в каком агрегатном состоянии находится вода в виде снега

Агрегатное состояние воды

Опыт показывает, что при нагревании некоторых твёрдых тел они способны расплавляться, то есть превращаться в жидкость, а затем испаряться. Уменьшение температуры вещества ведет к обратному процессу. Возможно превращение кристаллического вещества в газ, минуя жидкую фазу (процесс сублимации).

Агрегатные состояния

Агрегатное состояние зависит от температуры и давления над поверхностью вещества. Переходы из одного агрегатного состояния в другое, которые сопровождаются изменением характера упаковки частиц (ближний, дальний порядок, неупорядоченность), называют фазовыми переходами первого рода.

В природе вода (единственное вещество на Земле) может иметь три агрегатных состояния: твердое (это дел или снег); жидкость и газообразное (пар).

Лед имеет кристаллическую решетку, то есть его атомы четко расположены. Он сохраняет форму, обладает объемом и сохраняет его, атомы плотно упакованы.

Вода текучая субстанция. Она сохраняет объем, но не сохраняет форму, принимая форму сосуда в котором находится. Имеет нечеткое расположение частиц и большую их подвижность в сравнении со льдом.

Пары воды заполняют все предоставленное им пространство, обладают рыхлой упаковкой частиц, их можно легко сжать.

В жидком состоянии вода может находиться при нормальном атмосферном давлении при температуре от 0 o C до 100 o C. Вода – это растворитель, который необходим для течения биохимических реакций. Свойствами растворителя, она обладает благодаря полярности своих молекул. В массовом составе воды содержится 88,81% кислорода и 11,19% водорода. Если вода переходит изо льда в жидкость, то ее плотность растет. При увеличении температуры воды в диапазоне от 0 o C до +4 o C ее плотность увеличивается. С дальнейшим ростом температуры плотность воды уменьшается. При +4 o C плотность воды выше, чем плотность льда. Вода имеет высокую теплоемкость (c-удельная теплоемкость): в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега, поэтому является хорошим переносчиком тепла. Вода — тепловой регулятор на Земле. Кроме этого вода обладает высоким поверхностным натяжением (больше только у ртути).

При давлении в одну атмосферу и температуре 0 o C и ниже вода переходит в лед. Тогда как при уменьшении температуры все тела уменьшают свой объем, вода при замерзании расширяется примерно на 9%. Аномальные свойства воды объясняют особенностью молекулярного строения. Обладая одной кристаллической структурой, лед имеет много разных форм. Это снежинки, сосульки, льдины и т.д. Лед имеет высокую удельную теплоту плавления ( в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега(при нормальном атмосферном давлении). Лед в природе может иметь механические примеси такие как твердые частицы, капли растворов или пузырьки газов.

Переход воды в газообразное состояние можно наблюдать, нагревая при нормальном атмосферном давлении до температуры 100 o C. Газообразная вода может встречаться, например, в виде тумана, облаков.

Примеры решения задач

ЗаданиеОхарактеризуйте особенности фазовых переходов воды.
РешениеВ природе существуют следующие тепловые процессы, происходящие (в том числе) с водой: нагревание (охлаждение); испарение (конденсация); плавление (отвердевание).

Будем считать, что все фазовые переходы происходят при нормальном атмосферном давлении. Тогда при в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снегавода кристаллизуется и становится льдом. При в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снегавода кипит и переходит в пар. Если давление уменьшать, то температура плавления воды будет медленно увеличиваться, а температура кипения уменьшаться. С ростом давления температура кипения воды увеличивается, плотность пара при кипении увеличивается, плотность жидкости уменьшается. При давлении около в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снегаатм. температуры кипения и плавления практически становятся равными в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега. Данные давление и температура называются тройной точкой воды. Если давление становится равным в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снегаатм., а температура в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега, то плотность и прочие свойства воды и ее пара становятся одинаковыми. Такая точка называется критической. В критическом состоянии жидкость имеет максимальный объем, а насыщенный пар обладает максимальным давлением.

При дальнейшем уменьшении давления вода не может существовать как жидкость, и лед превращается непосредственно в пар. Температура перехода льда в пар уменьшается при снижении давления.

Если давление высокое, то отсутствует разница между паром и водой, при этом кипение и испарение отсутствуют. Возможно существование метастабильных состояний (перенасыщенного пара или перегретой жидкости). Эти состояния могут наблюдаться длительное время, однако они не являются устойчивыми.

Диаграмма состояния приведена на рис.1. Она состоит из трех областей, которые соответствуют кристаллическому (твердому) состоянию вещества, жидкости и газообразному состоянию. Данные области разделяются кривыми, которые обозначают границы взаимно обратных процессов:

01 – плавление – кристаллизация; 02 – кипение – конденсация; 03 – сублимация – десублимация.

Точка пересечения всех кривых (О) – тройная точка.

Источник

Состояния воды в природе: условия перехода, необычные факты

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

Удивительная вода: Freepick

Известные человечеству состояния воды не ограничиваются тремя базовыми вариантами, о которых большинство слышало в школе. Как создать горячий лед или сухую воду? Возможно ли наблюдать воду сразу жидкой, твердой и газообразной? Как на эти и многие другие вопросы отвечает наука?

Три состояния воды в природе

Воду как прозрачную жидкость, у которой отсутствует запах и вкус, знают все. Но только ли такой она бывает? Прежде чем ответить на вопрос о том, каковы возможные агрегатные состояния воды, выясним, что такое агрегатное состояние.

В физике под этим понятием подразумевают состояние вещества, обусловленное определенной температурой и давлением. Науке известно:

При этом одно и то же вещество может менять свое состояние в зависимости от условий окружающей среды.

Хорошо известны три агрегатных состояния воды:

Состояние воды прямо связано с температурой. Эта жидкость обладает уникальным свойством: свое жидкое состояние она сохраняет в широком диапазоне от 0 до 100 °С. В верхней точке начинается закипание с постепенным переходом в газообразную фазу. При снижении температуры ниже 0 °С происходит образование льда.

При этом в природе можно часто увидеть, как вода и лед соседствуют друг с другом, а в этом время над ними витает невидимый глазу водяной пар. Благодаря таким удивительным способностям воды происходит ее постоянный круговорот в природе.

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

Жидкое состояние воды: Freepick

Если рассматривать все три состояния воды, то жидкое остается одним из наиболее важных. Жидкая вода служит универсальным растворителем для множества других веществ, является основным компонентом организма человека и средой для протекания всех химических процессов.

Более того, именно у жидкой воды ученым удалось обнаружить дополнительные состояния — «обычная» и «аномальная» вода. Последняя образуется при температуре –63 °С и может находиться в одном из двух состояний:

Две эти жидкости заметно различаются по свойствам, а их плотность отличается на 20%, поэтому они не могут смешиваться между собой. Как ученым удалось уловить эти состояния, ведь хорошо известно, что происходит с водой при замерзании: она переходит в твердую фазу — в лед?

Авторам исследования понадобились специальные приборы. С помощью инфракрасного лазера лед нагревали, при этом образовывалась жидкая вода с высокой плотностью, а давление сохраняли повышенным.

За этим процессом вели наблюдение рентгеновским лазером. Было замечено образование пузырьков «аномальной» воды. Появлялись они на крайне маленький промежуток времени: были видны до 3-х микросекунд.

Эти исследования доказали, что ученым еще далеко не все известно о воде, хотя мы и сталкиваемся с ней ежедневно и ежечасно. Ее свойства продолжают изучать и открывать новые грани.

Состояния воды: необычные факты

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

Твердое состояние воды (лед): Freepick

Ученым оказалось недостаточно трех агрегатных состояний воды, поэтому они изобрели целый ряд необычных вариантов и продолжают работать в этом направлении.

Лед VII (горячий лед)

Для обычного холодного льда используется обозначение «лед Ih». Когда при нормальном давлении снижается температура и вода замерзает, то атомы кислорода в ее молекулах образуют шестигранники.

Если же давление будет возрастать, то можно получить лед VII, атомы которого располагаются в виде куба. Он очень противоречив:

Ученым удалось создать такой лед в лаборатории. Кроме того, он был обнаружен в алмазах, которые нашли в недрах нашей планеты.

Сухая вода

Ее получают путем смешивания обычной воды и двуокиси кремния. Несмотря на то что жидкости в ней 25%, она является сухим веществом. Сахарообразные крупинки внутри содержат воду, а сверху покрыты оксидом кремния.

