Что такое ускоритель частиц
Что такое ускоритель частиц? Как это работает?
История ускорителя частиц восходит к 1930 году, когда ученые разработали трансформатор на 200 000 вольт и ускоряли протоны по прямой траектории. Хотя машина не выполнила свое предназначение, она начала поиски ускорителей частиц более высокой энергии, которые продолжаются и по сей день.
В 20-м веке ускорители частиц были названы атомными разрушителями. Название сохраняется, несмотря на то, что современные ускорители создают столкновения между двумя субатомными частицами, а не атомными ядрами.
Столкновения таких частиц могут помочь ученым понять, как работает Вселенная. Ускорители частиц высоких энергий чрезвычайно полезны для фундаментальных и прикладных исследований в различных областях, от электроники и медицины до международной безопасности.
Мы рассмотрели некоторые из наиболее интересных фактов и статистических данных о современных ускорителях частиц, которые пробудят в вас интерес к физике частиц. Давайте начнем с основного.
Типы ускорителей частиц
Существует два основных типа ускорителей:
1) Электростатические ускорители: используйте статические электрические поля для увеличения скорости заряженных частиц. Положительная частица притягивается к отрицательно заряженной пластине, а отрицательная частица притягивается к положительно заряженной пластине.
Они простые, менее дорогие и имеют ограниченный выход энергии, что означает, что они не могут разогнать частицы до чрезвычайно высоких скоростей. Максимальная кинетическая энергия частиц зависит от ускоряющего напряжения, которое ограничено явлением, называемым электрическим пробоем.
Генератор Ван де Граафа и генератор Кокрофта-Уолтона являются наиболее распространенным примером электростатических ускорителей. Катодно-лучевая трубка любого старого компьютерного монитора является небольшим примером ускорителя этого типа.
2) Электродинамические ускорители: используйте изменяющиеся электромагнитные поля (либо колеблющиеся радиочастотные поля, либо магнитную индукцию) для ускорения частиц.
В этих устройствах частицы пропускаются через одно и то же электромагнитное поле несколько раз, поэтому они могут достигать гораздо более высоких скоростей, чем в электростатических ускорителях. Максимальная кинетическая энергия частиц не ограничена напряженностью ускоряющего поля.
Эти ускорители можно подразделить на два класса:
Как это работает?
На базовом уровне ускорители частиц генерируют пучок заряженных частиц, который используется для многочисленных исследовательских целей. Обычно пучок состоит из заряженных субатомных частиц (таких, как протоны и электроны), но в некоторых случаях используются целые атомы более тяжелых элементов (таких, как уран и золото).
Например, в кольцевых ускорителях частицы непрерывно ускоряются в круглой трубе. Напряженность электрического поля увеличивается с каждым проходом, повышая уровень энергии пучка частиц.
Когда частицы достигают необходимой скорости, цель (например, тонкий кусок металлического листа) помещается в их дорожку, где детектор частиц анализирует столкновение.
В целом, существует 6 ключевых компонентов в ускорителях частиц:
А) Частица S : обеспечивает ускорение частиц (таких, как электроны или протоны). Один баллон с газообразным водородом, например, может быть источником частиц. Один атом водорода содержит один электрон и один протон.
Б) Металлическая труба: содержит вакуум, в котором движется пучок частиц. Вакуум поддерживает беспыльную среду для беспрепятственного перемещения электрически заряженных частиц.
С) Электромагниты: контролируют движение частиц, когда они проходят через металлическую трубу.
Д) Электрические поля: регулярно переключаются с положительного на отрицательный. Это генерирует радиоволны, которые ускоряют заряженные частицы.
E) Цели: когда частицы достигают желаемой скорости, они сталкиваются с неподвижной целью. Иногда сталкиваются два пучка частиц.
F) Детекторы: регистрируют столкновение частиц и выявляют радиацию или субатомные частицы, генерируемые в процессе.
Самые большие ускорители частиц в мире
В настоящее время в мире действуют более 30 000 ускорителей частиц. Из них 44% используются для лучевой терапии, 41% для ионной имплантации, 9% для промышленной обработки и 4% для низкоэнергетических и биомедицинских исследований. Только 1% существующих ускорителей способны генерировать энергии свыше одного миллиарда электрон-вольт или 1 ГэВ.
В настоящее время Большой адронный коллайдер является самым мощным ускорителем частиц в мире. Он способен ускорять два пучка протонов до энергии 6,5 тера электрон-вольт. Когда эти два мощных пучка сталкиваются, они создают энергию центра масс 13 тераэлектронвольт (ТэВ).
Карта Большого адронного коллайдера| ЦЕРН
Машина лежит в туннеле глубиной 175 метров. Это 27 километров в окружности, и его кольцо магнитов может создавать магнитное поле 8.36 Тесла.
Структура содержит более 1000 дипольных магнитов, которые удерживают частицы, движущиеся почти со скоростью света: одна частица движется по 27-километровому кольцу 11 000 раз в секунду.
Он был разработан Европейской организацией ядерных исследований в сотрудничестве с более чем 10 000 исследователей и сотнями лабораторий и университетов из более чем 100 стран.
Частица бозона Хиггса, которую иногда называют «частицей Бога», была обнаружена в Большом Адронном Коллайдере в 2012 году. В том же году физики сформировали кварк-глюонную плазму, которая могла достигать 5,5 триллиона градусов по Цельсию — самой высокой температуры, зарегистрированной рукотворной машиной.
