобоидным (б) червяком.
Глобоидная передача имеет повышенный к.п.д., более высо¬кую несущую способность, но сложна в изготовлении и очень чувствительна к осевому смещению червяка, вызванному изнашиванием подшипников.
1. В зависимости от направления линии витка червяка чер¬вячные передачи бывают с правым и левым направлением линии витка.
2. В зависимости от числа витков (заходов резьбы) червяка передачи бывают с одновитковым или многовитковым червяком.
Рисунок 2.5.2. Схемы червячных передач
3. В зависимости от расположения червяка относительно колеса (рис. 2.5.3) передачи бывают: с нижним (а), боковым (б) и верхним (в) червяками. Чаще всего расположение червяка диктуется условиями компоновки изделия. Нижний червяк обыч¬но применяют при окружной скорости червяка u1?5 м/с во избежание потерь на перемешивание и разбрызгивание масла.
4. В зависимости от формы винтовой поверхности резьбы цилиндрического червяка передачи бывают: с архимедовым, конволютными и эвольвентным червяками. Каждый из них требует особого способа нарезания.
Рисунок 2.3.3 Виды расположения червяка
Эвольвентным червяк представляет собой цилиндрическое косозубое колесо с эвольвентным профилем и с числом зубьев, равным числу вит¬ков червяка.
Практика показала, что при одинаковом качестве изготовле¬ния форма профиля нарезки червяка мало влияет на работоспо¬собность передачи. Выбор профиля нарезки червяка зависит от способа изготовления и связан также с формой инструмента для нарезания червячного колеса.
Наибольшее распро¬странение получили архимедовы червяки рис. 2.5.4.
Рисунок 2.5.4 Архимедов червяк
6.1.6 Основные геометрические соотношения в червячной передаче
Геометрические размеры червяка и колеса определяют по формулам, аналогичным формулам для зубчатых колес. В червячной передаче расчетным является осевой модуль червяка m, равный торцовому модулю червячного колеса. Значения расчетных модулей m выбирают из ряда: 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 мм.
6.1.7 Основные геометрические размеры червяка (рис. 2.5.6):
Рисунок 2.5.6 Геометрические параметры червяка
угол профиля витка в осевом сечении 2а = 40°
расчетный шаг червяка (2.5.1),
откуда расчетный модуль (2.5.2),
ход витка (2.5.3),
где z1 — число витков червяка;
— высота головки витка червяка и зуба колеса;
— высота ножки витка червяка и зуба колеса;
— делительный диаметр червяка, т. е. диаметр такого цилиндра червяка, на котором толщина витка равна ширине впадины,
где q — число модулей в делительном диаметре червяка или коэффициент диаметра червяка.
Чтобы червяк не был слишком тонким, q увеличивают с уменьшением m. Тонкие червяки при работе получают большие прогибы, что нарушает правильность зацепления.
Значения коэффициентов диаметра червяка q выбирают из ряда: 7,1; 8,0; 9,0; 10,0; 11,2; 12,5; 14,0; 16,0; 18,0; 20,0; 22,4; 25,0.
Длина нарезанной части червяка зависит от числа витков.
6.1.8 Основные геометрические размеры червячного колеса
Рисунок 2.5.7 Геометрические параметры червячного колеса
диаметр вершин витков (2.5.4),
диаметр вершин витков (2.5.5),
делительный диаметр (2.5.6),
диаметр вершин зубьев (2.5.7),
диаметр впадин колеса (2.5.8)
межосевое расстояние — главный параметр червячной передачи
(2.5.9)
где -коэффициент смещения инструмента,
наибольший диаметр червячного колеса
(2.5.10)
Ширина венца червячного колеса зависит от числа витков червяка: В ГОСТе рекомендуются сочетания параметров z1, z2, q, m,обеспечивающие при стандартных межосевых расстояниях получение различных передаточных чисел u..
6.1.9 Конструктивные элементы червячной передачи
В большинстве случаев червяк изготовляют как одно целое с валом, для обеспечения жесткости червяка.
Для экономии бронзы зубчатый венец червячного колеса изготовляют отдельно от чугунного или стального диска:
1) колесо с напрессованным венцом. Эта конструкция применяется при небольшом диаметре колес в мелкосерийном производстве (рис. 2.5.8).
