Что такое уравнение движения материальной точки

Уравнение движения материальной точки

Вы будете перенаправлены на Автор24

Система отсчета. Системы координат

Под движением материальной точки в пространстве понимают изменение ее положения относительно некоторых тел с течением времени. В связи с этим можно говорить только о движении в некоторой системе отсчета.

Сами по себе точки пустого пространства неразличимы между собой, поэтому говорить о той или иной точке пространства можно, если в ней находится материальная точка. Ее положение и определяется относительно тела отсчета с помощью измерений, для чего с телом (телами) отсчета жестко связывается некоторая система координат; в ней и измеряются пространственные координаты. Например, на поверхности Земли это географическая широта и долгота точки.

В теоретических рассуждениях часто не принимают во внимание реальную систему отсчета, сохраняя только систему координат, которая и служит математической моделью системы отсчета, применяемой при измерениях на практике.

Кинематическое уравнение движения материальной точки

Итак, в любой системе отсчета и системе координат имеется возможность определить координаты материальной точки в любой момент времени.

Если положение материальной точки в каждый момент времени определено в данной системе отсчета, то движение ее задано или описано.

Это задание достигается в виде кинематического уравнения движения:

Аналитически положение точки всегда определяется совокупностью трех независимых между собой чисел. Этот факт выражают словами: свободная точка имеет три степени свободы движения.

Готовые работы на аналогичную тему

В этом случае кинематические уравнения движения точки имеют следующий общий вид:

$r=r(t),\varphi =\varphi (t)$. (3)

кинематические уравнения движения точки запишутся так:

(Это могут быть сферические, цилиндрические и другие координаты).

Это уравнение является уравнением движения точки по траектории. Такой способ задания движения называется естественным или траекторным.

Координатный и естественный способы задания движения точки физически (в смысле фиксации ее положения в пространстве)

Закон движения точки по траектории может быть задан аналитически, графически или в виде таблицы. Оба последних способа широко применяются на транспорте (например, графики и расписания движения поездов).

Решение: Зависимость скорости от времени имеет вид:

Запишем уравнение зависимости координаты от времени и сравним его с данным:

Подставим полученные данные в уравнение скорости и получим:

Определим точки и построим график:

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точки

Путь, пройденный телом, численно равный площади фигуры, ограниченной графиком и может быть найден по следующей формуле:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 01 07 2021

Источник

Теоретическая механика

26. Динамика материальной точки. Законы Ньютона. Уравнения движения материальной точки

Динамика есть часть теоретической механики, в которой устанавливается и изучается связь между движением материальных тел и действующими на них силами.

В основе динамики лежат эмпирические законы, точно сформулированные и систематически изложенные независимо друг от друга Ньютоном и Галилеем.

Если на материальную точку не действуют никакие силы или действующая система сил является уравновешенной, то материальная точка находится в состоянии покоя или равномерного и прямолинейного движения. Такое состояние точки называется инерциальным.

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точки

3. Закон равенства сил действия и противодействия.

Силы, с которыми действуют друг на друга две материальные точки, всегда равны по модулю и направлены по прямой, соединяющей эти точки, в противоположные стороны.

3′. Закон независимости действия сил.

Если на материальную точку действует система сил, то точка получит ускорение равное геометрической сумме ускорений, которые приобрела бы точка под действием каждой силы в отдельности.

Уравнение (1) называется основным уравнением динамики точки.

Дифференциальное уравнение движения материальной точки

Таким образом, можно записать

Уравнение (2) является основным дифференциальным уравнением движения материальной точки, записанное в векторном виде.

Координатная форма записи основного дифференциального уравнения движения точки

Разложим радиус-вектор и результирующую силу по осям координат

Подставим (3) в (2), получим

Система уравнений (5) является координатной формой записи основного дифференциального уравнения движения точки.

Источник

Уравнение движения материальной точки

Что такое движение материальной точки

В механике рассматривают перемещение объектов. Принципы характерны для материальной точки и твердого тела. Термин «материальная точка» введен с целью упростить решение практических задач. В случае, когда габариты объекта существенно меньше, чем расстояние, которое он преодолевает, либо размеры других тел, то условно данный объект обозначают материальной точкой.