Бозон Хиггса впервые наблюдался во время экспериментов на Большом адронном коллайдере | Изображение предоставлено: Designua / Shutterstock
В ближайшие годы эта гигантская машина позволит физикам проверить различные теории физики элементарных частиц, включая анализ свойств бозонов Хиггса, поиск новых элементарных частиц, предлагаемых суперсимметричными теориями, а также других загадок во вселенной.
Применение
Применение в медицине. Ежегодно миллионы пациентов получают диагностику и лечение на основе ускорителей в клиниках и больницах по всему миру. Ускоренные частицы (такие, как протоны, электроны или более тяжелые заряженные частицы) используются для уничтожения раковых клеток и создания детального изображения изнутри тела.
Потребительские товары: ускорители частиц в настоящее время используются в различных промышленных процессах, начиная от сшивания пластмассы для термоусадочной пленки и заканчивая производством компьютерных чипов.
В частности, ускорители ионных пучков используются для изготовления электронных микросхем и упрочнения поверхностей материалов, подобных тем, которые используются в искусственных соединениях. Ускорители с электронным пучком, с другой стороны, обычно используются для изменения свойств материала, таких как пластические модификации для обработки поверхности.
Что еще они могут сделать?
Анализ столкновений частиц высоких энергий может быть полезным для фундаментальных и прикладных исследований в науке. Это может помочь физикам решить некоторые фундаментальные проблемы в физике, включая глубокую структуру пространства-времени и взаимосвязь между общей теорией относительности и квантовой механикой.
Столкновение двух протонов создает поток частиц мусора | CERN
Вот четыре основных вопроса, на которые ученые надеются ответить в течение следующих нескольких десятилетий:
По словам Стивена Хокинга, технология, основанная на ускорителе частиц, является самой близкой вещью к машинам времени. В 2010 году он написал статью, объясняющую, как можно путешествовать во времени.
Ускоритель частиц
Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРНе, представляет собой кольцо периметром 27 километров.
В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.
Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.
Содержание
Конструкции ускорителей
Высоковольтный ускоритель (ускоритель прямого действия)
Ускоритель заряженных частиц (электронов) в котором ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество В.У. по сравнению с др. типами ускорителей – возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95%) и возможностью создания установок большой мощности (500кВт и выше) что весьма важно при использовании ускорителей в промышленных целях.
Электростатический ускоритель
Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.
20МВ определяют максимальную энергию частиц
5 МВ преобразуя низкое переменное напряжение по схеме диодного умножителя.
Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка, кинескоп, рентгеновская трубка и др.).
Циклотрон
Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т. н. дуантами, приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.
Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году Лоуренсом, за что ему была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50МэВ/нуклон.
Бетатрон
Другое название: индукционный ускоритель. Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне
20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10—100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).
Впервые бетатрон был разработан и создан Видероэ в 1928 году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в 1940—1941 гг. в США.
Микротрон
Он же — ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.
Фазотрон (синхроциклотрон)
Принципиальное отличие от циклотрона — изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600—700 МэВ.
Синхрофазотрон
Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.
Синхротрон
Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.
Лазер на свободных электронах (ЛСЭ)
Специализированный источник когерентного рентгеновского излучения.
Линейный ускоритель
Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускоритель, в котором частицы пролетают однократно. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени (!) энергии частиц.
Колла́йдер
Он же ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.
Применение
См. также
Ссылки
Полезное
Смотреть что такое «Ускоритель частиц» в других словарях:
УСКОРИТЕЛЬ ЧАСТИЦ — УСКОРИТЕЛЬ ЧАСТИЦ, см. УСКОРИТЕЛЬ … Научно-технический энциклопедический словарь
ускоритель частиц — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN particle accelerator … Справочник технического переводчика
УСКОРИТЕЛЬ ЧАСТИЦ — установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости… … Энциклопедия Кольера
ускоритель частиц — dalelių greitintuvas statusas T sritis fizika atitikmenys: angl. particle accelerator vok. Teilchenbeschleuniger, m rus. ускоритель частиц, m pranc. accélérateur de particules, m … Fizikos terminų žodynas
УСКОРИТЕЛЬ — (ускоритель элементарных частиц), в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ устройство для увеличения энергии заряженных частиц путем увеличения их скорости при помощи переменных электрических полей в вакуумной камере. Для того, чтобы энергия частиц… … Научно-технический энциклопедический словарь
Ускоритель — заряженных частиц установка для получения частиц высоких энергий в физике и технике Ускоритель (в ракетной технике) движитель ракеты Ускоритель (графический) устройство для ускорения работы видеоадаптера в компьютере Ускоритель (клавиатурный)… … Википедия
ускоритель (заряженных частиц) — Электрофизическое устройство, предназначенное для увеличения кинетической энергии заряженных частиц. Примечание Принято, что в ускорителях энергия частиц увеличивается более чем на 0,1 МэВ. [ГОСТ Р 52103 2003] Тематики ускорители заряженных… … Справочник технического переводчика
ускоритель с переменно-фазовой фокусировкой — Линейный резонансный ускоритель с трубками дрейфа, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем возможно чередование ускоряющих и фокусирующих зазоров между трубками дрейфа.… … Справочник технического переводчика
ускоритель с пространственно-однородной квадрупольной фокусировкой — Линейный резонансный ускоритель, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем ускоряющее поле имеет квадрупольную симметрию. Примечание Возможные модификации таких… … Справочник технического переводчика
ускоритель заряженных частиц — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle accelerator … Справочник технического переводчика
Ускорители частиц – инструменты научных открытий
Сегодня из-за все более высоких запросов и усложнения передовых методов исследований растут требования к научным установкам в самых разных областях: от медицины и биологии до физики плазмы и элементарных частиц. Не единственный, но широко распространенный и эффективный подход – строительство больших (и дорогостоящих) научно-исследовательских комплексов, уникальных научных установок, рассчитанных на одновременное использование большим количеством групп и исследователей, почти всегда с широким международным участием. Такие мегасайенс-установки являются не отдельными центрами, университетами и лабораториями, а общенациональными или даже международными проектами. Среди наиболее известных уже действующих установок – ускорительные комплексы в ЦЕРН (Швейцария) и ОИЯИ (Дубна, Россия).
В СССР в 1980-х гг. было начато строительство ускорительного комплекса УНК периметром 21 км на рекордную энергию столкновений для изучения рождения новых элементарных частиц. Из-за распада страны и сокращения финансирования науки проект был закрыт в середине 1990-х гг. В последующие два десятилетия ситуация постепенно выравнивалась: РФ стала принимать сначала умеренное, а затем все большее участие в зарубежных мегасайенс-проектах, таких как БАК (LHC), ITER, XFEL, FAIR, ESRF. «Первой ласточкой» в России стал международный коллайдер ионов NICA, строительство которого началось в 2016 г. в Дубне. А в 2019 г. вышел Указ Президента РФ от 25.07.2019 N 356, инициировавший работы по созданию еще пяти таких установок в России. Примерная стоимость каждой – от 10 до 50 млрд руб., строиться и настраиваться они будут в течение пяти лет или более. При этом каждая из них даст уникальные возможности сотням, а в идеале и тысячам исследователей, включая международные коллаборации.
Большинство этих установок базируется на уникальных ускорителях заряженных частиц высоких энергий. Строящийся в Кольцово источник синхротронного излучения СКИФ (Сибирский кольцевой источник фотонов) – первый в России источник так называемого четвертого поколения и будущая гордость Новосибирского научного центра. Он станет центром притяжения не только для всех специалистов новосибирского Академгородка, но и Сибири, России, всего мира. Синхротронное излучение электронов в рентгеновском диапазоне позволит глубоко заглянуть в структуру вещества: от биологических объектов и медпрепаратов до горных пород и полупроводников. Благодаря очень сложной магнитной системе СКИФ будет давать пучок синхротронного излучения с уникальной яркостью, в несколько раз превосходящей как уже работающие источники подобного класса в Швеции и Бразилии, так и те, создание которых только планируется в мире
Эта публикация является авторским переводом статьи*, опубликованной в апрельском номере Physics Today, главном журнале Американского физического общества. Статья была написана по заказу редакции. Причиной послужило то, что в Европе и Америке начиная с 2019 г. в сообществах ученых из разных областей науки широко обсуждаются возможные приоритеты исследований на следующее десятилетие и в более отдаленном будущем. На основании выводов, сделанных в результате обсуждений, которые могут продолжаться год-полтора из-за широкого охвата участников и мнений, финансирующие организации планируют выделить средства на фундаментальные научные исследования. Успехи во многих областях наук критическим образом зависят от ускорителей трех основных классов: коллайдеров, источников синхротронного излучения и источников нейтронов. Поэтому состояние и перспективы физики и техники ускорителей интересуют практически всех. Англоязычная версия статьи вызвала огромный интерес, множество отзывов и даже лидировала в рейтинге популярности публикаций журнала. Я очень признателен редакции журнала «НАУКА из первых рук» за приглашение опубликовать ее на русском языке. Надеюсь, что мой рассказ и выводы будут интересны и в России, которая очень динамично начала развивать мегасайенс.
* Reproduced from Shiltsev V. Particle beams behind physics discoveries // Physics Today. 2020. V. 73. № 4. P. 32.
URL: https://doi.org/10.1063/PT.3.4452, with the permission of the American Institute of Physics
В ночь на 30 июня 2017 г. группа физиков-ускорительщиков собралась в Центре управления ЦЕРН (CERN). Некоторые участники были из отделов и групп ЦЕРН, другие, как я, даже перелетели через океан. Нашей целью была проверка новой идеи по коллимации (формированию тонкого параллельно идущего потока) пучка Большого адронного коллайдера (БАК), имеющей решающее значение для грядущего улучшения самого мощного ускорителя в мире. Для изучения физики пучка БАК была назначена восьмичасовая смена. Как это часто бывает на крупных ускорительных установках, ускорительщики получают полный контроль над своими машинами поздно, чтобы минимизировать неудобства для пользователей и физиков, занимающихся детекторами частиц высокой энергией, и избежать многочисленных дневных отвлекающих факторов.
Одна ночь из жизни физика-ускорительщика
Мы планировали получить доступ к пучку в 10:00 вечера, но из-за проблем с криогеникой коллайдера в последнюю минуту нам пришлось ждать до полуночи. Стефано Редаелли, глава группы коллимации БАК, мой давний коллега и близкий друг, планировал это исследование в течение нескольких предыдущих месяцев. Для изучения физики пучка БАК была назначена восьмичасовая смена.
В ожидании пучка мы несколько раз просмотрели подробный пошаговый план нашего эксперимента, подкрепляясь кофе из знаменитой эспрессо-кофеварки Центра управления. БАК имеет более ста коллиматоров – армированных волокном графитовых пластин длиной 1,2 м – для перехвата паразитных протонов (Brüning & Collier, 2007). Они защищают сверхпроводящие магниты с полем 8 Тл и другое чувствительное оборудование от повреждения даже малым числом протонов с рекордной энергией 6,5 ТэВ (что примерно в 7 тыс. раз больше, чем энергия массы покоя), которые по каким-то причинам далеко отклоняются от заданной центральной траектории. Это происходит, к примеру, когда протоны сталкиваются либо с молекулами остаточного газа внутри вакуумной камеры, либо с пучком протонов противоположного направления в точках взаимодействия внутри одного из массивных детекторов новых элементарных частиц.
Между параллельными пластинами коллиматоров, расположенных в нескольких миллиметрах друг от друга, пролетают со скоростью света пучки протонов диаметром около 0,25 мм, чья энергия (примерно 500 МДж) сравнима с кинетической энергией летящего авиалайнера средних размеров. По сути, именно коллиматоры являются ближайшими к пучкам БАК объектами. И хотя графитовые пластины очень прочны и могут поглощать энергию рассеянных частиц, не разрушаясь, их электропроводность относительно низка, что имеет значение при очень высоких токах протонов.
После следующего крупного апгрейда БАК будет работать с гораздо более высокими токами, поэтому если коллиматоры не модифицировать, то это приведет к нестабильным поперечным колебаниям протонных пучков. План нашего ночного эксперимента заключался в том, чтобы испытать коллиматор нового типа, у которого графит был покрыт слоем материала с более высокой проводимостью толщиной 5 мкм.
Мы подготовили новый коллиматор, на поверхности которого были нанесены три параллельные полосы шириной 10 мм из карбида молибдена, нитрида титана и чистого молибдена. Помещая протонный пучок рядом с каждой из проводящих полос по очереди, мы ожидали увидеть трехкратное улучшение стабильности луча.
Получив наконец циркулирующий пучок от инжекторов БАКа, мы медленно ускоряли его в течение 20 мин, пока не достигли рабочей энергии 6,5 ТэВ. Потом происходило самое интересное. Перемещая протонные пучки относительно каждой из проводящих полос, мы наблюдали за изменениями частоты поперечных колебаний пучков, чтобы определить наилучшую последовательность действий. Затем начались плановые испытания, которые закончились лишь к 5 ч утра.
С нетерпением рассмотрев предварительные результаты наших измерений, мы убедились, что пучок протонов был наиболее устойчивым вблизи полосы чистого молибдена, имеющего лучшую электрическую проводимость.
Уже в 7 ч утра я вылетел обратно в Чикаго. В течение следующих нескольких месяцев собранные данные были проанализированы, сравнены с компьютерными моделями, представлены на крупной международной конференции и опубликованы. Главное, что наш подход оказался жизнеспособным, коллиматоры с покрытием из молибдена были одобрены в рамках проекта по увеличению светимости БАК, который планируется реализовать к 2026 г.
По ступенькам – к рекордам
Пока БАК, огромное подземное сооружение длиной 27 км, использующее сверхпроводящие магниты, – самый сложный научный инструмент нашего времени, но его жизненный цикл такой же, как и у его предшественников. Все ускорители сначала проектировались, строились и вводились в эксплуатацию, а затем улучшались в течение многих лет, постепенно повышая свою светимость. Такие периоды поиска путей к все более высокой светимости часто характеризуются повторяющимся циклом осознания проблем и их решений.
Так, протон-антипротонный коллайдер Tevatron в Фермилабе дольше всех оставался рекордсменом по энергии столкновений: с октября 1985 г. по сентябрь 2011 г. За эти четверть века было сделано более четырех десятков улучшений, касающихся физики пучков и методов ускорения, что позволило в 430 раз повысить пиковую светимость по сравнению с первоначальным расчетным значением (Holmes & Shiltsev, 2013). Эффект от некоторых из них составил 25–40 %, но многие добавили всего лишь около 5 %.
Многие улучшения эффективности можно провести в рабочем режиме, «на ходу» и, как правило, без прерывания исследований по физике частиц. Но более значительные апгрейды (например, плановое увеличение светимости БАК в три раза во второй половине текущего десятилетия) требуют многих лет подготовки и долговременной остановки коллайдера для установки нового оборудования, необходимого для увеличения токов протонов и более сильной фокусировки пучков в точках взаимодействия.
Примечательно, что у всех коллайдеров есть довольно длительные периоды устойчивого экспоненциального роста светимости. Светимость самых мощных коллайдеров с 1970-х гг. до настоящего времени увеличилась в 10 тыс. раз, среднее время удвоения – приблизительно 4 года. Для сравнения вспомним закон Мура, согласно которому число транзисторов в микропроцессорных микросхемах удваивается каждые два года. С учетом сложности и размеров современных ускорителей такой быстрый темп развития их эффективности поражает воображение.
Люди, которые занимаются всем этим, – специалисты по физике пучков. Помимо рутинной поддержки работы ускорителя, они постоянно изобретают и внедряют новые идеи, методы и подсистемы, а также совершенствуют уже существующие. Только в новом веке физики разработали дюжину оригинальных инструментов для высокоэнергетических адронных и электрон-позитронных коллайдеров, некоторые из них имеют странные для обычного уха названия: «краб-фокусировка», «электронные линзы», «нанопучки», «краб-резонаторы» и др.
Помимо физики элементарных частиц, ускорители являются основными инструментами фундаментальных и прикладных исследований в самых разных областях. В ускорителях движение электронов высокой энергии в магнитных полях генерирует электромагнитное излучение от терагерцевых волн до рентгеновских лучей. Способность источника рентгеновского излучения исследовать атомные структуры молекул для биологических и материаловедческих исследований определяется так называемой яркостью. Этот показатель отражает не только интенсивность потока фотонов, но и его пространственную и угловую компактность, т. е. насколько хорошо он сколлимирован (Altarelli, Salam, 2004).
Современные источники синхротронного света в 10 11 раз ярче, чем те, которые используются в рентгеновских аппаратах в больницах. А лазеры на свободных электронах обеспечивают дополнительное увеличение яркости еще на десяток порядков, т. е. в 10 млрд раз. Увеличение яркости примерно в 10 22 раз с середины 1960-х гг. до настоящего времени соответствует среднему времени удвоения примерно в 8 месяцев – в три раза быстрее, чем для транзисторов, и в шесть раз – для светимости коллайдеров!
Причиной такого феноменального прогресса является устойчивая эволюция технологии генерации излучения релятивистских электронов. Источники синхротронного излучения первого и второго поколений использовали свет, излучаемый электронами в кольцевых ускорителях, в качестве полезного побочного продукта. Осознание его полезности пришло быстро. Только за последние два десятилетия во всем мире было построено около 40 специализированных накопительных колец третьего поколения, производящих рентгеновские лучи высокой яркости. Они используют специально разработанные магниты, называемые ондуляторами, которые отклоняют электроны из стороны в сторону по типу змейки, чтобы увеличить мощность электромагнитного излучения, и могут одновременно доставлять рентгеновские лучи на несколько десятков экспериментальных станций.
Яркость источника излучения может быть увеличена в десятки раз за счет уменьшения размера электронного пучка в накопителе. За последнее десятилетие физики-ускорительщики разработали многочисленные усовершенствования, такие как ультрасовременные сверхпроводящие ондуляторные магниты, новые системы для стабилизации орбит пучка вплоть до нескольких нанометров.
Лазер на свободных электронах (ЛСЭ) – это новое слово в науке, так как мощность электромагнитного излучения в нем превосходит все другие источники в миллиард раз. Сложность в создании таких лазеров в том, что для усиления рентгеновского излучения нельзя использовать обычный оптический резонатор: в случае ЛСЭ излучение генерируется за один-единственный пролет электронов высокой энергии.
Еще в 1947 г. советский физик В. Л. Гинзбург предложил использовать для усиления интенсивности излучения заряженной частицы периодическое магнитное поле. Но само устройство для этого – ондулятор, обеспечивающий движения электронов по волнистой траектории вдоль продольной оси, – был создан намного позже. Метод был предложен в 1980 г. сотрудниками Института ядерной физики СО АН СССР (Новосибирск) А. М. Кондратенко и Е. Л. Салдиным. Уехав после перестройки в Германию, Салдин убедил руководство национальной лаборатории DESY построить ускоритель-прототип, который заработал в начале 2000 г.
Одно из впечатляющих недавних изобретений – многоповоротная ахроматическая фокусирующая оптика (она, кстати, будет использоваться и в СКИФ), которая оптимизирует расположение и силу дипольных, квадрупольных и секступольных магнитов, задающих траекторию и размер пучка. Такая оптика может сделать размеры электронного пучка и угловые расхождения настолько малыми, что фазовое пространство излучаемых фотонов будет ограничено только дифракцией. Соответственно, на два-три порядка увеличивается и яркость источников четвертого поколения (также известных как накопительные кольца, ограниченные дифракцией) по сравнению с предыдущими.
Самым последним революционным достижением в производстве излучения стало самоусиливающееся спонтанное излучение в рентгеновских лазерах на свободных электронах (ЛСЭ)*. ЛСЭ используют пучки электронов из линейных ускорителей. Их более высокая яркость по сравнению с источниками на основе накопительного кольца обусловлена чрезвычайно короткими и интенсивными световыми импульсами, которые генерируются короткими и очень плотными сгустками релятивистских электронов, проходящих через переменное магнитное поле в длинной линейке ондуляторов и когерентно накачивающих их собственное излучение. Для увеличения энергетической эффективности (преобразования используемой энергии в энергию излучения) сейчас предлагаются схемы на основе линейных ускорителей с рекуперацией энергии, что позволит объединить преимущества схем, использующих накопительные кольца и линейные ускорители.
* Кулипанов Г. Н. От субмиллиметрового – к рентгеновскому // НАУКА из первых рук. 2012. № 6(48). С. 16; Шильцев В. Д. Русские корни рентгеновского лазера // НАУКА из первых рук. 2012. № 6(48). С. 15.
Когда высокоэнергетические частицы попадают в твердые или жидкие мишени, они в изобилии производят вторичные частицы (например, мюоны, нейтрино и нейтроны), которые, в свою очередь, могут использоваться в таких приложениях, как мюонная спектроскопия, физика нейтрино и рассеяние нейтронов. Интенсивность потока вторичных частиц пропорциональна мощности первичного пучка, ускоряемого циклотроном, синхротроном или линейным ускорителем. За последние десятилетия ученым удалось увеличить эту мощность примерно на три порядка, улучшив технологию и решив множество проблем, связанных с конечным временем жизни мишеней, опасными неконтролируемыми потерями частиц и др.
Прогресс технологий
В середине XX в. произошла «ускорительная» революция: ускорители стали способны генерировать пучки с энергией частиц, превышающей на несколько порядков ту, что достижима в ядерных реакциях и лазерах (Sessler & Wilson, 2008). Тем не менее рекорды по энергии пучков росли существенно медленнее, чем по мощности, светимости или пиковой яркости.
Самые высокие энергии сталкивающихся частиц выросли с примерно 60 ГэВ в начале 1970-х гг. (на ускорителе пересекающихся накопительных колец SPS в ЦЕРН) до 13 ТэВ в 2019 г. (на БАК), что дает среднее время удвоения этой величины около 6 лет. Основной причиной такого относительно медленного прогресса энергии ускорителей является их стоимость, которая сильно зависит от используемых технологий.
Стоимость и доступность ускорителей определяют и их спектр: из более чем 30 тыс. ускорителей, действующих по всему миру, 99 % относительно малы и работают с пучками низкой энергии. Они используются для коммерческого производства радионуклидов и радиофармацевтических препаратов, ионной имплантации, генерации нейтронов, литографии, исследований материалов, приложений в полупроводниковой промышленности, а также применяются в энергетике и при защите окружающей среды.
Лишь около 60 источников рентгеновского излучения во всем мире являются исследовательскими. А коллайдеров частиц в мире вообще только семь, включая два в новосибирском Институте ядерной физики СО РАН. И только два из них имеют энергии пучка более 100 ГэВ (100 млрд эВ): релятивистский коллайдер тяжелых ионов в Брукхейвенской национальной лаборатории (США) и БАК в ЦЕРН.
ДА БУДЕТ СКИФ! ЦКП «СКИФ» – Центр коллективного пользования «Сибирский кольцевой источник фотонов». Эта установка класса мегасайенс, не имеющая мировых аналогов по выходным параметрам, строится в новосибирском наукограде Кольцово. Проект был разработан Институтом ядерной физики, Институтом катализа и другими организациями СО РАН, РАН и Минобрнауки РФ.
Основа ЦКП «СКИФ» – ускорительный комплекс, источник синхротронного излучения поколения 4+ с энергией электронов в 3 ГэВ. Периметр основного ускорителя СКИФ составит 476 м, его кольцо будет разделено на 18 элементов, состоящих из поворотных и прямолинейных частей: в них будут встроены устройства для генерации СИ, которое пойдет на пользовательские станции. Установка способна генерировать излучение с энергией фотонов от 1 до 100 килоэлектронвольт.
Уже стартовали работы по проектированию и комплексным инженерным изысканиям для СКИФ, идет отработка технологий создания элементов ускорительного комплекса. Так, в ИЯФ СО РАН разработан стенд одного из элементов инжектора, в котором будет происходить первоначальное ускорение электронов. В создании установки принимают участие специалисты из различных научных и производственных коллективов не только Новосибирска, но и Томска, Красноярска, Москвы, Калининграда, Екатеринбурга.
Строительство должно завершиться к концу 2023 г., а запуск первой очереди – 6 из 30 экспериментальных станций – планируется в 2024 г. Предполагаемая общая стоимость проекта – около 37 млрд руб. На новой установке будут идти работы в области промышленных технологий, включая глубокую переработку сырья; биомедицинских технологий, в том числе направленного дизайна новых лекарственных препаратов и средств их доставки, изучения механизма патогенеза особо опасных инфекционных заболеваний; создания возобновляемых источников энергии и получения новых материалов; исследования художественных ценностей, археологических, палеонтологических находок и т. п.
Ускорители рекордно высоких энергий часто стоят более 1 млрд долл., а устремления исследователей, работающих в физике частиц, требуют еще больших энергий, соответствующие установки, по оценкам, могут стоить на порядок дороже. Такие расходы становятся весьма заметными даже в масштабах национальных экономик. Для сокращения затрат принимаются все меры, включая повторное применение нынешних ускорителей в качестве инжекторов для новых, использование существующей инфраструктуры (электросетей, водоснабжения, дорог, туннелей и т. п.), а также распределение финансовой нагрузки между несколькими лабораториями или даже странами, как в ЦЕРН. Основные надежды на создание новых больших установок прямо связаны с улучшением их технологических характеристик и снижением стоимости, в идеале – с обоими этими показателями.
Основные современные ускорительные технологии включают теплые и сверхпроводящие магниты, а также теплые и сверхпроводящие радиочастотные резонаторы для ускорения частиц. Магниты фокусируют либо изгибают пучки в кольцевых ускорителях, а быстро изменяющиеся во времени высокочастотные электрические поля в радиочастотных полостях нужны для ускорения заряженных частиц. Туннели, электрическая инфраструктура и другие технические подсистемы могут быть довольно дорогими. Однако в полной стоимости строительства ускорителей пучков высоких энергий и больших мощностей обычно доминирует именно цена главных компонентов ускорителя – магнитов и ВЧ-структур.
За последние четверть века сообщество ускорительщиков успешно работало над снижением стоимости основных технологий. Максимальные магнитные поля в работающих ускорителях выросли с примерно 4 до 12 Тл, это означает, что вместо трех магнитов можно теперь обойтись одним. Ускоряющие электрические поля достигли рекордных максимумов, увеличившись в три раза или более: до более чем 30 МВ/м в сверхпроводящих ВЧ-резонаторах и 100 МВ/м в теплых структурах с нормальной проводимостью, работающих при комнатных температурах.
Без улучшений магнитных и радиочастотных технологий затраты росли бы линейно с энергией пучка E, однако стоимость современных больших ускорителей увеличилась пропорционально примерно корню из E (Shiltsev, 2014). Тем не менее спрос на пучки со все более высокими энергиями опережает прогресс традиционных ускорительных технологий, поэтому исследователи продолжают искать и разрабатывать новые идеи и технологические решения.
Наука о пучках
Сегодня около 5 тыс. ученых и инженеров-ускорительщиков работают в более чем 50 странах мира и сотрудничают с примерно в три раза большим числом технических экспертов. Несмотря на то что большинство из нас глубоко вовлечены в каждодневную работу и постоянные обновления своих установок, карьера ученого-ускорительщика включает в себя проектирование и строительство новых машин, исследования в области физики пучков, разработку важных технических компонентов и руководство проектами. К этому надо добавить передачу технологий в промышленное применение, обучение и подготовку следующего поколения экспертов по ускорителям, а также распространение знаний о наших достижениях в широких научных кругах и обществе в целом.
За последние 20 лет физика пучков превратилась в отдельную научную дисциплину со своим собственным предметом исследований и методами обучения. Ежегодно проходит серия международных конференций по ускорителям частиц, в которых участвуют около 1,5 тыс. человек, а также почти две дюжины других регулярно проводимых конференций и семинаров по всем важным темам, начиная от компьютерного моделирования до технологий ускорителей. Есть и специализированные рецензируемые журналы, ведущий из которых, Physical Review – Accelerators and Beams, отметил в 2018 г. свое двадцатилетие.
Каждый год несколько тысяч человек (около 1400 человек в Европе и 400 в США) проходят подготовку по физике и технике ускорителей (Barletta, Chattopadhyay, Seryi, 2012). Такую подготовку обеспечивают около 40 академических программ в университетах по всему миру, в том числе по дюжине в США и Европе. В этой связи нельзя не упомянуть и выдающуюся новосибирскую школу подготовки, базирующуюся в Новосибирском государственном университете и ИЯФ СО РАН.
Обучение физиков и инженеров-ускорительщиков также включает в себя практику на рабочем месте, которая дополняется интенсивными курсами в рамках таких программ, как школы по ускорителям в США, ЦЕРН и Дубне. Приблизительно сотня специалистов ежегодно получает степени кандидатов и докторов наук в области физики ускорителей и пучков.
Ученые-ускорительщики широко представлены во многих научных обществах, советах и группах по всему миру. Так, рабочая группа 14 Международного союза теоретической и прикладной физики (UIPAP) содействует обмену информацией и мнениями между членами сообщества ускорительщиков с 2015 г., а Международный комитет по будущим ускорителям (ICFA) – сотрудничеству в области создания и использования ускорителей на высокие энергии с 1976 г.
В США финансирование исследований и разработок по физике пучков и техники в области ускорителей составляет примерно 120 млн долл. в год, поступающие в основном от Управления науки Министерства энергетики США, которое ведет программы по физике высоких энергий, фундаментальным энергетическим наукам и ядерной физике, а также от Национального научного фонда (NSF). На сегодняшний день крупнейшим спонсором является Программа по физике высоких энергий: около 5 % ее годового бюджета направляется на общие исследования и разработки ускорителей. Крупные специализированные исследовательские центры по физике пучков имеются и в больших национальных лабораториях, таких как Fermilab, SLAC, Национальная лаборатория им. Лоуренса в Беркли (Lawrence Berkeley) и др., а также в нескольких университетах, включая Корнелльский, Мичиганский и Университет Мэриленда. Их установки играют ключевую роль в развитии науки о пучках.
Самой большой проблемой для физиков-ускорительщиков является разработка технологий получения пучков рекордных энергий. Проблема в том, что если бы мы использовали лишь существующие технологии, то стоимость строительства коллайдеров с существенно более высокой энергией, чем тот же БАК, была бы непомерно высокой. Мы вряд ли найдем деньги или такое место на Земле, где труд, земля и сырье достаточно дешевы, чтобы использовать принцип «чем больше ускоритель, тем лучше».
Вместо этого мы ведем разработки по нескольким направлениям. Один из подходов заключается в использовании традиционных сверхпроводящих магнитов и радиочастотных резонаторов для ускорения нетрадиционных частиц, а именно мюонов. В отличие от протонов, в которых энергия распределена между составляющими их кварками и глюонами, мюоны являются точечными частицами, отдающими в столкновениях все 100 % своей энергии для рождения новых частиц.
Соответственно, энергия центра масс в мюон-мюонных столкновениях будет в 6–10 раз больше, чем в протон-протонных при той же энергии пучка. Поэтому мюонный коллайдер на 14 ТэВ (что номинально является энергией в системе центра масс для БАК) будет приблизительно эквивалентен адронному коллайдеру на 100 ТэВ. Циклические электрон-позитронные коллайдеры при таких энергиях нецелесообразны, потому что легкие частицы теряли бы огромную энергию в виде синхротронного излучения. Но гораздо более тяжелые мюоны, имеющие массу в 207 раз больше, чем у электронов, свободны от этих проблем.
Мы разрабатывали эту стратегию в течение последних 20 лет и в настоящее время доказали концептуальную осуществимость мюонного коллайдера для сверхвысоких энергий. В 2019 г. был экспериментально продемонстрирован ключевой метод – ионизационное охлаждение мюонов. Прежде чем мы сможем окончательно убедиться в технической и экономической осуществимости такого коллайдера, придется, безусловно, решить еще много проблем, связанных, например, с эффективным и экономичным производством мюонных пучков высокой яркости. Но сама эта идея является очень многообещающей и стоит всех усилий.
Менее революционный подход, который также имеет определенные перспективы, – это продолжать совершенствовать уже существующие технологии. Предполагая, что пучки рекордных энергий следующего поколения появятся через 15–20 лет, а скорость нашего технологического прогресса не замедлится, мы можем таким образом удвоить или даже утроить рекорды по энергии частиц. Например, уже есть идеи, как создавать магниты с полем 20–24 Тл при помощи высокотемпературных сверхпроводников или как получить темпы ускорения 60–90 МВ/м используя сверхпроводящие ВЧ-резонаторы новых типов и материалов. Конечно, нужно экспериментально подтвердить потенциал таких технологий, чтобы понять, насколько новые машины станут с их помощью осуществимыми и доступными. Этим разработкам будет способствовать наше многолетнее сотрудничество со специалистами в физике твердого тела и промышленных технологий.
Одним из самых значительных достижений может стать новая технология ускорения частиц плазменными волнами, которые возбуждаются либо лазерами, либо пучками частиц. За последние 25 лет эта область развивалась и расширялась благодаря наплыву методов и идей от ученых, работающих в области плазмы и лазеров (Seryi, 2015). Так, за работы в этих смежных областях Ж. Муру и Д. Стрикленд были удостоены Нобелевской премии по физике в 2018 г. За эти десятилетия мы стали свидетелями того, что прирост энергии электронов, ускоряемых в плазменной ячейке длиной 1 м, увеличился с нескольких мегаэлектронвольт до 9 ГэВ, со временем удвоения энергии около 2,5 лет (Joshi et al, 2018).
В то же время исследователи стали лучше понимать, что требуется для создания коллайдера на основе плазменного ускорения. В настоящее время научно-исследовательская работа в области ускорения плазмы направлена не столько на разработку рекордных ускоряющих градиентов, сколько на решение более обыденных, но важных вопросов. К ним относятся эффективность использования энергии, многостадийное ускорение, сохранение высокой яркости и энергии в пучках электронов и позитронов, проходящих через плотную плазму, разработка экономичных драйверов (возбудителей) плазменных волн.
Мы еще не создали надежную техническую конструкцию для доступного электронно-позитронного плазменного коллайдера на энергию более 1 ТэВ и высокую светимость. Однако основания для оптимизма есть: в наши дни более дюжины исследовательских групп по всему миру строят испытательные установки для систематического изучения различных вариантов и ведут эксперименты по достижению оптимальных режимов ускорения.
В январском выпуске Physics Today за 2001 г. директор лаборатории физики элементарных частиц Корнелльского университета М. Тигнер, основополагающая и ключевая фигура современной физики ускорителей, написал статью «Есть ли будущее у физики элементарных частиц на основе ускорителей?». Он сделал много умозаключений, удивительно близких к изложенным выше, и призвал других ученых, в частности тех, кто занимается физикой элементарных частиц, помочь изучить новые идеи и повысить экономическую эффективность наших ускорителей.
Отвечая сейчас на вопрос, вынесенный в заголовок его статьи, мы можем точно сказать – да, будущее есть, и мы быстро движемся в правильном направлении. Физика пучков развилась в отдельную научную дисциплину, и сообщество ускорительщиков гордится своими достижениями: источниками синхротронного излучения четвертого поколения, рентгеновскими лазерами на свободных электронах, протонными пучками с мегаваттной мощностью, современными источниками нейтронов и нейтрино и др. Мировые рекорды были установлены по всем параметрам ускорителей, так как возможности основных технологий удвоились или даже утроились. Увеличение максимальной энергии частиц было не столь значительным, но все-таки БАК расширил эту границу в семь раз по сравнению с Tevatron, и это привело к открытию в 2012 г. бозона Хиггса – последнего недостающего фрагмента Стандартной модели.
Множество достижений, прорывов и открытий ждут нас впереди. Совершенствование методов ускорения частиц продолжается по нескольким направлениям, включая использование экзотических частиц, таких как мюоны, разработку более совершенных магнитов и радиочастотных резонаторов, компактных ускорителей плазмы с высоким градиентом. Достижения в физике твердого тела, лазерах, плазме и физике высоких энергий, сотрудничество с экспертами в этих дисциплинах придают нам дополнительный импульс. Ускорительщики и специалисты по физике пучков уверены, что современные исследования и разработки уже в ближайшие десятилетия приведут к созданию более эффективных и экономичных исследовательских установок на основе пучков заряженных частиц.
Altarelli M., Salam A. The quest for brilliance: light sources from the third to the fourth generation // Europhys. News. 2004. V. 35. N. 2. P. 47–50.
Barletta W., Chattopadhyay S., Seryi A. Educating and Training Accelerator Scientists and Technologists for Tomorrow // Rev. Accel. Sci. Technol. 2012. V. 5. P. 313–331.
Brüning O., Collier P. Building a behemoth // Nature. 2007. V. 448. P. 285–289.
Eberhardt W. Synchrotron radiation: A continuing revolution in X-ray science—Diffraction limited storage rings and beyond // J. Electron Spectrosc. Relat. Phenom. 2015. V. 200. P. 31.
For more on accelerator-based light sources worldwide, see www.lightsources.org.
Haussecker E. F., Chao A. W. The Influence of Accelerator Science on Physics Research // Phys. Perspect. 2011. V. 13. N. 146.
Joshi C., Adli E., An W. et al. Plasma wakefield acceleration experiments at FACET II // Plasma Phys. Control. 2018. V. 60. N. 3. 14 p.
Lindroos M. et al., In Elementary Particles: Accelerators and Colliders / eds. S. Myers, H. Schopper // Springer. 2013. 514 p.
Sessler A., Wilson E., Engines of Discovery: A Century of Particle Accelerators // World Scientific, Hackensack, New Jersey. 2008. 194 p.
Shiltsev V. A phenomenological cost model for high energy particle accelerators // J. Instrum. 2014. V. 9. T07002.
Seryi A., Unifying Physics of Accelerators, Lasers and Plasma // CRC Press. 2015. 288 p, 267 B/W Illustrations.
Автор благодарит М. Арена, Д. Денисова, П. Гарбинсиуса, Х. О’Коннелла, Ц. Цина и Ф. Циммермана за их советы и полезные обсуждения при подготовке статьи