Рисунок 2.5.8 Колесо с напрессованным венцом
2) колесо с привернутым венцом. Такую конструкцию применяют при диметрах колеса более 400мм (рис.2.5.9)
Рисунок 2.5.9 Колесо с привернутым венцом
3) колесо с венцом, отлитым на стальном центре. Эту конструкцию применяют в серийном и массовом производстве (рис. 2.5.10)
Рисунок 2.5.10 колесо с отлитым венцом Теги; Червячные передачи, червячный вал, венец червячный, бронзовый червяк, винтовая передача, червячная передача, винт червячый, червячная шестерня, червяк редуктора червяк, шестерни, червячный венец, колесо червячное
В каком диапазоне передаточных чисел применяются червячные передачи
юЕТЧСЮОБС РЕТЕДБЮБ (ТЙУХОПЛ 85) УПУФПЙФ ЙЪ ЮЕТЧСЛБ 1, Ф. Е. ЧЙОФБ У ФТБРЕГЕЙДБМШОПК ЙМЙ ВМЙЪЛПК Л ОЕК РП ЖПТНЕ ТЕЪШВПК, Й ЮЕТЧСЮОПЗП ЛПМЕУБ 2, Ф.Е. ЪХВЮБФПЗП ЛПМЕУБ У ЪХВШСНЙ ПУПВПК ЖПТНЩ, РПМХЮБЕНПК Ч ТЕЪХМШФБФЕ ЧЪБЙНОПЗП ПЗЙВБОЙС У ЧЙФЛБНЙ ЮЕТЧСЛБ.
юЕТЧСЮОЩЕ РЕТЕДБЮЙ ПФОПУСФУС Л ЮЙУМХ ЪХВЮБФП-ЧЙОФПЧЩИ, ЙНЕАЭЙИ ИБТБЛФЕТОЩЕ ЮЕТФЩ ЪХВЮБФЩИ Й ЧЙОФПЧЩИ РЕТЕДБЮ. ч ПФМЙЮЙЕ ПФ ЧЙОФПЧЩИ ЪХВЮБФЩИ РЕТЕДБЮ У РЕТЕЛТЕЭЙЧБАЭЙНЙУС ПУСНЙ, Х ЛПФПТЩИ ОБЮБМШОЩК ЛПОФБЛФ РТПЙУИПДЙФ Ч ФПЮЛЕ, Ч ЮЕТЧСЮОЩИ РЕТЕДБЮБИ ЙНЕЕФ НЕУФП МЙОЕКОЩК ЛПОФБЛФ. ч ПУЕЧПН УЕЮЕОЙЙ ЪХВШС ЛПМЕУБ ЙНЕАФ ДХЗПЧХА ЖПТНХ. ьФП ПВЕУРЕЮЙЧБЕФ ПВМЕЗБОЙЕ ФЕМБ ЮЕТЧСЛБ Й ХЧЕМЙЮЕОЙЕ ДМЙОЩ ЛПОФБЛФОЩИ МЙОЙК.
йЪПВТЕФЕОЙЕ ЮЕТЧСЮОЩИ РЕТЕДБЮ РТЙРЙУЩЧБАФ бТИЙНЕДХ.
дПУФПЙОУФЧБ ЮЕТЧСЮОЩИ РЕТЕДБЮ:
оЕДПУФБФЛЙ ВПМШЫЙОУФЧБ ЮЕТЧСЮОЩИ РЕТЕДБЮ:
юЕТЧСЮОЩЕ РЕТЕДБЮЙ РТЙНЕОСАФ РТЙ ОЕПВИПДЙНПУФЙ УОЙЦЕОЙС УЛПТПУФЙ Й РЕТЕДБЮЙ ДЧЙЦЕОЙС НЕЦДХ РЕТЕЛТЕЭЙЧБАЭЙНЙУС (Ч ВПМШЫЙОУФЧЕ УМХЮБЕЧ ЧЪБЙНОП РЕТРЕОДЙЛХМСТОЩНЙ) ЧБМБНЙ. пВЯЕН РТЙНЕОЕОЙС ЮЕТЧСЮОЩИ РЕТЕДБЮ УПУФБЧМСЕФ ПЛПМП 10 % ПФ РЕТЕДБЮ ЪБГЕРМЕОЙЕН (ЪХВЮБФЩИ Й ЮЕТЧСЮОЩИ). чЩРХУЛ ЮЕТЧСЮОЩИ ТЕДХЛФПТПЧ РП ЮЙУМХ ЕДЙОЙГ УПУФБЧМСЕФ ПЛПМП РПМПЧЙОЩ ПВЭЕЗП ЧЩРХУЛБ ТЕДХЛФПТПЧ.