Кинематика — раздел механики, изучающий математическое описание движения идеализированных тел, без рассмотрения причин движения.

Движением материальной точки в пространстве называют изменение ее положения по отношению к другим телам с течением времени.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для расчета физических характеристик самолета относительно Земли в полете можно представить его в виде материальной точки. Однако если рассматривается система, которая включает самолет и пассажира, летящего в нем, то в данном случае принимать транспортное средство за материальную точку нецелесообразно. Таким образом, движение материальной точки рассматривают только в том случае, когда размерами объекта в конкретной ситуации можно пренебречь.

В одинаковое время положение точки в пространстве может отличаться в зависимости от того, относительно какого тела осуществляются наблюдения. С помощью системы координат и тела отсчета описывают перемещение материальной точки в пространстве. Согласно элементарным математическим закономерностям, задать положение какой-либо точки на плоскости можно, воспользовавшись системой координат.

Прямые, которые взаимно перпендикулярны и пересекаются в одной точке, являются координатными прямыми. А данная точка пересечения носит название начала координат.

Из начала координат можно вывести еще одну прямую, которая будет являться перпендикуляром к плоскости. Подобная система позволит задать положение точки в пространстве. Другим методом является применение радиус-вектора.

Радиус-вектор представляет собой отрезок, который провели из точки начала координат к заданной точке.

В течение времени движущаяся материальная точка меняет свое положение в пространстве. Для того чтобы выполнить расчет положения точки в какой-либо определенный момент времени, необходимо провести измерения времени.

Совокупность тела отсчета, связанной с ним системы координат и прибора отсчета времени представляет собой систему отсчета.

Выбор системы отсчета определяется следующими характеристиками:

Можно рассмотреть движение двух автомобилей, которые находятся на соседних полосах и перемещаются в одном направлении с равными скоростями. Когда телом отсчета является одно из этих транспортных средств, при заданной системе отсчета скорость, путь и перемещение второго транспорта будут иметь нулевые значения. Таким образом, второй автомобиль по сравнению с первым находится в состоянии покоя. В случае, когда в качестве тела отсчета выбрана дорога, значения скорости, пути и перемещения будут отличны от нуля.

Траектория материальной точки — линия, которую очерчивает материальная точка, двигаясь в пространстве.

Траектория включает множество точек, в которых рассматриваемая материальная точка была зафиксирована в прошедший момент времени, находится в данное время и будет замечена в будущий временной период.

Перемещением материальной точки называют вектор, берущий начало в точке траектории в начальный промежуток времени и заканчивающийся в точке траектории в конечный момент времени.

Путь материальной точки представляет собой сумму всех отрезков, пройденных материальной точкой в процессе движения.

Путем называют скалярную величину, которая всегда характеризуется положительным значением. При перемещении материальной точки пройденный ей путь может только увеличиваться.

Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Система отсчета и координат

Точки, которые присутствуют в пустом пространстве, не различают. Рассуждать о точке целесообразно, когда в ней находится материальная точка. Система координат позволяет выполнить измерения, которые необходимы для вычисления пространственных координат. Исходя из полученных данных, определяют положение материальной точки в пространстве. В качестве примера можно рассмотреть поверхность нашей планеты. Тогда для определения положения необходимо вычислить широту и долготу заданной точки.

В теоретических расчетах применяют декартову прямоугольную систему координат. С ее помощью можно определить положение точки при условии наличия радиус-вектора \(\bar\) и трех проекций x, y, z, которые являются координатами точки.

Другие способы решения задачи на определение положения материальной точки:

В теоретических расчетах, как правило, пренебрегают реальной системой отсчета. Обычно для измерений используют ту систему, которая является математической моделью реальной, применяемой для практических исследований.