Сухую воду создали в 1968 для нужд косметологии. Затем о ней забыли, а сейчас рассматривают варианты использования для поглощения углекислого газа, чтобы хранить и транспортировать химикаты.

Сверхзвуковой лед

Этот лед также называют льдом XVIII. Он образуется при очень сильном повышении давления и температурных показателей — до тысяч градусов и миллионов атмосфер. В горячем плотном и черном на виде веществе узнать лед очень трудно.

Получить его экспериментально удалось совсем недавно с применением мощных лазеров, которые создавали ударные волны, мгновенно повышая температуру и давление. При этом происходило разделение атомов водорода и кислорода с параллельным образованием твердых кристаллов.

Сверхкритическая вода

Вода может стать такой из газообразного состояния. Это очень странный пар, который нельзя назвать газом. Образование такой воды происходит при 373 °С и давлении 220 бар. Снова жидкой она уже стать не может. Такая вода способна проходить сквозь твердые вещества, как газы, и быть растворителем подобно жидкости.

Аморфный лед

Этот лед получается при мгновенном охлаждении воды, когда молекулы не кристаллизуются, как следует. Получается своеобразное стекло — очень медленно движущаяся жидкость.

На нашей планете аморфный лед встречается редко, а вот на просторах Вселенной вода часто существует в этом состоянии.

Тройная точка воды

В этой точке вещество одновременно существует как твердое, жидкое и газообразное. Такое специфическое равновесие достигается путем сочетания показаний давления и температуры. Для воды они составляют 0,01 °С и 0,0060366 атмосфер.

Эта точка применяется, когда определяется температура по Кельвину, калибруются термометры и определяются тройные точки для других жидкостей. Из тройной точки воду можно перевести в любое из ее возможных агрегатных состояний.

Горящий лед

Это не чистая вода, а сочетание воды и метана, которое способно гореть, словно бумага. Такой лед образуется в результате естественных процессов в океанских глубинах, в зонах вечной мерзлоты, может засорить нефтепровод или газопровод.

Таковы обычные и нестандартные состояния воды. Природа отменно поработала, чтобы создать такое чудо, но и ученые не остались в стороне. Они до сих пор работают над получением воды в уникальных состояниях.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Источник

Агрегатные состояния воды

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

В природе вода содержится в трех состояниях:

С раннего детства, еще в школе изучают разные агрегатные состояния воды: туман, дождевые осадки, град, снег, лёд и тп. Существует три состояния воды, которые в школе изучают подробно. Они каждый день встречаются нам в жизни и влияют на жизнедеятельность. Агрегатные состояния – это состояние воды при определенном температурном режиме и давлении, которое характеризуется в пределе некоторого интервала.

К основным понятиям состояния воды следует внести уточнения, что состояние тумана и облачное состояние не относится к газообразованию. Они появляются при конденсации водяного пара. Это уникальное свойство воды которое может находиться в трех разных агрегатных состояниях. Три состояния воды жизненно важны для планеты, они образуют гидрологический цикл, обеспечивают процесс круговорота воды в природе. В школе показывают различные опыты по испарению и конденсации. В любом уголочке природы вода считается источником жизни. Есть и четвертое состояние, не менее важное – Дерягинская вода (Российский вариант), или как её принято называть в данный момент — Нанотрубочная вода (Американский вариант).

Твердое состояние воды

В твердом состоянии сохраняется форма и объем. При пониженной температуре вещество замерзает и превращается в твердое тело. Если высокое давление, то температура затвердевания требуется выше. Твердое тело бывает кристаллическим и аморфным. В кристалле положение атома строго упорядоченно. Формы кристаллов естественные и напоминают многогранник. В аморфном теле точки расположены хаотично и колеблются, в них сохраняется только ближний порядок.

Жидкое состояние воды

В жидком состоянии вода сохраняет свой объем, но ее форма не сохраняется. Под этим понимает, что жидкость занимает лишь часть объема, может протекать по всей поверхности. Изучая в школе вопросы жидкого состояния, следует понимать, что это промежуточное состояние между твердой средой и газовой средой. Жидкости делятся на чистые и состояния смеси. Некоторые смеси очень важны для жизни, например кровь или морская вода. Жидкости могут выполнять функцию растворителя.

Состояние газа

В газообразном состоянии форма и объем не сохраняются. По-другому газообразное состояние, изучение которого происходит еще в школе, называется водяным паром. Опыты показывают наглядно, что пар невидим, он растворим в воздухе, и показывает относительную влажность. Растворимость зависит от температуры и давления. Насыщенный пар и точка росы – это показатель предельной концентрации. Пар и туман это разные агрегатные состояния.

Четвертое агрегатное состояние — плазма

Изучение плазмы и современные опыты стали рассматриваться чуть в более позднем сроке. Плазмой называется полностью или частично ионизированный газ, она возникает в состоянии равновесия при высокой температуре. В условиях земли образуется газовый разряд. Свойства плазмы определяют его газообразное состояние, за исключением того, что огромную роль во всем этом играет электродинамика. Среди агрегатных состояний плазма самое распространенное во Вселенной. Изучение звезд и межпланетного пространства показало, что вещества находятся в состоянии плазмы.

Как меняются агрегатные состояния?

Изменение процесса перехода из одного состояния в другое:

— жидкость — пар (парообразование и кипение);

— пар — жидкость (конденсация);

— жидкость — лед (кристаллизация);

— лед – жидкость (плавление);

— лед – пар (сублимация);

— пар – лед, образование инея (десублимация).

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снегаВода названа интересным природным земным минералом. Вопросы эти сложные и изучение требуется постоянное. Агрегатное состояние в школе подтверждают проведенные опыты и если возникают вопросы, то опыты наглядно дают разобраться в рассказанном на уроке материале. При испарении жидкость переходит в состояние газа, процесс способен начаться уже с нуля градусов. При повышении температуры увеличивается испарение. Интенсивность этого подтверждают опыты кипения при 100 градусах. Вопросы испарения находят ответ в испарении с поверхностей озер, рек и даже с суши. При охлаждении получается процесс обратного превращения, когда из газа образуется жидкость. Этот процесс называется конденсацией, когда из водяного пара, находящегося в воздухе образуются мелкие капельки облака.

Источник

Агрегатные состояния воды в обычных условиях

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

Агрегатные состояния воды в природе — облака, дождь, снег, лед, град, роса, иней туман … мы знакомы с ними с раннего детства.

Агрегатные состояния воды в обычных условиях в природе

Агрегатные состояния воды ежедневно встречаются нам в окружающей нас природе. Они активно влияют на все аспекты жизнедеятельности человека.

В природе в естественных условиях вода может в изобилии существовать в 3-х основных агрегатных состояниях:

Круговорот воды в природе

Жидкое состояние воды в природе

Без воды в жидком состоянии большинство живых существ на нашей планете просто погибнет.

Аккумулируется вода в жидком состоянии в хорошо всем нам известных формах — это океаны, моря, реки, озёра, пруды, ставки, каналы, атмосферных осадках …

Отметим интересный факт — вода в жидком состоянии при фиксированном объёме не имеет фиксированной формы.

Твердое состояние воды в природе

Вода из жидкого состояния переходит в твердое при температуре 0º C (плюс/минус в зависимости от давления). Процесс перехода воды из жидкого состояния в твердое имеет интересную аномалию. При понижении температуры молекулы воды, как и в других материях, сближаются друг с другом. Так происходит вплоть до температуры 4º C. При этой температуре у воды максимальная плотность. При дальнейшем понижении температуры плотность начинает уменьшаться. Благодаря именно этому удивительному свойству лёд плавает, а не тонет. Плотность льда составляет приблизительно 90% от плотности воды.

Вода в твердом состоянии имеет как фиксированный объём, так и фиксированную форму.

Газообразное состояние воды в природе

Из жидкого состояния в парообразное вода переходит при температуре 100º C (плюс/минус в зависимости от давления). Водяной пар не всегда можно увидеть, но его можно почувствовать. Количество пара в атмосфере определяется как влажность. При повышенной влажности можно сказать, что по ощущениям воздух становится «липким».

