что такое vss и vdd
Обозначение цепей питания в иностранных материалах
Автор: Kavka
Опубликовано 23.05.2013.
Создано при помощи КотоРед.
Крошка-сын к отцу пришел,
и спросила кроха:
— Что такое Vcc, Vee, Vdd, Vss…
и что их так много?
Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.
VCC, VEE, VDD, VSS — откуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.
Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.
Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).
Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC — плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD — плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.
Для схем с двух полярным питанием VCC и VDD могут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.
Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.
Вот перечень некоторых обозначений (далеко не полный).
Как видно, часто обозначения образуются путём добавления слова, одной или нескольких букв (возможно цифр), которые соответствуют буквам в слове отражающем функцию цепи (например, как Vref).
Иногда обозначения Vcc и Vdd могут присутствовать у одной микросхемы (или устройства), тогда это может быть, например, преобразователь напряжения. Так же это может быть признаком двойного питания. В таком случае, обычно, Vcc соответствует питанию силовой или периферийной части, Vdd питанию цифровой части (обычно Vcc>=Vdd), а минус питания может быть обозначен Vss.
Совмещение в современных микросхемах различных технологий, традиции, или какие-то другие причины, привели к тому, что нет чёткого критерия для выбора того или иного обозначения. Поэтому бывает, что обозначения «смешивают», например, используют VCC вместе с VSS или VDD вместе с VEE, но смысл, обычно, сохраняется — VCC > VSS, VDD > VEE. Например, практически повсеместно, можно встретить в спецификации на микросхемы серии 74HC (HC = High speed CMOS), 74LVC и др., обозначение питания как Vcc. Т.е. в спецификации на CMOS (КМОП) микросхемы используется обозначение для схем на биполярных транзисторах.
Текстов какого либо стандарта (ANSI, IEEE) по этой теме найти не удалось. Именно поэтому в тексте встречаются слова «может быть», «иногда», «обычно» и подобные. Несмотря на это, приведённой информации вполне достаточно, чтобы чуть лучше ориентироваться в иностранных материалах по электронике.
Подсистема питания в микроконтроллере
Для питания любого МК требуются, как минимум, два провода: положительный («плюс», «Power supply») и отрицательный («минус», «Ground reference»). Обозначают их в даташитах и на схемах следующими сокращениями (Рис. 2.8):
Таблица 2.4. Варианты обозначения выводов питания МК
Пары условных обозначений в даташитах
Несколько замечаний о принятых в международной инженерной практике условностях 3. Напряжение на выводе биполярного транзистора по отношению к общему проводу GND обозначается буквой «V» (англ. «Voltage») и одним из подстрочных индексов: «В» (англ. «Base», база), «С» (англ. «Collector», коллектор), «Е» (англ. «Emitter», эмиттер). К примеру, Vc — это напряжение на коллекторе относительно GND. Напряжение между двумя выводами транзистора обозначается двойным индексом: VCE — это напряжение между коллектором и эмиттером.
Индекс, образованный двумя одинаковыми буквами указывает на источник питания: Vcc — положительный, VEE — отрицательный контакт. Образно можно представить себе транзистор проводимости п—р—п, у которого коллектор соединяется с питанием (С-С), а эмиттер с «массой» (Е-Е). Транзисторы проводимости р—п—р в эту стройную теорию не помещаются, сказывается тот факт, что они изначально по технологическим причинам были меньше распространены.
Для полевых ^-канальных транзисторов существуют аналогичные названия, соответственно, VDD (плюс питания, напряжение «сток — сток», «Drain-to-Drain») и Vss (минус питания, напряжение «исток — исток», «Source-to-Source»).
Поскольку современные МК состоят из полевых транзисторов, то логично было бы их выводы питания обозначить парой «^dd’^ss^» а не «^cc’GND», как у микросхем ТТЛ-логики. Однако, здесь начинается самое интересное (Табл. 2.4). Единообразие отсутствует даже в М К одной фирмы и одного семейства.
Пример 1. Микросхема Z86L33 фирмы Zilog, выполненная в корпусе с 28 выводами, имеет название цепей питания «^dq-^ss»’ а та же микросхема в корпусе с 40 выводами — «KCC-GND».
Пример 2. В семействе ATmega фирмы Atmel принято обозначение «KCC-GND» (далее в книге как основное), а в семействе ARM той же фирмы «Kdd-GND».
Пример 3. МК К1816ВЕ49 имеет два вывода питания, один из них Vcc является основным, а другой VDD служит для подключения резервной батареи.
Наверное, дальше всех в казуистике названий продвинулась микросхема TMS320F фирмы Texas Instruments, имеющая вывод общего провода с «двойной фамилией» KSS1AGND.
Тем, кто часто работаете разными семействами МК, пригодится простое мнемоническое правило — поскольку за буквой «С» латинского алфавита сразу следует буква «D», значит Vcc и VDD относятся к одной и той же цепи, т.е. к питанию. Вывод GND ни с чем не спутаешь, это «земля», «общий провод». Остаётся обозначение Vss, которое методом исключения приравнивается к GND.
Кстати, слово «вывод» (англ. «pin» — булавка) употребляется в электронике для микросхем, транзисторов, конденсаторов, диодов, резисторов, оптопар, катушек индуктивности. Слово «контакт» — для разъёмов, переключателей, джамперов, реле, перемычек, а вот сленговые названия «ноги, ножки» более характерны человеку, нежели электронному изделию.
Организация питания в МК
Двухпроводное питание современным МК досталось по наследству от «прадедушек» i8048/i8051. Сейчас оно в основном применяется в малогабаритных МК с числом выводов 6. 18, например, в Atmel ATtiny, Microchip PIC10/12. Мера вынужденная, т.к. свободных выводов катастрофически не хватает.
С развитием технологии в состав М К стали вводить аналоговые узлы АЦП/ЦАП, которые весьма чувствительны к помехам. Произошёл естественный переход на трёх- (Рис. 2.9), четырёх- (Рис. 2.10, а. в) и многопроводные (Рис. 2.11, а, б) схемы питания.
Добавление цепей AVCC (Analog УСС) и AGND (Analog GND) позволяет развязать между собой аналоговые и цифровые части микросхемы, уменьшить импульсные помехи, повысить инструментальную точность каналов АЦП и ЦАП.
Переменные резисторы ЯА и RD отличаются между собой по сопротивлениям. Во времени они тоже изменяются по разным законам. Например, в рабочем режиме «цифровой» ток значительно больше «аналогового». Следовательно, RA больше, чем Rd. В ждущем режиме ситуация может измениться с точностью до наоборот.
Резисторы Rg, Ry — это омические сопротивления, непосредственно измеренные тестером между выводами микросхем. Их наличие или отсутствие не поддаётся логическому предсказанию и обычно не указывается в даташитах. Например, в одном и том же семействе Atmel ATmega у микросхем ATmega8 и ATmega 16 питание выполняется, соответственно, по схемам, изображённым на Рис. 2.10, в и Рис. 2.10, б.
В каждом конкретном случае разобщённость внутренних цепей надо проверять экспериментально, не надеясь на знаменитый славянский «авось». Абсолютные значения сопротивлений резисторов RG, Rw у разных фирм отличаются, что связано с особенностями технологии изготовления.
Многопроводные схемы особенно характерны для 16- и 32-битных МК, у которых питание разделяется на несколько потоков. А именно: ядро процессора, периферийные буферы, аналоговая часть, система фазовой автоподстройки частоты (ФАПЧ), генераторный блок и т.д. Названия цепей встречаются самые экзотические: VDDA2, KDD18, KDDC0RE, К33, DVCC, VDDAKSS4, DVSS, KSSA. Рекордсменом в этой области можно считать М К семейства Atmel АТ91 САР, где в одном корпусе насчитывается 12 неповторяющихся названий выводов питания и 8 вариаций названий общего провода. Каждая из силовых цепей в свою очередь продублирована несколькими одноимёнными выводами с разных сторон четырёхгранного корпуса, что позволяет равномернее распределить токовую нагрузку.
Фильтрация помех
Если посмотреть на осциллограмму тока потребления МК, то в ней можно заметить низкочастотную (НЧ) и высокочастотную (ВЧ) составляющие. Как следствие, колебания тока приводят к появлению НЧ- и ВЧ-помех на зажимах питания. Для их ослабления используют стандартные решения в виде связки конденсаторов (Рис. 2.12, Рис. 2.13), 1С- и ДС-фильтров (Рис. 2.14, Рис. 2.15).
Неполярные конденсаторы С1, C3 ослабляют ВЧ-помехи. Их наличие обязательно возле любого МК, причём максимально близко от выводов питания (не более 50 мм). Конденсаторы должны быть керамические, например, К10-17 или поверхностно монтируемые чип-коденсаторы ходовых размеров 0603. 1206.
Базовый номинал ёмкости 0.1 мкФ выбран условно, как легко запоминающийся. Устройство будет нормально функционировать и при 0.068 мкФ, и при 0.15. 0.22 мкФ. Иногда параллельно конденсатору С1 ставят ещё одну неполярную ёмкость 1000 пФ, которая снижает уровень радиоизлучений. Обычно такой способ применяют в профессиональной аппаратуре, чтобы войти в допуск при проверках изделия на электромагнитную совместимость и радиопомехи.
Полярный конденсатор С2 желательно использовать танталовый (а не алюминиевый), поскольку он лучше подавляет импульсные помехи. При выборе ёмкости можно руководствоваться эмпирическим правилом, которое заимствовано из многолетней практики применения сетевых источников питания — 1000 мкФ на каждый ампер тока нагрузки. К примеру, если цифровая часть МК потребляет ток 10. 30 мА, то достаточно поставить конденсатор С2 ёмкостью 10. 30 мкФ с рабочим напряжением не менее 6.3 В. Знатоки рекомендуют выбирать более высоковольтные конденсаторы с напряжением 10. 16 В, поскольку повышается надёжность в эксплуатации и, главное, снижается внутренний импеданс, что позволяет лучше фильтровать помехи.
Конденсатор С2 обязателен при батарейном питании в качестве накопителя энергии, а также при значительных колебаниях и скачках напряжения. В некоторых случаях его функцию выполняет конденсатор фильтра сетевого выпрямителя или стабилизатора напряжения. Как вариант, конденсатор С2 может физически размещаться вблизи других цифровых микросхем и косвенно воздействовать на цепь питания МК.
Ферритовая «бусинка» FBI (Ferrite Bead) представляет собой проводник, пропущенный через ферритовое кольцо или цилиндр. Этот элемент способствует снижению высокочастотных излучений, которые можно зафиксировать лишь специальными измерительными радиоприёмниками в экранированной «безэхо-вой» камере. Такие испытания обязательны при сертификации продукции.
В любительской практике фильтр FBI ставится редко, разве что в связной спортивной аппаратуре, где помехи от МК могут существенно повлиять на качество принимаемого радиосигнала и значительно ухудшить чувствительность.
Таблица 2.5. Пределы изменения напряжения питания МК
Напряжение питания [6]
2.7. 3.6; 3.0. 3.6; 4.5. 5.5; 4.75. 5.25
1.8. 5.5; 1.8. 6.5; 2.0. 5.5; 2.7. 5.5
Диапазон питания
Традиционно в любительских разработках используют питание 5 В, хотя в последнее время всё чаще переходят на диапазон 2.7. 3.6 В. Судя по форумам в Интернете, МК с узким и широким диапазоном питания изготавливаются по одному и тому же технологическому процессу, но вследствие естественного разброса параметров, разбраковываются на группы «хуже — лучше». Это не означает, что МК с диапазоном 4.5. 5.5 В не будет работать при пониженном до 3 В питании. Будет! Однако нельзя гарантировать его устойчивый запуск при крайних значениях температуры, тактовой частоты и нагрузок.
Общее правило — когда требуется максимальное быстродействие, то повышают напряжение питания и выбирают узкодиапазонный МК, когда требуется минимальный ток потребления — наоборот.
Подводя итоги обзора подсистемы питания, предлагается для идеализированного МК выбрать следующие усреднённые характеристики:
Практические рекомендации
Как показывает печальный опыт электронщиков, М К весьма «нежные» устройства по отношению к броскам питания и не любят перегрузок напряжения, даже кратковременных. Если имеется вероятность попадания на микросхему в аварийном режиме уровней более 5.5. 7 В (для каждого МК в даташите по-разному), то необходимо ставить элементы защиты — стабилитроны, сапрессоры.
Частая ошибка увлечённых экспериментаторов заключается в установке МК в панельку «задом-наперёд», противоположной стороной. Получается, что вместо плюса питания может подаваться минус, линии портов могут соединяться с об
щим проводом и т.д. Подавляющее большинство МК такие опыты выдерживают с достоинством и без разрушения. Здесь важно следить за длительностью воздействия неблагоприятных факторов, чем меньше время, тем лучше. Подача питания обратной полярности вызывает температурный разогрев корпуса МК, но если вовремя снять напряжение, то микросхема, как правило, остаётся целой.
Нумерация выводов питания МК не стандартизована, в отличие от серийных микросхем ТТЛ- и КМОП-логики. Известное правило: «Старший по номеру вывод — это Ксс, а вдвое меньший по номеру вывод — это GND» распространяется лишь на некоторые типы МК (в частности, Atmel ATmega8515), и то, для совместимости с цоколёвкой микросхем с ядром MCS-51. Лучшим вариантом с точки зрения помехоустойчивости и частотных свойств является размещение выводов подсистемы питания в центре корпуса (например, Atmel ATmega8535). При этом сокращается путь тока от источника питания к процессорному ядру и снижается индуктивность выводов. На низких тактовых частотах это не стол ь существенно, а на высоких — приносит ощутимую пользу.
Если корпус микросхемы четырёхгранный, то «земляных» выводов GND, как правило, много и они дублируют друг друга со всех четырёх сторон. Таким нехитрым способом повышается суммарная максимальная токовая нагрузка на линии портов МКдо 200. 400 мА без перегрева кристалла.
При разработке топологии печатной платы следует придерживаться общих рекомендаций по проектированию аналого-цифровых устройств:
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема. (Выпуск 1)
Аналоговое и цифровое питание. Мифы и реальность
Иногда разводишь ты такой плату микроконтроллера или изучаешь документацию к чипу и натыкаешься на такую картину: два питания — аналоговое и цифровое. Две земли тоже не редкость. Я встречал людей, которые даже после пары лет работы в индустрии не всегда знали точно, зачем и когда нужно разделять питание и землю и как это корректно делать. Мы попробуем сегодня пробраться вниз по кроличьей норе. В том числе станут понятны практики подключения аудио оборудования проводами, которые покупаются за золотые слитки.
Дисклеймер
Данный материал предназначен для лиц, занимающихся электроникой и желающих для себя в доступной и простой форме ознакомиться с проблемой разделения питания, возвратных путей, и т.д. Для более глубокого понимания я отсылаю к профессиональным методическим материалам, которые могут дать куда более детальное понимание вопроса.
Разделение компонентов.
Принципиально, компоненты часто делятся на цифровые и аналоговые. И тем и другим требуется питание, и иногда его принято разделять, применяя при этом задаточные техники, вроде такой, как на рисунке:
Рис. Слева направо: Питание и преобразователь питания, по центру кристалл или чип тактирования и два цифровых чипа, справа один аналоговый чип и входы/выходы для аналоговых коннекторов/антенн.
Давайте разберёмся в чем специфика. В качестве цифрового компонента представим, например, абстрактный микроконтроллер или процессор (с которым многие из вас знакомы). Каждый такт своей работы в нем переключают транзисторы, определенным образом, меняя состояния его выходов. Миллионы транзисторов образуют устройство, которое каждый такт выполняет операции, но между тактами замирает, потребляя лишь немного энергии. Основной объём энергопотребления происходит у цифровых компонентов в момент переключения. То есть если, допустим, микроконтроллер работает на частоте в 10 МГц, то каждые 100 нс мы будем наблюдать, как огромное количество тока будет затекать в него. Если потребление тока микроконтроллера, например, 100 мА, то можно считать этот ток средним, а в моменте, на время переключения фронта потребление может доходить до ампер, оставаясь небольшим в остальное время. Почему так? Если вам правда любопытно, то вот схема, которая поможет это понять:
На рисунке представлена самая обычная комплементарная КМОП пара или же инвертор. В точке VDD к ней подводится питание, а в точке VSS земля. Поведение этого простого элемента очень сильно помогает понять поведение чипа в целом, ибо цифровая электроника и состоит из подобных ступеней комплементарных транзисторов, соединяющих землю и питание, образующих логические элементы. Комплементарными они называются потому, что дополняют друг друга, позволяя соединять точку Q либо через верхний P канальный транзистор (М1) к питанию, либо через нижний N канальный (М2) к земле. Допустим, состояние на входе меняется с малого напряжения на большое. Транзисторы устроены так, что теперь верхний, «P» канальный ключ закрывается, а нижний «N» канальный открывается. При этом в данной системе протекают два тока. Первый ток — ток зарядки затворов, которые являются по сути конденсаторами, второй ток — ток зарядки выхода этого элемента через транзистор. Получается скачок потребления тока и мощности. Чем чаще переключаем, тем больше потребляем. Помимо этого, любая индуктивность между источником и ключами будет приводить к тому, что она будет сопротивляться току, тем самым приводя к падению напряжения на VDD у самого транзистора, и при больших значениях паразитной (то есть нежеланной) индукции, напряжение будет падать до тех пор, пока прибор просто не сможет корректно переключаться.
То есть работать и выполнять наши операции. Для предотвращения этого эффекта мы можем поставить между питанием и землей демпфирующий конденсатор. Он должен быть установлен после паразитной индукции. То есть как можно ближе к Пинам питания чипа. Как идеальный конденсатор, он будет препятствовать резкому изменению напряжения в точке VDD, запасая энергию, и компенсируя индуктивность.
Вот на рисунке добавился демпфирующий конденсатор, выступающий в роли временной батарейки, из которой наша схема может вытягивать энергию. Несмотря на индуктивность, Которая сопротивляется этому действию.
Вот, например; демпфирующие конденсаторы на плате видеокарты возле любых цифровых чипов.
Если вы разводили плату с микроконтроллером могли, то читать в разделе питания о том, какие именно конденсаторы можно ставить. По ним, есть очень классное видео. Оно во многом подробно адресует вышеупомянутые принципы. Будет неплохим дополнением.
Современный процессор может потреблять 200 Вт при напряжениях работы в 1 В, тем самым цепи его питания должны генерировать токи так, чтобы напряжение оставалось примерно в рамках этого 1В. Причём нужно помнить, что из-за того, что я описал выше, следует факт, что 200 А — это средний ток, а пиковый будет в разы выше. Таким образом, скачки тока могут стать огромной проблемой вашего цифрового дизайна питания без должной обвязки конденсаторами.
Теперь отвлечемся от мира цифровой электроники и подумаем про аналоговую. Тут все совсем иначе. Как ни странно, в качестве аналогового компонента можно взять тот же инвертор:
Вход и выход инвертора как аналогового компонента.
Если, скажем, это усилитель аудио сигнала, и питание осциллирует, то и выходное напряжение такой системы будет осциллировать вместе с ним, что является очень нежелательным. Кроме того, если мы сравним потребление энергии такого компонента, то оно будет меняться вместе с напряжением на выходе, ибо любой аналоговый компонент изменяет напряжение на выходе, когда меняется ток через некий внутренний компонент (примерно, как напряжение на резисторе пропорционально току через него). Можно сказать, что потребление аналогового компонента тоже может меняться скачком, но изменение это по времени характерно частотам сигнала, с которым он работает. Это не значит, что он не потребляет энергию скачками, и иногда, демпферы тут тоже бывают нужны, но особенность в том, что скачки эти имеют другой характер и очень зависят от типа и частоты компонента. Однако точно справедливо, что от всплесков и скачков питания этот прибор будет работать хуже.
Что же по вашему произойдет, если просто поместить двух этих парней рядом на плате? Возможно, вы уже догадались. Цифровой компонент будет не по злой воле приводить к скачкам напряжения вблизи себя, в лучшем случае, и к инжекции резонансов в цепь питания на различных частотах, в худшем. Из-за чего аналоговый компонент начнёт страдать, выдавая неправильные значения. Таким образом, можно сделать один главный вывод: часто, цифровые компоненты или PWM (ШИМ) силовая электроника очень сильно загрязняют линию питания, при этом сами не являются чувствительными к нему.
На одном чипе
Откуда же на одном цифровом чипе пины аналогового и цифрового питания? В этом нет ничего удивительного, просто даже скажем, цифровой микроконтроллер содержит в себе много аналоговых компонентов: АЦП, ЦАП, PLL, таким образом, если говорить очень грубо, то внутри одного чипа существует бок о бок аналоговая подсистема, питающаяся иногда от аналогового питания, и цифровая подсистема, питающаяся от цифрового питания и загрязняющая его. Поэтому в некоторых чипах питания разделяют.
Решения
Как же решить эту дилемму? На самом деле мы уже располагаем главными инструментами для решения этой проблемы — конденсаторы, катушки, а зачастую просто наша голова и здравый смысл. Итак, вот простые правила:
Не размещать аналоговые компоненты и цифровые рядом. Думать о том, как питание будет заходить на плату и как уходить с неё.
Делать длину земли от всех чипов минимальной (уменьшает индукцию, а значит и колебания напряжения/тока), а при сложном дизайне всегда оставлять один цельный полигон на питание, а один или даже два на землю. Подробно опять же здесь.
Использовать ферритовые бусины (Ferrite bead) (о них далее).
Аккуратно обращаться с высокочастотными линиями, особенно если через них течет ток. Смотреть, чтобы под ними всегда был возвратный путь земли. Желательно на той же стороне платы (если имеется 4 слоя, то два из них находятся по одну сторону)
Размещение компонентов
Например, на этом дизайне с канала Phil’s lab хорошо видно, как разделены аналоговые (справа) и цифровые (слева) компоненты. Кроме того, и земля тоже может быть отделена. Причём нужно помнить, что как ток питания, так и ток земли может изменяться скачками, а значит, нужно смотреть, чтобы у каждого компонента был свой короткий путь либо к источнику, либо «питающему» его конденсатору. Можно подумать об этом как о проектировании автострады. Нужно помнить, что у каждого крупного центра города должен быть свой источник автомобильного потока, и свой возвратный путь для автомобилей. Если у одного чипа образуется «пробка на съезде или выезде», это не должно быть бутылочным горлышком для другого. Проблема только в том, что на частотах выше 100 КГц понятие короткого пути меняется. Подробнее тут. В общем, обычно просто делают целый слой под питание или землю.
Ферритовые бусины
Ферритовые бусины это пассивные компоненты, которые по сути своей являются катушками индуктивности. Последние, как мы выяснили, умеют препятствовать скачкам тока. Вот пример такого компонента. Как видно из его характеристики, он обладает значимым импедансом на частотах шума, более 10 МГц при токах меньше максимальных.
Размещая такой компонент между аналоговым и цифровым питанием, мы легко можем погасить часть скачков, которые могут возникнуть и тем самым обезопасить себя. Нужно только не превышать максимально допустимый ток. Также при больших токах нагрузки данные катушки перестают иметь желаемый импеданс на больших частотах.
Пример разделения питания, для питания аналоговой части микроконтроллера STM32
Единственное, что нужно помнить, чаще всего грамотное расположение компонентов решает куда больше проблем, чем бусины, или другие активные решения. Поэтому не думайте, что они просто как костыль решат все ваши проблемы. Но они и правда могут сильно помочь.
Примеры
Вот, например, картинка из документации цифро-аналогового чипа задержки для аудио. На нем можно собрать простую педаль с эффектом Delay для гитары. Только вот загвоздка: тут есть аналоговое и цифровое питание отдельно. Пин 3 — это аналоговая земля, а пин 4 — цифровая. И к удивлению многих, если соединить их вместе, оно просто не запустится. В некоторых источниках, просто добавляют между пином 3 и 4 резистор и этого хватает, однако вы для своего дизайна могли бы использовать любые вышеупомянутые принципы. Если соединить два питания только возле входа питания, а не у самого чипа, быть может, одно это бы уже решило бы проблему. Ну, может ещё лучше там же поставить входной конденсатор. Пишите в комментариях ваши реализации питания для такой схемы.
Ещё пару интересных видео и случаев:
Если ты это читаешь, то можешь и сам нам помочь!
Аналоговая электроника очень требовательна к навыкам, и я использую их, работая в компании, в которой мы разрабатываем крупнейший в Европе сканер фотореконструкции людей, что требует немалых познаний именно в аналоговых сигналах, если интересно, вы можете заказать сканирование и создать идентичного 3D двойника, или стать частью нашей команды! Мы ищем специалистов по компьютерному зрению, инженеров, программистов и не только!
Выводы
Поговорили совсем немного про то, что разные элементы по-разному потребляют питание и по-разному нагружают линию питания, про то, что разным чипам нужно разное качество питания, и про то, как его грамотно обеспечивать. Были приведены ссылки на более методические источники от гуру индустрии. Примеры, где использование актуально. Надеюсь, это знание будет вам полезно, пишите пожелания, хотелось ли бы вам более подробное, или более поверхностное и “Делай так” описание. Спасибо и удачных вам дизайнов!