ыЙТПЛП РТЙНЕОСАФУС ЮЕТЧСЮОЩЕ РЕТЕДБЮЙ Ч РПДЯЕНОП-ФТБОУРПТФОЩИ НБЫЙОБИ, УФБОЛБИ, БЧФПНПВЙМСИ Й ДТХЗЙИ НБЫЙОБИ.
рЕТЕДБФПЮОПЕ ПФОПЫЕОЙЕ Й ЮЕТЧСЮОПК РЕТЕДБЮЙ ПРТЕДЕМСАФ ЙЪ ХУМПЧЙС, ЮФП ЪБ ЛБЦДЩК ПВПТПФ ЮЕТЧСЛБ ЛПМЕУП РПЧПТБЮЙЧБЕФУС ОБ ЮЙУМП ЪХВШЕЧ, ТБЧОПЕ ЮЙУМХ ЧЙФЛПЧ ЮЕТЧСЛБ:
фБЛЙН ПВТБЪПН, РЕТЕДБФПЮОПЕ ЮЙУМП ОЕ ЪБЧЙУЙФ ПФ ПФОПЫЕОЙС ДЙБНЕФТПЧ ЮЕТЧСЛБ Й ЮЕТЧСЮОПЗП ЛПМЕУБ.
оБЙВПМШЫЕЕ ТБУРТПУФТБОЕОЙЕ РПМХЮЙМЙ ЮЕТЧСЮОЩЕ РЕТЕДБЮЙ У ГЙМЙОДТЙЮЕУЛЙНЙ ЮЕТЧСЛБНЙ.
пУОПЧОЩЕ РБТБНЕФТЩ ЮЕТЧСЮОЩИ ГЙМЙОДТЙЮЕУЛЙИ РЕТЕДБЮ. юЕТЧСЮОЩЕ РЕТЕДБЮЙ ЧУМЕДУФЧЙЕ ПФОПУЙФЕМШОП ОЙЪЛПЗП лрд РТЙНЕОСАФ ДМС ОЕВПМШЫЙИ Й УТЕДОЙИ НПЭОПУФЕК ПФ ДПМЕК ЛЙМПЧБФФБ ДП 200 ЛчФ, ЛБЛ РТБЧЙМП ДП 60 ЛчФ, ДМС НПНЕОФПЧ ДП 5·10 5 о· Н. рЕТЕДБФПЮОЩЕ ПФОПЫЕОЙС ПВЩЮОП РТЙОЙНБАФ ТБЧОЩНЙ ПФ 8 ДП 63. 80; Ч ПФДЕМШОЩИ УМХЮБСИ, ОБРТЙНЕТ Ч РТЙЧПДЕ УФПМПЧ ВПМШЫПЗП ДЙБНЕФТБ УФБОЛПЧ,- ДП 1000.
зпуф 2144-76* ХУФБОБЧМЙЧБЕФ УМЕДХАЭЙЕ ЪОБЮЕОЙС РЕТЕДБФПЮОЩИ ПФОПЫЕОЙК ЮЕТЧСЮОЩИ ТЕДХЛФПТПЧ:
жБЛФЙЮЕУЛЙЕ ЪОБЮЕОЙС РЕТЕДБФПЮОЩИ ПФОПЫЕОЙК ОЕ ДПМЦОЩ ПФМЙЮБФШУС ВПМЕЕ ЮЕН ОБ 4 % ПФ ЪОБЮЕОЙК РП зпуфХ.
ъОБЮЕОЙС НПДХМЕК m, НН, ЧЩВЙТБАФ (РП зпуф 19672-74* Й зпуф 2144-76*) ЙЪ ТСДБ: 1, 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; ДПРХУЛБАФУС m, ТБЧОЩЕ 1,5; 3; 3,5; 6; 7; 12 Й 14.
нЕЦПУЕЧЩЕ ТБУУФПСОЙС Бw (РП зпуф 2144-76*):
зепнефтйс юетчсюощи гймйодтйюеулйи ретедбю
зЕПНЕФТЙЮЕУЛЙЕ ТБУЮЕФЩ ЮЕТЧСЮОЩИ РЕТЕДБЮ БОБМПЗЙЮОЩ ТБУЮЕФБН ЪХВЮБФЩИ РЕТЕДБЮ. чОБЮБМЕ ТБУУНБФТЙЧБЕН ЪБГЕРМЕОЙЕ ВЕЪ УНЕЭЕОЙС ЮЕТЧСЛБ.
ч УЧСЪЙ У ЙЪЗПФПЧМЕОЙЕН ЮЕТЧСЮОЩИ ЛПМЕУ ЙОУФТХНЕОФПН, СЧМСАЭЙНУС БОБМПЗПН ЮЕТЧСЛБ, УПРТСЦЕООЩК РТПЖЙМШ ЛПМЕУБ РПМХЮБЕФУС БЧФПНБФЙЮЕУЛЙ. рПЬФПНХ РТПЖЙМШ ЧЙФЛПЧ ЮЕТЧСЛБ НПЦОП ЧБТШЙТПЧБФШ. чЩВПТ РТПЖЙМС ПРТЕДЕМСЕФУС РТЕЙНХЭЕУФЧЕООП ФЕИОПМПЗЙЮЕУЛЙНЙ ЖБЛФПТБНЙ.
бТИЙНЕДПЧЩ ЮЕТЧСЛЙ (ТЙУХОПЛ 86, Б) РТЕДУФБЧМСАФ УПВПК ЧЙОФЩ У ТЕЪШВПК, ЙНЕАЭЕК РТСНПМЙОЕКОЩЕ ПЮЕТФБОЙС РТПЖЙМС (ФТБРЕГЙА) Ч ПУЕЧПН УЕЮЕОЙЙ (Ч ФПТГПЧПН УЕЮЕОЙЙ ЧЙФЛЙ ПЮЕТЮЕОЩ БТИЙНЕДПЧПК УРЙТБМША). ьФЙ ЮЕТЧСЛЙ РТПУФЩ Ч ЙЪЗПФПЧМЕОЙЙ, ЕУМЙ ОЕ ФТЕВХЕФУС ЙИ ЫМЙЖПЧБОЙЕ, РПЬФПНХ ПОЙ УПИТБОЙМЙ РТЙНЕОЕОЙЕ Ч ФЙИПИПДОЩИ, ОЕ УЙМШОП ОБРТСЦЕООЩИ РЕТЕДБЮБИ. дМС ЙИ ЫМЙЖПЧБОЙС ФТЕВХЕФУС ЛТХЗ, ПЮЕТЮЕООЩК УМПЦОПК ЛТЙЧПК Ч ПУЕЧПН УЕЮЕОЙЙ, ЮФП ПЗТБОЙЮЙЧБЕФ ЙИ РТЙНЕОЕОЙЕ.
рПД ЛПОЧПМАФОЩНЙ ЮЕТЧСЛБНЙ (ТЙУХОПЛ 86,6) РПОЙНБАФ ЮЕТЧСЛЙ, ЙНЕАЭЙЕ РТСНПМЙОЕКОЩК РТПЖЙМШ Ч УЕЮЕОЙЙ, ОПТНБМШОПН Л ПУЙ УЙННЕФТЙЙ. чЙФЛЙ Ч ФПТГПЧПН УЕЮЕОЙЙ ПЮЕТЮЕОЩ ХДМЙОЕООПК ЙМЙ ХЛПТПЮЕООПК ЬЧПМШЧЕОФПК. ьФЙ ЮЕТЧСЛЙ ПВМБДБАФ ОЕЛПФПТЩНЙ ФЕИОПМПЗЙЮЕУЛЙНЙ РТЕЙНХЭЕУФЧБНЙ РЕТЕД БТИЙНЕДПЧЩНЙ. рТЙ ФПЮЕОЙЙ ТЕЪШВЩ ДЧХУФПТПООЙН ТЕЪГПН (РП РТПЖЙМА ЛБОБЧЛЙ) РП ПВЕЙН ВПЛПЧЩН ЗТБОСН ТЕЪГБ ЙНЕАФ НЕУФП ПДЙОБЛПЧЩЕ ХЗМЩ ТЕЪБОЙС.