Агрегатные состояния воды — переходные процессы

Процессы перехода воды с одного агрегатного состояния в другое определяются следующим образом:

Граничные точки перехода воды в состояния лед/вода и вода/пар определили соответственно как 0 и 100 градусов по Цельсию при условии атмосферного давления 760 мм рт. ст. или 101 325 Па. Всем с детства хорошо известна простая примета, температура за окном опустилась ниже нуля, ждите снега 🙂

Четвёртое или второе жидкое агрегатное состояние воды

Относительно недавно физики обнаружили новое состояние воды. Это состояние проявляется при температурах в промежутке от 40º до 60º C и проявляется в том, что жидкая вода непрерывно переключается между двумя состояниями, которые имеют разный набор физических свойств.

Важно знать …

Необходимо отметить такой, важный для человека факт – при понижении атмосферного давления температура кипения падает. Это необходимо учитывать, например, в условиях высокогорья. Отметим также еще одно явление, которое полезно знать человеку в повседневной жизни — объем воды в твердом состоянии больше чем в жидком. Этот факт иллюстрирует общеизвестный пример – бутылка с водой оставленная на морозе будет разорвана, образовавшимся в ней льдом.

Очевидно, что в разных своих агрегатных состояниях Вода обладает разными базовыми физическими свойствами такими как – текучесть, твердость, летучесть.

Необходимо отметить, что пар определяет такой важный для человека и других живых организмов параметр как «влажность воздуха«. Влажность воздуха напрямую зависит от количества водяного пара в атмосфере, больше пара выше влажность. На земле существуют места как с очень высокой, так и с низкой влажностью атмосферы. Одним из самых влажных мест планеты считается индийский город Черрапунджи (Cherrapunji), а одним из самых сухих Сухие долины в Антарктике.

Выводы

Еще раз сделаем акцент на том, что во многом благодаря именно способности воды находиться в природных естественных условиях в трех разных агрегатных состояниях и существует жизнь на нашей планете.

Источник

Такая разная вода: два жидких агрегатных состояния H2O

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега

Основа исследования

Фундаментом для подобного рода исследований стало обнаружение расхождения изотермической сжимаемости и теплоемкости (CP) при переохлаждении воды. Ученые начали поиски объяснений этих странных процессов.

Одна из самых распространенных теорий утверждает, что существует переход жидкость-жидкость (LLT от liquid-liquid transition) в переохлажденной воде между жидкостью высокой плотности (HDL от high-density liquid) и жидкостью низкой плотности (LDL от low-density liquid), который заканчивается в критической точке жидкость-жидкость (LLCP от liquid-liquid critical point) при положительном давлении. Аномальное поведение воды в соответствии с этой теорией объясняется колебаниями, исходящими от LLCP.

Относительно недавно были проведены дополнительные опыты, в ходе которых было обнаружено, что структура переохлажденной воды непрерывно изменяется при охлаждении до 227 К под давлением 1 бар. Это указывает на однофазное поведение без LLT при атмосферном давлении. Следовательно, это подразумевает, что если LLT действительно существует, то LLCP должен находиться при давлении (P) > 1 бар.

Эксперименты по рассеянию нейтронов в воде позволили предположить, что различные фазы HDL и LDL могут быть идентифицированы по их четко определенным положениям пиков в структурном факторе (математическое описание того, как материал рассеивает падающее излучение).

В частности, положение первого пика в О–О рассеянии сильно чувствительно к существованию тетраэдрических структур (LDL) или межузельных молекул между первой и второй оболочками (HDL). Следовательно, наиболее подходящим способом обнаружения LLT в переохлажденной воде может быть отслеживание структуры жидкости с помощью рассеяния рентгеновских лучей или нейтронов. Основная сложность таких опытов заключается в том, что их нужно проводить при разном давлении и очень быстро, пока не произошла кристаллизация.

В данном труде был использован метод компрессии-декомпрессии, когда начальное повышение давления было вызвано нагревом, индуцированным лазерным импульсом. Когда временной масштаб индуцированного лазером высвобождения энергии намного короче, чем время прохождения звука через образец, нагрев является изохорным*, а давление внутри образца значительно возрастает.

Изопроцесс* — термодинамический процесс, когда количество вещества и какой-то параметр его состояния (давление, объем, температура или энтропия) остаются неизменными.

После окончания сверхбыстрого лазерного импульса образец быстро расширяется по мере того, как внутреннее давление уменьшается, приближаясь к значениям давления окружающей среды. Однако, если динамика жидкости достаточно быстрая, чтобы расслабить образец до наступления расширения, квазиравновесное поведение будет наблюдаться во время процесса декомпрессии.

Образцы изучались с помощью рассеяния рентгеновских лучей с разными временными задержками во время декомпрессии. В ходе наблюдений было выявлено резкое изменение структурного фактора, которое указывает на прерывистый LLT. Кроме того была обнаружена кристаллизация льда, происходящая значительно позднее. Это подтверждает, что LLT является метастабильным состоянием и отличается от перехода жидкость-лед.

Результаты исследования

Аморфный лед* получают посредством быстрого охлаждения воды, так что ее молекулы не успевают сформировать кристаллическую решетку (т.е. молекулы расположены случайным образом).

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега
Изображение №1

Толщина выбранных для наблюдения образцов варьировалась либо от 35 до 55 мм, либо от 15 до 25 мм. На образец воздействовал инфракрасный импульс с длиной волны 2 мм в течение 100 фс. Импульс увеличивал температуру и возбуждал комбинацию O–H и H–O–H.

После активации ИК импульса началась самопроизвольная декомпрессия, во время которой температура оставалась примерно постоянной, пока через

100 мс охлаждение за счет теплопроводности не стало существенным.

На графике показаны временные задержки для образцов толщиной от 15 до 25 мм, где степень преобразования HDL в LDL была выше, чем у образцов с большей толщиной. Спустя 1 мс соотношение двух компонентов составляет почти 1:1. Это, вероятнее всего, связано с тем, что в более тонких образцах процесс нагрева протекает более равномерно. В более толстых образцах ИК излучение поглощается больше на передней поверхности, чем на задней, что приводит к большему градиенту температур. Две наблюдаемые взаимопревращающие фазы имеют q-положения вблизи HDL и LDL, как и было предсказано на основе экстраполяции данных по зависящему от температуры и давления рассеянию нейтронов водой при более высоких температурах.

Сценарии, показанные на 1D1F, могут быть только в том случае, если образец после ИК импульса был жидкостью, а не аморфным твердым телом, и оставался жидким во время процесса декомпрессии.

Сразу после ИК импульса образец перемещался в точку на фазовой диаграмме, лежащую выше температуры гомогенного образования льда (TH), что соответствует быстрой жидкоподобной диффузии. В этой области вода была метастабильной жидкостью в течение нескольких минут, прежде чем превратилась в кристаллические фазы льда.

Чтобы понять, как сразу после нагрева HDA ИК импульсом возникает жидкоподобная диффузия, ученые метод классической молекулярной динамики для модели воды ST2 (исследование по данной теме доступно по ссылке: Improved simulation of liquid water by molecular dynamics).

Наблюдаемое температурное смещение в 25 К означает, что экспериментальная температура 205 К соответствует

230 К для ST2 воды.

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега
Изображение №3

На показано среднеквадратичное смещение (MSD) молекул ST2 как функция времени после быстрого нагревания (при 3000 К/нс) образца HDA. Начиная с 80 К, HDA нагревали до одной из трех различных конечных температур в диапазоне от 200 до 250 К. Если бы была задержка для перехода образца в жидкое состояние, то среднеквадратичное смещение было бы изначально постоянным, а затем линейно увеличивался бы после задержки.

В ходе моделирования системы было обнаружено, что среднеквадратичное смещение увеличивается со временем линейно, как и ожидалось для диффундирующей жидкости. Из этих результатов следует, что в течение 20 пс после быстрого нагрева HDA в системе образуется жидкое состояние. Этот процесс был намного быстрее, чем частичное таяние льда фазы Ih посредством ИК импульса, которое длилось

Тем не менее травление кристаллов, т.е. переход между фазами со значимыми отличиями в структурах до и после, является процессом, требующим активации (т.е. преодоления барьера свободной энергии).

Используемые в опытах образцы льда выдерживали от 0.5 до 5 часов при температуре 115 К, потому они еще до нагрева находились в ультравязком жидком состоянии. Образцы не столкнулись с барьером свободной энергии при нагревании от 115 до 205 К. Это согласуется с тем, что HDA и HDL структурно тесно связаны, и в результате начало быстрой диффузии было моментальным.

Эксперименты и моделирование показали, что жидкостное равновесие системы при 205 К в LDL образовывалось за время в 50-100 раз большее, чем для HDL. Следовательно, если есть возможность достичь жидкостного равновесия в течение нескольких наносекунд, то этого же можно достичь и в течении сотен наносекунд. Если это так, то отдельные фазы с высокой и низкой плотностью, наблюдаемые в субмикросекундном временном масштабе, можно воспринимать как квазиравновесные жидкие фазы.

При учете сценариев, показанных на , должно происходить быстрое преобразование в лед или непрерывное преобразование жидкого состояния. Однако этого не происходило. Образование кристаллического льда могло бы происходить в масштабах времени, более чем на один порядок превышающих преобразование в LDL. Из этого следует, что экспериментальные данные могут быть количественно согласованы только со сценарием, показанным на 1F.

в каком агрегатном состоянии находится вода в виде снега. Смотреть фото в каком агрегатном состоянии находится вода в виде снега. Смотреть картинку в каком агрегатном состоянии находится вода в виде снега. Картинка про в каком агрегатном состоянии находится вода в виде снега. Фото в каком агрегатном состоянии находится вода в виде снега
Изображение №4

Дабы лучше понять, как происходит образование LLT, были проанализированы отличия в рассеянии для образцов разной толщины (от 35 до 55 мм). Это позволило оценить фракционную заселенность каждой фазы в образце как функцию временной задержки (4A).

На 16.8 нс наблюдается лишь небольшая доля LDL, которая достигала максимума (

40% от общей интенсивности рассеяния) спустя 3 мс. Этот процесс сопровождается соответствующим уменьшением доли HDL. На временной отметке в 3 мс появляется кристаллический лед, который в последствии преобладает по всей системе. Образование льда происходило во временном масштабе, более чем на один порядок превышающем переход от HDL к LDL. Это указывает на то, что LLT, хоть и является метастабильным фазовый переход, он все же отличается от перехода жидкость-лед.

Из-за динамического характера процесса декомпрессии ожидалось, что преобразование HDL в LDL будет происходить в области на графике между линией HDL-LDL сопряжения и пределом метастабильности фазы HDL. В этой области переход должен проявляться в короткие промежутки времени в виде локализованных LDL флуктуаций, за которыми следует зарождение и рост LDL доменов. На (график малоуглового рентгеновского рассеяния, SAXS) отчетливо видны небольшие флуктуации LDL.

Полное преобразование образца в LDL было прервано процессом образования льда. Однако для тонких образцов соотношение HDL:LDL достигало значения 1:1 за 1 мс до появления льда ().

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог

В данном труде ученые установили наличие второго жидкого состояния для воды, возникающего при 205 К. Результаты экспериментов показали, что переход жидкость-жидкость (LLT) происходит в условиях (давление и температура), при которых обычно происходит только кристаллизация.

Кроме того, наблюдаемый для LLT временной масштаб (от наносекунд до микросекунд), согласуется с предыдущей экспериментальной оценкой, основанной на экстраполяциях от 10 мс при 174 К до наносекунд и микросекунд при 220 К с использованием температурно-зависимых кинетических измерений.

Ученые отмечают, что ранее подобных наблюдений не было ввиду отсутствия соответствующего оборудования. В современных лабораториях есть возможность проводить рентгеновские исследования процессов, которые протекают молниеносно. В добавок к этому существует множество методик моделирования, позволяющих предугадать ход исследуемых процессов до фактических наблюдений. Фактор скорости крайне важен, когда речь идет об исследовании воды в момент ее преобразования в лед. За счет «быстрых» рентгеновских лучей ученым удалось наблюдать процесс преобразования одной жидкости в другую, что предшествует образованию льда. Следовательно, при определенных условиях вода из жидкого состояния переходит в другое жидкое состояние.

Результаты этого колоссального труда открывают новые возможности перед исследователями воды, позволяя разрешить многолетние споры вокруг живительной жидкости и ее необычных свойств.

В будущем ученые намерены провести дополнительные исследования своего открытия, поскольку остается еще немало вопросов касательно свойств второго жидкого состояния воды и его важности в процессах, протекающих на планете. По некоторым предположениям наличие двух жидких фаз воды может каким-то образом быть связано с биологическими процессами в живых клетках.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂

Немного рекламы

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *