Как тесла передавал электричество без проводов
Резонансный метод беспроводной передачи электрической энергии Николы Тесла
В начале 20 века ученый Никола Тесла, уроженец Хорватии, работавший тогда в Нью-Йорке, разработал новаторский метод передачи электрической энергии на большие расстояния без проводов, с применением явления электрического резонанса, изучению которого ученый уделял тогда особое внимание. До этого он уже в достаточной степени изучил возможности переменного тока, и отчетливо понимал технические перспективы его применения, однако впереди был следующий важный шаг – система беспроводной передачи электрической энергии.
Согласно представлениям ученого, в такой системе передачи электроэнергии планета Земля выступала в роли электрического проводника, в котором с помощью электрических осцилляторов (электрических колебательных систем) можно было возбуждать стоячие волны. К данному выводу Тесла пришел благодаря наблюдениям за электрическими возмущениями, распространявшимися по поверхности земли после разрядов молний во время грозы.
Тесла зафиксировал с помощью своих приборов, что длина волн, порождаемых разрядами молний, варьируется в диапазоне от 25 до 70 километров, и что эти волны распространяются во всех направлениях земного шара. Мало того, ученый понял, что эти волны не только распространяются до самых отдаленных частей планеты, но и отражаются оттуда, и что длина волн непосредственно связана с размерами земного шара.
Тесла решил, что, создавая подобные электрические возмущения искусственным путем, можно передавать электрическую энергию во всех направлениях планеты, используя это ее свойство. Однако, несмотря на понимание наблюдаемого процесса, техническая реализация стала сложной инженерной задачей.
Требовалось обеспечить высокую скорость передачи электричества в Землю, как это происходит в природных условиях, ведь размеры планеты огромны, а возможности экспериментатора казались просто пылью по сравнению с возможностями природы.
Но, совершенствуя схемы питания своих осцилляторов, и проводя исследования в лаборатории, Тесла, в конце концов, находит решение, он вдруг понимает каким образом создать мощные электрические возмущения в Земле, чтобы скорость подачи электроэнергии не уступала природным.
Если очень качественно заземлить многовитковую катушку, длина провода в которой будет равна четверти длины волны колебаний, возбуждаемых осциллятором, и подать эти колебания на катушку, то в этой заземленной катушке возникнут колебания максимальной силы, и действие в точке заземления будет максимально возможным в силу явления электрического резонанса.
Если второй вывод такой заземленной катушки соединить с металлическим предметом достаточной кривизны, чтобы заряд не утекал в атмосферу, а также подходящей электроемкости, и поднять этот предмет на достаточную высоту, то заряд в этой верхней точке будет максимально возможным, ведь в проводе будет иметь место стоячая электрическая волна, узел которой будет находиться в точке заземления, а пучность – на другом, поднятом на высоту конце катушки. Так, экспериментируя с заземленным резонансным контуром, ученому удалось достичь движения электричества через систему со скоростью, превосходящей природную молнию.
Приемник этой энергии представлял собой воздушный (без сердечника) трансформатор, первичная обмотка которого была такой же, как передающая катушка, и тоже располагалась вертикально, также имела поднятый вверх металлический терминал, и тоже была заземлена, а вторичная катушка состояла из нескольких витков относительно толстого провода, которые располагались вблизи заземленного конца первичной обмотки, и служили для подачи энергии на потребитель.
Шагом совершенствования приемника была разработка своеобразного синхронного выпрямителя, состоящего из вращающегося коммутатора, целью работы которого была зарядка конденсатора на выходе приемной катушки, что повышало эффективность применения принятой от передатчика энергии.
Тесла особенно отмечал в своих статьях, что разработанный им метод беспроводной передачи электрической энергии основан на проводимости, а не на излучении. Если бы система была основана на излучении, то было бы просто невозможным передавать сколько-нибудь значительное количество энергии на расстояние.
Энергия в системе Тесла передавалась через землю, а поднятые терминалы, заряжаемые до очень высоких напряжений, взаимодействовали благодаря электрической проводимости воздушных слоев, и передаваемая энергия практически была доступна в любом месте планеты, благодаря электрическому резонансу.
Тесла сумел продемонстрировать это, когда ему удалось зажечь 200 ламп на расстоянии 40 километров от передатчика. Энергия не передавалась излучением, она практически регенерировалась в приемнике. Ученый утверждал, что, развив его технологию, можно будет беспроводным способом принимать электрическую энергию в любом необходимом количестве в любой точке земного шара.
3 способа передачи энергии без проводов — от Теслы до наших дней.
Когда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.
Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.
Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.
Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.
В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.
Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:
Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.
Поэтому очень важно не экономить с количеством розеток на кухне.
Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.
Взять ту же самую кухонную технику. Давайте разбираться подробнее.
Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.
Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.
Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:
Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.
Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.
Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.
Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.
Но в какие суммы выльется строительство таких магистралей.
Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.
Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.
Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.
Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.
Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.
К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.
Но все равно, даже с КПД в десять процентов, результат посчитали успешным.
Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели.
Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.
Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.
Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.
Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.
Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.
У нее внутри стоит тот самый магнетрон с КПД равным 95%.
Но вот как сделать обратное преобразование? И тут было выработано два подхода:
В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.
После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.
Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?
А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.
И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.
Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.
В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.
В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.
Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:
После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.
Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.
Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.
В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.
Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.
Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.
Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:
За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.
Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.
Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.
Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.
Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.
Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.
На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.
Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.
Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.
Этакая «звезда смерти» в наших земных реалиях.
На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.
Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.
Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.
Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.
К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.
Как далеки мы от беспроводного электричества?
Привет, Хабр! Я хочу рассказать тебе историю о давних временах. Был 1891 год. Малоизвестный тогда сербско-американский ученый по имени Никола Тесла разработал устройство, генерирующее и передающее электричество без проводов. Катушка Тесла была прототипом технологии его же авторства, эта катушка считалась Священным Граалем передачи энергии.
Сегодня революция в науке возродила необыкновенную идею Теслы, которая когда-то считалась несбыточной мечтой и перспективы невероятно привлекательны.
Катушка Тесла
Катушка Теслы — это электрический резонансный трансформатор. Радиочастотный генератор для получения высокого напряжения, при низких токах приводящий в действие трансформатор. Катушка работает по принципу электромагнитной индукции: проводник помещается в изменяющееся магнитное поле и генерирует напряжение на проводнике. Тесла устраивает демонстрации, показывающие, как можно использовать катушку для беспроводного питания ламп накаливания, расположенных на расстоянии нескольких метров друг от друга.
Даже по современным стандартам Тесла намного опередил свое время. Но его амбиции выходили за пределы прототипа катушки Тесла. Он представлял мир, в котором все человечество могло бы иметь дешевое или даже бесплатное электричество. Он раздвинул границы, когда воплотил в жизнь нечто более функциональное.
Башня Уорденклиффа
Башня Wardenclyffe Tower была экспериментальной беспроводной передающей станцией, построенной для телекоммуникации по всему миру.
Однако главной одержимостью Теслы была беспроводная передача энергии. Он получил финансирование на строительство башни, скрыв ее как телекоммуникационную. Он уже доказал, что высокочастотные сигналы могут передаваться без проводов, с помощью катушечных трансформаторов Тесла.
Дальнейшие секретные эксперименты в его лаборатории убедили его в том, что он может передавать электроэнергию, задействуя верхние слои атмосферы Земли. Башня Wardenclyffe была прототипом того, что Тесла представлял как сеть башен, охватывающую весь земной шар и получающую удаленный беспроводной доступ к энергии от центральной станции.
План Теслы состоял в том, чтобы вырабатывать электроэнергию с близлежащего угольного месторождения и отправлять ее по всему миру с помощью башни, подобно тому, как радиоволны без проводов передаются на большие расстояния. В интервью американскому журналу «The American Magazine» Тесла запечатлел свое видение этими яркими словами:
«Питание может быть, и в ближайшем будущем будет передаваться без проводов, для всех коммерческих целей, таких как освещение домов и управление самолетами». Я открыл основные принципы, и остается только развивать их коммерчески. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое устройство, которое даст вам тепло, чтобы готовить, и свет, чтобы читать».
К сожалению, необузданные амбиции Теслы не увидели свет. Путь был перекрыт после того, как Джей-Пи Морган прекратил финансирование проекта, и Тесла обанкротился. Незавершенная башня была снесена в 1917 году для выполнения некоторых финансовых обязательств Теслы. До сих пор концепция беспроводного электроснабжения была погребена под обломками бюрократических, политических и финансовых ограничений.
Беспроводное электричество в наше время
С крушения надежд прошло более 100 лет. Сейчас на рынок выходит несколько компаний с технологиями, которые могут по воздуху безопасно передавать энергию. Emrod, поддерживаемый правительством Новой Зеландии стартап, лидирует в гонке с ожиданиями потребителей, первым в мире развертывая беспроводную передачу энергии высокой мощности на большое расстояние на замену существующих технологии медных проводов.
Для беспроводной передачи энергии на большие расстояния эта технология использует электромагнитные волны. Энергия преобразуется передающей антенной в электромагнитное излучение, улавливается приемной антенной (ректенной), а затем распределяется локально традиционными способами. Система Emrod состоит из четырех компонентов: источника питания, передающей антенны, передающего реле и приемная ректенны.
Схематическая модель теле-энергетической системы Emrod
Во-первых, передающая антенна преобразует электричество в микроволновую энергию и фокусирует электричество в цилиндрический луч. Микроволновый луч посылается через ряд трансляторов до тех пор, пока не попадает в ректенну, которая преобразует луч обратно в электрическую энергию. Просто, правда?
То же самое происходит в любой радиосистеме, но в радио количество энергии, которое достигает приемника, может быть крошечным; уловить нескольких пиковатт — это все, что нужно, чтобы доставить понятный сигнал.
Напротив, именно количество чистой, отправляемой без проводов энергии, наиболее важно. Полученная доля переданной энергии становится ключевым проектным параметром, поэтому необходимо разработать эффективные способы минимизации потерь.
Emrod нашел способ решить эту проблему. Мы переняли идеи радаров и оптики. В сравнении с предыдущими попытками беспроводного питания на основе микроволн, Emrod используют метаматериалы (в реле) для более плотной фокусировки передаваемого излучения.
Потери мощности при такой передаче сведены к минимуму. Генеральный директор Emrod рассказывает, что их система работает с 70% эффективности, что меньше эффективности медных проводов, но в некоторых случаях система все же экономически выгодна. В будущем компания планирует повысить энергоэффективность.
Примечательно, что технология надежна, так как на нее не влияют погодные или атмосферные условия, поэтому непредвиденные перебои с подачей электроэнергии останутся в прошлом.
Один из вопросов, вызывающих озабоченность, — это вопрос безопасности. Электромагнитный луч Emrod работает на частотах, классифицируемых как ISM — промышленные, научные и медицинские лучи, безвредные для здоровья человека.
Пока стартап стремится доставлять энергию в сообщества вне электрической сети, или передавать энергию из источников в открытом море.
Перспективы беспроводного электричества
Можно утверждать, что беспроводное электричество — одно из тех изобретений, которые не обязательны для нас. В конце концов, мы уже передаем электричество, и оно прекрасно работает. Но это далеко не так. Скрытые издержки традиционного способа передачи электроэнергии чрезвычайно высоки.
Прокладка линий электропередач и их техническое обслуживание обходится дорого, не говоря уже о географических ограничениях распространения электрических сетей в отдаленные районы. Корабли в море, электромобили или самолеты могут дозаправляться во время движения. Подход Emrod решил бы проблему дальности, особенно для предлагаемых коммерческих тарифов на электроэнергию.
Но, пожалуй, самой большой революцией будет всемирный переход на экологически чистый, дешевый возобновляемый источник энергии. Осознать масштаб можно с помощью двух фактов.
1. Удаленная передача солнечной энергии
Согласно глобальной статистике по энергии, общее потребление энергии в мире в 2019 году в эквиваленте составило 13 миллиардов тонн нефти (MTOE). Иными словами, это 17,3 тераватта мощности.
Сегодня, если мы покроем солнечными батареями участок земли в 350 км на 350 км, это может дать более 17,4 ТВт мощности. Упомянутая площадь составляет около 43000 квадратных миль. Великая Сахара — это около 3,6 миллионов квадратных миль и более чем 12 часов светового дня, а значит энергии.
Что, если беспроводное электричество станет реальностью, мы используем небольшую часть Сахары, чтобы собрать солнечную энергию и передать ее по всему миру без необходимости в дорогостоящих медных проводных линиях? Не станет ли это серьезным прорывом в решении проблем энергетического кризиса, загрязнения окружающей среды и изменения климата?
2. Космическая солнечная энергия
Гигантские солнечные батареи, собирающие солнечную энергию в космосе и передающие ее обратно на Землю — это выглядит как сумасшедшая сцена из научно-фантастического фильма.
Концептуально разработанная российским ученым Константином Циолковским в 1920-х годах, идея космической солнечной энергетики осталась по большей части призрачной. Но все меняется. Несколько месяцев назад Европейское космическое агентство объявило о своем плане финансирования космической солнечной энергетики как средства решения проблемы изменения климата путем продвижения производства зеленой энергии.
Солнечная энергетическая система космического базирования обеспечит чистой энергией всех и повсюду.
Космическая солнечная энергетика будет использовать концепцию беспроводного электричества. План заключается в преобразовании электричества от солнечных батарей в энергетические волны и использовании электромагнитного поля для передачи ниже, к антенне на поверхности Земли. Затем антенна преобразует волны обратно в электричество.
Благодаря нескольким преимуществам КСЭ — привлекательное решение надвигающегося энергетического кризиса, которое позволит генерировать больше энергии:
Беспроводное электричество: мечта Теслы и наша грядущая реальность
Используя огромный потенциал беспроводного электричества, наше поколение может обрести многое и ничего не потерять. В предстоящие годы мы можем лишь надеяться на то, что нынешние усилия, направленные на реализацию этого грандиозного подвига, дадут положительные результаты. К сожалению, Никола Теслы, великого изобретателя, нет с нами рядом, чтобы он мог увидеть воплощение своей мечты. Я рад поделиться одной из знаменитых цитат Теслы, прекрасным источником вдохновения для начинающих ученых во всем мире:
«Если вы хотите раскрыть секреты Вселенной, думайте о ней с точки зрения энергии, частоты и вибрации».