ыМЙЖПЧБОЙЕ ЛПОЧПМАФОЩИ ЮЕТЧСЛПЧ ЛПОХУОЩНЙ ЛТХЗБНЙ У РТСНПМЙОЕКОЩНЙ ПВТБЪХАЭЙНЙ ОБ ПВЩЮОЩИ ТЕЪШВПЫМЙЖПЧБМШОЩИ УФБОЛБИ РТЙЧПДЙФ Л РПМХЮЕОЙА ОЕМЙОЕКЮБФЩИ ВПЛПЧЩИ РПЧЕТИОПУФЕК, ЧЕУШНБ ВМЙЪЛЙИ Л РПЧЕТИОПУФСН ЛПОЧПМАФОЩИ ЮЕТЧСЛПЧ. юЕТЧСЮОЩЕ ЖТЕЪЩ ДМС ОБТЕЪБОЙС ЮЕТЧСЮОЩИ ЛПМЕУ ЫМЙЖХАФ ФЕН ЦЕ УРПУПВПН, РПЬФПНХ РПМХЮБАФ РТБЧЙМШОПЕ ЪБГЕРМЕОЙЕ. оБТЕЪБОЙЕ ТЕЪШВЩ ОЕМЙОЕКЮБФЩИ ЮЕТЧСЛПЧ РЕТЕД ЙИ ЫМЙЖПЧБОЙЕН ЛПОХУОЩН ЫМЙЖПЧБМШОЩН ЛТХЗПН НПЦЕФ ВЩФШ ПУХЭЕУФЧМЕОП ФБЛЦЕ ДЙУЛПЧПК ЖТЕЪПК.
ьЧПМШЧЕОФОЩЕ ЮЕТЧСЛЙ (ТЙУХОПЛ 86, Ч) РТЕДУФБЧМСАФ УПВПК ЛПУПЪХВЩЕ ЛПМЕУБ У НБМЩН ЮЙУМПН ЪХВШЕЧ Й ПЮЕОШ ВПМШЫЙН ХЗМПН ЙИ ОБЛМПОБ. рТПЖЙМШ ЪХВБ Ч ФПТГПЧПН УЕЮЕОЙЙ ПЮЕТЮЕО ЬЧПМШЧЕОФПК. ьЧПМШЧЕОФОБС РПЧЕТИОПУФШ ЙНЕЕФ РТСНПМЙОЕКОЩК РТПЖЙМШ Ч УЕЮЕОЙЙ РМПУЛПУФША, ЛБУБФЕМШОПК Л ПУОПЧОПНХ ГЙМЙОДТХ ЮЕТЧСЛБ, РПЬФПНХ ЬЧПМШЧЕОФОЩЕ ЮЕТЧСЛЙ НПЦОП ЫМЙЖПЧБФШ РМПУЛПК УФПТПОПК ЫМЙЖПЧБМШОПЗП ЛТХЗБ. ыМЙЖХЕНЩЕ ЮЕТЧСЛЙ УМЕДХЕФ ДЕМБФШ ЬЧПМШЧЕОФОЩНЙ.
юЕТЧСЮОЩЕ РЕТЕДБЮЙ ЙНЕАФ ХУМПЧОЩЕ ПВПЪОБЮЕОЙС: БТИЙНЕДПЧЩ Zб; ЛПОЧПМАФОЩЕ ZN; ОЕМЙОЕКЮБФЩЕ, РПМХЮЕООЩЕ ЫМЙЖПЧБОЙЕН ЛПОХУОЩН ЛТХЗПН, Zл; ЬЧПМШЧЕОФОЩЕ ZJ; У ЧПЗОХФЩН РТПЖЙМЕН ЮЕТЧСЛБ Zф.
тБУУФПСОЙЕ НЕЦДХ ПДОПЙНЕООЩНЙ ФПЮЛБНЙ УППФЧЕФУФЧХАЭЙИ ВПЛПЧЩИ УФПТПО ДЧХИ УНЕЦОЩИ ЧЙФЛПЧ ЮЕТЧСЛБ, ЙЪНЕТЕООПЕ РБТБММЕМШОП ПУЙ, ОБЪЩЧБАФ ТБУЮЕФОЩН ЫБЗПН ЮЕТЧСЛБ Й ПВПЪОБЮБАФ ЮЕТЕЪ Т (ТЙУХОПЛ 87).
юЕТЧСЮОЩЕ ЛПМЕУБ ОБТЕЪБАФ ЮЕТЧСЮОЩНЙ ЖТЕЪБНЙ, ТЕЦХЭЙЕ ЛТПНЛЙ ЛПФПТЩИ РТЙ ЧТБЭЕОЙЙ ЖТЕЪЩ ЙДЕОФЙЮОЩ У РПЧЕТИОПУФША ЧЙФЛПЧ ЮЕТЧСЛБ. рПЬФПНХ Ч ГЕМСИ УПЛТБЭЕОЙС ОПНЕОЛМБФХТЩ ЪХВПТЕЪОПЗП ЙОУФТХНЕОФБ УФБОДБТФЙЪПЧБОЩ ФБЛЦЕ ЛПЬЖЖЙГЙЕОФЩ ДЙБНЕФТБ ЮЕТЧСЛБ:
дЕМЙФЕМШОЩК ДЙБНЕФТ ЮЕТЧСЛБ (УН. ТЙУХОПЛ 87):
m, НН | q |
2 | 8; 10; (12); 12,5; 16; 20 |
2,5 | 8; 10; (12); 12,5; 16; 20 |
(3) | (10); (12) |
3,15 | 8; 10; 12,5; 16; 20 |
(3,5) | (10); (12*); (14*) |
4 | 8; (9); 10; (12*); 12,5; 16; 20 |
5 | 8; 10; 12,5; 16; 20 |
(6) | (9); (10) |
6,3 | 8; 10; 12,5; 16; 20 |
(7) | (12) |
8 | 8; 10; 12,5; 16; 20 |
10 | 8; 10; 12,5; 16; 20 |
(12) | (10**) |
12,5 | 8; 10; 12,5; 16; 20 |
(14) | (8**) |
16 | 8; 10; 12,5; 16 |
20 | 8; 10 |
*фПМШЛП РТЙ z1=1 | |
**фПМШЛП РТЙ z1=1 Й 2 | |
***фПМШЛП РТЙ z1=2 | |
рТЙНЕЮБОЙЕ. тСД ЪОБЮЕОЙК m Й q ХУФБОБЧМЙЧБЕФ зпуф 19672-74 *. ч ФБВМЙГЕ РТЙЧЕДЕОП ПЗТБОЙЮЕООПЕ ЮЙУМП НПДХМЕК. ъОБЮЕОЙС, ОЕ ЪБЛМАЮЕООЩЕ Ч УЛПВЛЙ, СЧМСАФУС РТЕДРПЮФЙФЕМШОЩНЙ |
оБЮБМШОЩК ДЙБНЕФТ ЮЕТЧСЛБ ВЕЪ УНЕЭЕОЙС dw1 ТБЧЕО ДЕМЙФЕМШОПНХ ДЙБНЕФТХ d1.
юЙУМП ЧЙФЛПЧ ЮЕТЧСЛБ ЧЩВЙТБАФ Ч ЪБЧЙУЙНПУФЙ ПФ РЕТЕДБФПЮОПЗП ПФОПЫЕОЙС u. зпуф ХУФБОБЧМЙЧБЕФ z1 ТБЧОЩН 1, 2 Й 4. рЕТЕДБЮЙ ВПМШЫПК НПЭОПУФЙ ОЕ ЧЩРПМОСАФ У ЮЕТЧСЛБНЙ, ЙНЕАЭЙНЙ ПДЙО ЧЙФПЛ, ЙЪ-ЪБ НБМПЗП лрд Й УЙМШОПЗП ОБЗТЕЧБ.
хЗПМ РПДЯЕНБ МЙОЙЙ ЧЙФЛБ ЮЕТЧСЛБ ОБ ДЕМЙФЕМШОПН ГЙМЙОДТЕ γ (ДЕМЙФЕМШОЩК ХЗПМ РПДЯЕНБ):
чЩУПФБ ЗПМПЧЛЙ hБ1 Й ОПЦЛЙ hf1 ЧЙФЛПЧ ПРТЕДЕМСЕФУС РП ЖПТНХМБН:
ЗДЕ h*a1= ЛПЬЖЖЙГЙЕОФ ЧЩУПФЩ ЗПМПЧЛЙ,
дЙБНЕФТ тБУЛТПКФЕ УХФШ РПОСФЙС (148)
дМЙОХ b1 ОБТЕЪБООПК ЮБУФЙ ЮЕТЧСЛБ ЧЩВЙТБАФ ФЕН ВПМШЫЕК, ЮЕН ВПМШЫЕЕ ЮЙУМП ЪХВШЕЧ ЛПМЕУБ z2, Ф. Е.:
дМС ЫМЙЖХЕНЩИ Й ЖТЕЪЕТХЕНЩИ ЮЕТЧСЛПЧ ДМЙОХ b1 ХЧЕМЙЮЙЧБАФ ОБ 25 НН РТЙ НПДХМЕ m 16 НН (зпуф 19650-74).
юЕТЧСЮОЩЕ ЛПМЕУБ (ТЙУХОПЛ 88).
нЙОЙНБМШОЩЕ ЮЙУМБ ЪХВШЕЧ ЛПМЕУ z2min ЧП ЧУРПНПЗБФЕМШОЩИ ЛЙОЕНБФЙЮЕУЛЙИ РЕТЕДБЮБИ РТЙ ЮЕТЧСЛБИ У ПДОЙН ЧЙФЛПН РТЙОЙНБАФ ТБЧОЩНЙ 17. 18, Ч УЙМПЧЩИ РЕТЕДБЮБИ z2min=26. 28. пРФЙНБМШОП ДМС УЙМПЧЩИ РЕТЕДБЮ: z2=32. 63 (ОЕ ВПМЕЕ 80). ч РТЙЧПДБИ УФПМПЧ ВПМШЫПЗП ДЙБНЕФТБ z2 ДПИПДЙФ ДП 200. 300, Ч ПФДЕМШОЩИ УМХЮБСИ ДП 1000.
дЕМЙФЕМШОЩК Й УПЧРБДБАЭЙК У ОЙН ОБЮБМШОЩК ДЙБНЕФТ:
дЙБНЕФТ ЧЕТЫЙО dБ2 Й ЧРБДЙО df2 Ч УТЕДОЕН УЕЮЕОЙЙ Ч РЕТЕДБЮБИ ВЕЪ УНЕЭЕОЙС ЮЕТЧСЛБ УППФЧЕФУФЧЕООП ТБЧОЩ:
ч РЕТЕДБЮБИ У ЮЙУМПН ЧЙФЛПЧ ЮЕТЧСЛБ ДЧБ Й ВПМЕЕ ЬЖЖЕЛФЙЧОПЕ РПМЕ ЪБГЕРМЕОЙС ВПМШЫЕ, ЮЕН Ч РЕТЕДБЮЕ, ЮЕТЧСЛ ЛПФПТПК ЙНЕЕФ ПДЙО ЧЙФПЛ, РПЬФПНХ ОБТХЦОЩК ДЙБНЕФТ Й ЫЙТЙОХ ЛПМЕУБ ВЕТХФ НЕОШЫЙНЙ (РТЙ ФЕИ ЦЕ dБ2, d2 Й m). оБЙВПМШЫЙК ДЙБНЕФТ ЛПМЕУБ:
(153)
хУМПЧОЩК ХЗПМ ПВИЧБФБ 2δ ДМС ТБУЮЕФБ ОБ РТПЮОПУФШ ОБИПДСФ РП ФПЮЛБН РЕТЕУЕЮЕОЙС ПЛТХЦОПУФЙ da1-0,5m У ФПТГПЧЩНЙ (ЛПОФХТОЩНЙ) МЙОЙСНЙ ЮЕТЧСЮОПЗП ЛПМЕУБ:
(154)
нЕЦПУЕЧПЕ ТБУУФПСОЙЕ РЕТЕДБЮЙ ПВПЪОБЮБАФ ЮЕТЕЪ Бw, ПОП ТБЧОП РПМХУХННЕ ДЙБНЕФТПЧ ДЕМЙФЕМШОЩИ ПЛТХЦОПУФЕК ЮЕТЧСЛБ Й ЛПМЕУБ:
(155)
тбуюефщ об ртпюопуфш
юЕТЧСЮОЩЕ РЕТЕДБЮЙ ТБУУЮЙФЩЧБАФ ОБ УПРТПФЙЧМЕОЙЕ ХУФБМПУФЙ Й УФБФЙЮЕУЛХА РТПЮОПУФШ РП ЛПОФБЛФОЩН ОБРТСЦЕОЙСН Й ОБРТСЦЕОЙСН ЙЪЗЙВБ. ч ВПМШЫЙОУФЧЕ УМХЮБЕЧ ОБРТСЦЕОЙС ЙЪЗЙВБ ОЕ ПРТЕДЕМСАФ ТБЪНЕТЩ РЕТЕДБЮЙ Й ТБУЮЕФ РП ОЙН РТЙНЕОСАФ Ч ЛБЮЕУФЧЕ РТПЧЕТПЮОПЗП. пО ЪОБЮЙН ФПМШЛП РТЙ ВПМШЫЙИ ЮЙУМБИ ЪХВШЕЧ ЛПМЕУ (ВПМЕЕ 90. 100) Й ДМС ТХЮОЩИ РЕТЕДБЮ. пУОПЧОПЕ ЪОБЮЕОЙЕ ЙНЕЕФ ТБУЮЕФ ОБ УПРТПФЙЧМЕОЙЕ ЛПОФБЛФОПК ХУФБМПУФЙ, ЛПФПТЩК ДПМЦЕО РТЕДПФЧТБЭБФШ Ч РТПЕЛФЙТХЕНЩИ РЕТЕДБЮБИ ЧЩЛТБЫЙЧБОЙЕ, Й ТБУЮЕФ ОБ ЪБЕДБОЙЕ. тБУЮЕФ ОБ ЙЪОПУ УПЧНЕЭБАФ У ЬФЙН ТБУЮЕФПН.
лпоуфтхлгйй юетчсюощи тедхлфптпч
пУОПЧОПЕ ТБУРТПУФТБОЕОЙЕ ЙНЕАФ ПДОПУФХРЕОЮБФЩЕ ЮЕТЧСЮОЩЕ ТЕДХЛФПТЩ. дЙБРБЪПО РЕТЕДБФПЮОЩИ ПФОПЫЕОЙК u=8. 63. рТЙ ВПМШЫЙИ РЕТЕДБФПЮОЩИ ЮЙУМБИ РТЙНЕОСАФ ДЧХИУФХРЕОЮБФЩЕ ЮЕТЧСЮОЩЕ ТЕДХЛФПТЩ ЙМЙ ЛПНВЙОЙТПЧБООЩЕ ЪХВЮБФП-ЮЕТЧСЮОЩЕ ТЕДХЛФПТЩ.
тЕДХЛФПТЩ ЧЩРПМОСАФ УП УМЕДХАЭЙНЙ ЧБТЙБОФБНЙ ТБУРПМПЦЕОЙС ЮЕТЧСЛБ Й ЮЕТЧСЮОПЗП ЛПМЕУБ:
дЧЕ РПУМЕДОЙЕ ЛПОУФТХЛГЙЙ РТЙНЕОСФШ ОЕЦЕМБФЕМШОП ЧУМЕДУФЧЙЕ ФТХДОПУФЙ УНБЪЩЧБОЙС РПДЫЙРОЙЛПЧ ЧЕТФЙЛБМШОЩИ ЧБМПЧ Й ХДЕТЦБОЙС УНБЪЛЙ ПФ ЧЩФЕЛБОЙС.
юЕТЧСЛЙ Ч УМХЮБЕ ОБТЕЪБОЙС ТЕЪШВЩ ТЕЪГПН ДПМЦОЩ ЙНЕФШ ЧЩИПД ДМС ЙОУФТХНЕОФБ (РТПФПЮЛХ). оБ ТЕЪШВПЖТЕЪЕТОПН УФБОЛЕ ТЕЪШВБ НПЦЕФ ВЩФШ ЙЪЗПФПЧМЕОБ УП УВЕЗПН.
юЕТЧСЮОЩЕ ЛПМЕУБ Ч ГЕМСИ ЬЛПОПНЙЙ ГЧЕФОЩИ НЕФБММПЧ ЧЩРПМОСАФ У ЧЕОГПН ЙЪ БОФЙЖТЙЛГЙПООЩИ НБФЕТЙБМПЧ Й УФБМШОЩН ЙМЙ ЮХЗХООЩН ГЕОФТПН.
рТЙНЕОСАФ УМЕДХАЭЙЕ ФЙРПЧЩЕ ЛПОУФТХЛГЙЙ:
ч ЮЕТЧСЮОЩИ РЕТЕДБЮБИ, ЛБЛ РТБЧЙМП, РТЙНЕОСАФ РПДЫЙРОЙЛЙ ЛБЮЕОЙС.
дМС ЧБМБ ЮЕТЧСЮОПЗП ЛПМЕУБ ЧЧЙДХ ЕЗП ОЕВПМШЫПК ДМЙОЩ РТЙНЕОСАФ РП ПДОПНХ ТБДЙБМШОП-ХРПТОПНХ (ПВЩЮОП ЛПОЙЮЕУЛПНХ ТПМЙЛПЧПНХ) РПДЫЙРОЙЛХ Ч ПРПТЕ, ЛПФПТЩЕ ХУФБОБЧМЙЧБАФ ЧТБУРПТ.