Какому закону подчиняется движение точки в пространстве

Кинематические законы движения

Механическое движение представляет собой изменение положения тела по отношению к другим телам, входящим в систему отсчета. Для описания движения тела выбирают систему отсчета, состоящую из следующих компонентов:

Основными способами описания движения тела являются:

Если тело рассматривают в рамках декартовой системы координат, то положение материальной точки М определяется с помощью радиус-вектора \(\bar\) и трех координат x, y, z. Радиус-вектор проводят из начала системы координат к рассматриваемой точке.

Во время движения материальной точки фиксируют изменение ее координат:

С помощью данных формул можно рассчитать перемещение точки координатным методом. Радиус-вектор будет определяться, согласно следующему уравнению:

где \(\bar, \bar,\bar\) являются единичными векторами по осям X,Y,Z.

Векторное кинетическое уравнение движения материальной точки будет записано таким образом:

Представленные уравнения являются кинетическими законами движения материальной точки. Эти закономерности необходимы для полноценного описания перемещения токи в пространстве. Найти модуль или длину радиус-вектора можно с помощью формулы:

Динамические законы движения материальной точки

В динамике движение материальной точки рассматривают, исходя из воздействия сил, приложенных к рассматриваемой точке. Ключевые закономерности классической динамики сформулировал Ньютон.

Первый закон Ньютона определяет тот факт, что материальная точка находится в состоянии покоя или перемещается равномерно и прямолинейно при отсутствии воздействия на нее внешних сил или, когда действие этих сил взаимно скомпенсировано.

Второй закон Ньютона гласит, что для инерционных систем отсчета результирующая сил, которые приложены к материальной точке, равна произведению ее массы и ускорения.

В виде формулы второй закон Ньютона можно записать следующим образом:

Дифференциальные уравнения для перемещения материальной точки записывают в таком виде:

где х, у, z являются координатами движущейся материальной точки,

\(>, >, >\) представляют собой проекции сил, которые воздействуют на точку.

Согласно дифференциальным уравнениям движения материальной точки, зная массу, можно найти силы, которые оказывают на рассматриваемую точку воздействие.

Кинематическое уравнение движения материальной точки

В любой системе отсчета или координат можно определить координаты материальной точки в разные моменты времени. Если определены положение и материальная точка в какой-либо системе отсчета, ее перемещение называют заданным или описанным. Такое условие соблюдается, благодаря применению кинематического уравнения движения:

Аналитическим положением точки является совокупность трех чисел, которые не зависят друг от друга, то есть трех степеней свободы движения.

При наличии указанного положения в любой момент времени t считается, что движение точки, согласно первому уравнению, определено. В этом случае необходимо задать декартовы координаты точки в виде однозначных и непрерывных функций времени:

Прямоугольными декартовыми координатами x, y, z являются проекции радиус-вектора, который выведен из начала координатной системы. Понятно, что длина и направление радиус-вектора рассчитывается из соотношений, в которых a, β, γ представляют собой углы с координатными осями, которые образованы радиус-вектором. Таким образом, кинематическими уравнениями движения материальной точки в декартовых координатах будут следующие равенства:

Данные формулы можно записать с помощью другой системы координат, связанной с декартовой по средствам однозначных преобразований. В случае, когда точка перемещается в плоскости Оху, можно воспользоваться полярными координатами r, ϕ, которые относятся к декартовым преобразованиям. При этом используют формулу движения точки, записанную следующим образом:

Кинематическое уравнение для описания перемещения точки в криволинейных координатах q1, q2, q3, которые связаны с декартовыми преобразованиями:

будет представлено в следующей форме:

Кривая радиус-вектора, которую описывает конец вектора в процессе перемещения точки, совпадает с ее траекторией. Параметрическим уравнением траектории с t являются следующие равенства:

Исключая время из кинематических уравнений, получают вид координатного уравнения траектории. Для того чтобы определить движение точки, необходимо задать ее траекторию и мгновенное положение точки на ней. Положение точки на кривой рассчитывают по средствам лишь одной характеристики, которой является расстояние вдоль кривой от некого начала отсчета с положительным направлением:

Данная формула представляет собой уравнение движения точки по траектории. Метод его записи является естественным или траекторным. Установлена физическая эквивалентность понятий координатного и естественного метода задания движения материальной точки. С точки зрения математики, данное положение представляет собой возможность использования разных методик в зависимости от конкретных условий задачи. Задать такую закономерность можно с помощью аналитических, графических или табличных средств.

Источник

Уравнение движения точки

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точки Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точки

Всего получено оценок: 29.

Всего получено оценок: 29.

Кинематика — это раздел физики, который изучает движение без исследования его причин. С помощью кинематических закономерностей движения можно рассчитать, в каком месте будет находиться тело в тот или иной момент времени. Эти закономерности описываются с помощью математических формул, называемых «уравнения движения». Рассмотрим эту тему более подробно.

Движение материальной точки

Материальная точка — это тело, имеющее массу, размерами которого в данный момент можно пренебречь. Понятие материальной точки очень удобно в кинематике и динамике, поскольку позволяет исключить несущественные стороны исследуемого движения и сосредоточиться на основных параметрах.

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точкиРис. 1. Материальная точка.

Материальная точка находится в некоторой системе отсчёта, поэтому ей можно приписать некоторые координаты — одну, две или три, в зависимости от числа координатных осей.

Движение материальной точки состоит в том, что некоторые из координат меняются с течением времени. Следовательно, для описания движения необходимо сопоставить каждому моменту времени соответствующие координаты. Сделать это можно различными способами, например, просто составив таблицу, в первом столбце которой стоят моменты времени, а в остальных столбцах — соответствующие координаты. Однако удобнее найти математическую формулу, в которой в качестве исходной независимой переменной берётся время, а результатом формулы является координата.

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точкиРис. 2. Точка в системе координат

Уравнения движения точки

Математические формулы, с помощью которых можно найти координаты точки в любой момент времени, называются уравнениями движения материальной точки.

Примером самого простого уравнения движения точки является формула:

Возьмём пример немного сложнее. Если точка движется с постоянной скоростью, то, как известно к 9 классу, умножив скорость на время движения, мы получаем пройденное расстояние. В виде формулы это выразится, например, следующим образом:

С помощью этой формулы мы можем выяснить, что в начальный момент времени точка находилась в начале координат (подставив нулевое время, мы получим нулевую координату). Подставляя другие значения времени, мы найдём соответствующую координату. Кроме того, из формулы можно получить и скорость, с которой движется материальная точка — 5 метров в секунду, или других единиц, принятых в системе отсчёта.

Если в начальный момент точка имела некоторую координату, допустим, 1 (метр), то её уравнение движения примет вид:

Наконец, в системе отсчёта может быть не одна, а несколько координатных осей. В этом случае движение материальной точки описывается системой уравнений. Например:

В данном случае описывается движение в трёхмерном пространстве точки, которая в начальный момент имела координаты (1; 3; 5) и скорость которой равна 7.

Для описания движения в системе отсчёта с несколькими координатами нередко используется векторный способ описания, когда все переменные в уравнении являются векторами. Записи получаются более компактными, хотя описывают те же самые координаты и движения.

Что такое уравнение движения материальной точки. Смотреть фото Что такое уравнение движения материальной точки. Смотреть картинку Что такое уравнение движения материальной точки. Картинка про Что такое уравнение движения материальной точки. Фото Что такое уравнение движения материальной точки

Что мы узнали?

Уравнения движения точки — это математические формулы, связывающие время в принятой системе отсчёта с координатами точки в ней. Подставляя в эти уравнения различные моменты времени, можно получить положения точки в эти моменты. Кроме того, из уравнений движения можно получить скорость, с которой движется точка.

Источник

Физика

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Механическое движение. Система отсчёта. Закон относительности движения

Механическим движением в физике называется изменение с течением времени положения тела (или его частей) в пространстве относительно других тел.

То есть, чтобы сказать, что тело или система совершает механическое движение, нам необходимо: 1) наблюдать его во времени; 2) сравнивать его положение с положением какого-то другого тела (относительно этого тела).

Например, пассажир в едущем автомобиле неподвижен относительно кресла, на котором он сидит, но он движется относительно людей, стоящих на автобусной остановке и самой остановки. А сама автобусная остановка неподвижна относительно стоящих людей, ждущих автобус (см. рисунок 1). Однако она движется относительно проезжающих мимо машин. В первом случае наблюдаемым объектом был человек в машине, а точкой отсчета кресло и люди на остановке. Во втором случае наблюдаемой была автобусная остановка, а точками отсчета – люди на остановке и проезжающие мимо машины.

Рисунок 1 – Иллюстрация к примеру

Из примеров можно сделать вывод, что важно, какой именно объект находится под наблюдением и относительно какого объекта – тела отсчета – рассматривается его движение. Отсюда можно сформулировать закон относительности движения: характер движения тела зависит от того, относительно какого объекта мы рассматриваем данное движение.

Тело (или точка) отсчета, связанная с ним система координат и часы, вместе образуют систему отсчета. То есть все сказанное выше можно переформулировать в одно предложение: для наблюдения механического движения важно в какой системе отсчета будет происходить наблюдение.

Рисунок 2 – Пример системы отсчета (наблюдаемы объект – летящий мяч, тело отсчета – камень, лежащий в начале координат, система координат и секундомер для отсчета времени)

Однако объекты могут быть очень сложными для наблюдения. Например, автомобиль едет по прямой несколько километров и необходимо описать его движение относительно камня на обочине. Казалось бы, все просто. Но как именно описать движение автомобиля, если корпус его движется по прямой, а колеса совершают вращательные движения.

Для удобства решения подобных задач принято упрощение: если размер и форма тела в данной задаче не играют важной роли для наблюдателя, можно считать это тело за материальную точку.

Материальная точка – это такое тело, размером и формой которого в условиях данной задачи можно пренебречь.

Приведем пример: когда автобус едет из города А в город Б, его можно рассматривать как материальную точку. Когда пассажир идет из одного конца этого автобуса в другой, считать автобус материальной точкой нельзя. В общем случае можно сказать, что тело можно считать материальной точкой, если его размеры значительно меньше расстояния, на которое оно перемещается.

Уравнения движения. Радиус-вектор. Проекция вектора

Для описания движения тела необходимо уметь рассчитывать его положение в каждый момент времени. Как это сделать?

Самый очевидный способ – координатный. Если вернуться к примеру на рисунке 2, можно увидеть, что летящий мяч в каждый момент времени имеет три координаты по осям OX, OY и OZ. Эти координаты являются функциями времени (т.е. они зависят от времени), а значит, их можно записать в виде системы:

Вид этих уравнений будет зависеть от многих вещей: от того, с какой силой бросили мяч в начале, от массы мяча, под каким углом его бросили и так далее. В любом случае, если эти уравнения заданы, можно найти координаты (то есть положение) тела в любой момент времени. Поиск этих уравнений – основная задача кинематики.

Эта система является кинематическими уравнениями движения тела или материальной точки, записанными в координатной форме. Повторим: если вид уравнений движения задан, можно узнать координату движущейся точки в любой момент времени.

В общем случае, координат три, но иногда можно обойтись двумя или даже одной координатой. Например, для описания движения бильярдного шара достаточно двух координат (так как шар не может двигаться вверх и вниз), а для описания движения шарика, катящегося по прямому горизонтальному желобку достаточно одной координаты (шарик не может двигаться вверх-вниз и вправо-влево).

Еще один способ описания движения – векторный.

*Перед дальнейшим прочтением данной статьи желательно вспомнить основную теорию по теме «Векторы» и «Метод координат»

Вектор, проведенный из начала координат к материальной точке, называется радиус-вектором (см. рисунок 3).

Рисунок 3 – Радиус-вектор (серой линией изображены траектория движения материальной точки, r1 и r2* радиус-векторы, проведенные к этой материальной точке в разные моменты времени)

Радиус-вектор проведенный к материальной точке в разные моменты времени будет разным. Значит, его тоже можно представить, как функцию времени:

r = r(t)

Такая функция и будет уравнением движения в векторной форме. Если ее вид задан, можно описать движение тела с той же полнотой, как и при координатной записи.

Еще раз обозначим отличия: при записи уравнения движения в координатной форме в каждый момент времени наблюдающий будет знать три координаты тела; при записи в векторной форме в каждый момент времени известен радиус-вектор (его модуль и направление). Обе записи равносильны.

*На письме векторы обычно обозначаются стрелкой сверху, над величиной. Однако в печатном тексте не всегда удобно нагромождать формулы дополнительными знаками, поэтому в печати векторные величины пишут просто жирным шрифтом. В данной статье далее жирным шрифтом будут написаны только векторные величины.

Покажем, что векторная и координатная записи равносильны. Для этого необходимо вспомнить, как построить проекцию вектора на ось (см. рисунок 4).

Рисунок 4 – Построение проекции вектора на ось

Если вектор выходит из начала координат, задача облегчается – необходимо опустить перпендикуляр только из конца вектора.

Напоминания из геометрии:

два вектора равны, если они параллельны или лежат на одной прямой, сонаправлены, а их модули равны;

проекции равных векторов равны.

Рассмотрим пример (см. рисунок 5)

Рисунок 5 – Задача на нахождение проекции векторов

Предлагаем читателю самому подумать, а затем сравнить свои рассуждения с приведенными ниже.

В двумерном случае, проецировать нужно на две оси, но принцип остается тем же.

Иногда еще нужно находить составляющие компоненты вектора ах и ау. Рассмотрим пример, для простоты возьмем вектор, выходящий из начал координат (см. рисунок 6).

Сумма векторов ах и ау равна а. Модули векторов ах и ау численно равны координатам точек, куда попали перпендикуляры, опущенные из конца вектора а на оси ОХ и ОУ.

Еще следует отметить, что, если известен угол β между вектором а и осью ОХ, воспользовавшись основами тригонометрии, можно найти величины проекций:

Если бы вектор а совпадал с радиус-вектором какой-нибудь точки, то величины ах и ау совпадали бы с координатами тела по осям ОХ и ОY.

Способ с использованием тригонометрических функций удобен, когда координата конца вектора попадает в нецелое число и опустив перпендикуляр на ось его трудно найти точно. В физических задачах такое часто случается.

Рисунок 6 – Нахождение компонент вектора а

Рассмотрим пример (см. рисунок 7). Модуль вектора r равен 2. Сам вектор направлен под углом в 45 градусов к оси ОХ. Необходимо найти величины проекций (они же координаты) этого вектора на оси ОХ и ОУ.

Рисунок 7 – Задача на нахождение проекций вектора в двумерном пространстве

В общем случае радиус-вектор находится в трехмерном пространстве (см. рисунок 8). Построение проекции осуществляется по тому же принципу, что и в рассмотренных выше примерах. Когда строятся проекции на оси ОХ и ОУ, перпендикуляр сначала опускается на плоскость, в которой лежат оси ОХ и ОУ, а затем точка, в которую упал перпендикуляр к плоскости, проецируется на оси ОХ и ОУ.

Точки, в которые попал перпендикуляры к осям – rx, ry, rz – это и есть координаты x, y, z тела в текущий момент времени.

Следует оговориться, что большинство задач 10-го класса будут ограничиваться двумерным пространством.

Рисунок 8 – Построение проекций радиус-вектора

Траектория. Путь. Перемещение

Траектория – это линия, вдоль которой движется тело.

Траектория движения может быть прямолинейной, если тело движется по прямой линии, и криволинейной, если тело движется по кривой.

Путь (S), пройденный телом, равен длине траектории.

Перемещение (r)* – это вектор, проведенный из начала пути в конец.

В случае прямолинейного движения путь и модуль перемещения тела совпадают (см. рисунок 9а). В случае криволинейного – путь и перемещение различаются (см. рисунок 9б), так как длина линии движения тела больше длины вектора, соединяющего начало и конец траектории.

Рисунок 9 – Путь (S) и перемещение (r) при прямолинейном (а) и криволинейном (б) движении

Равномерное прямолинейное движение: скорость и уравнение движения

Путь и перемещение при равномерном прямолинейном движении

Прямолинейное равномерное движение уже рассматривалось в курсе физики ранее, однако приведем основные определения.

Прямолинейное движение – это движение по прямой линии. Равномерное движение – такое, в процессе которого тело за равные временные промежутки проходит один и тот же путь. Если объединить эти два определения получится третье:

Зная определения пути и перемещения, это определение можно упростить: прямолинейное равномерное движение тела – это такое движение, в процессе которого тело за одинаковые временные промежутки совершает равные перемещения.

Важной характеристикой является скорость механического движения. Предположим, что при равномерном прямолинейном движении тело за промежуток времени △t перемещается из точки А в точку Б (см. рисунок 8). Радиус-вектор, проведенный в точку A обозначим r0, а радиус-вектор в точку Б обозначим r1. Изменение радиус-вектора назовем r – нетрудно заметить, что это есть перемещение тела за время △t.

Рисунок 8 – Поиск перемещения тела через радиус-векторы при равномерном прямолинейном движении

Тогда скорость движения (v) будет вычисляться по формуле:

Так как △r – вектор, △t – скаляр, скорость v тоже будет вектором, сонаправленным перемещению.

Из этого выражения следует:

Это выражение можно применить к любому произвольно взятому моменту времени, поэтому можно опустить индекс в левой части и переписать:

Данное уравнение является уравнением движения при прямолинейном равномерном движении.

*Напоминание: символом (дельта) обозначают изменение какой-нибудь величины. Например t = t – t1, где t – конечный момент времени, t1 – начальный. Если же начальный момент времени совпадает с началом отсчета t1 = 0, то t = t – 0 = t.

Фактически уравнение равномерного прямолинейного движения означает, что радиус-вектор в произвольный момент времени t можно посчитать, сложив начальный радиус-вектор и приращение v*t.

Найдя проекции радиус-вектора и вектора скорости, можно разложить уравнение движения тела на три составляющие вдоль осей ОX, ОY и ОZ.

В этих выражениях r0x, r0y, r0z и vx, vy, vz – это компоненты изначальных векторов r0 и v вдоль осей ОХ, ОY и ОZ соответственно. И теперь можно перейти к скалярному виду:

Стоит отметить, что при проецировании какие-то компоненты вектора могут стать отрицательными, тогда знаки в выражениях поменяются на противоположные.

В рассмотренном выше примере движение происходит только вдоль оси ОХ (остальные координаты не изменяются). На рисунке 9 приведены проекции начальной (х0) и конечной (х1) точки на ось ОХ.

Рисунок 9 – Перемещение тела в координатном представлении

Уравнение координаты (х) движения будет выглядеть:

А это уже похоже на знакомую из прошедшего курса физики формулу для нахождения пути:

Если точка начала двигаться из начала отсчета S0 = 0, можно переписать эту формулу в виде:

Отсюда следуют известные уже формулы для нахождения скорости и времени при равномерном прямолинейном движении:

Приведем последний в этой статье пример: известно, что тело движется вдоль оси ОХ, начиная из точки x0 = 3 см. Скорость тела равна v = 5 м/с и направлена вдоль оси ОХ. Необходимо записать уравнение движения по координате х для этого тела.

Итак, для начала приведем все единицы измерения к СИ:

Теперь можно записывать уравнение для координаты х:

Из этого уравнения можно найти координату тела в любой момент времени. Например, через 2 секунды после начала отсчета тело находилось в точке:

x(2) = 0,03 + 5*2 = 10, 03.

А какой путь прошло тело к этому моменту? В начале оно находилось в точке x(2) = 0,03 м, а через 2 секунды оно стало находиться в точке x(2) = 10, 03. Значит за 2 секунды тело прошло:

S = x(2) – x0 = 10, 03 – 0,03 = 10 м.

А если скорость тела была направлена противоположно оси ОХ, как тогда выглядело бы уравнение движения?

Тогда проекция вектора скорости на ось ОХ была бы отрицательной и в уравнении знак перед скоростью поменялся бы на противоположный:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *