что такое tvl в камере
Что такое ТВЛ?
Для получения четкого и хорошо обработанного изображения на камерах видеонаблюдения специалисты обычно используют техническую характеристику «разрешение видеокамеры». У аналоговых видеокамер разрешение матрицы измеряется не в пикселях (как в цифровых видеоустройствах), а в ТВЛ – телевизионных вертикальных и горизонтальных линиях на видеокамере, передающих изображение на дисплей регистрирующего устройства.
Чем больше разрешение по горизонтали и вертикали (чем больше количество вертикальных и горизонтальных линий), тем качественнее картинка, возникающая на мониторе или телевизоре.
Для сравнения показателей аналоговых и цифровых камер, ниже представлена примерная таблица сравнения разрешений цифровых и аналоговых камер:
ТВЛ | Пикселы | Мегапикселы |
380 | 640х480 | 0,3 |
420 | 720х576 | 0,36 |
480 | 800х600 | 0,5 |
560 | 933х700 | 0,65 |
600 | 1024х756 | 0,75 |
800 | 1080х960 | 1,23 |
100 | 1600х1200 | 1,92 |
Стандартное среднее разрешение аналоговых видеокамер наблюдения – 480-700 ТВЛ, современные качественные видеокамеры способны выдавать картинку с разрешением до 1000 ТВЛ, а элитные флагманы видеонаблюдения поднялись до разрешения 10-20 тысяч ТВЛ и способны давать сверхчеткую картинку, сохранение которой требует терабайтных дисковых хранилищ.
Следует отметить, что количество линий на экране видеокамеры все же ограничено, и чем оно больше, тем видеокамера дороже. Для качественного видеонаблюдения сегодня достаточно видеоустройство с разрешением 700 ТВЛ – оно дает высококачественную и четкую картинку при вполне доступной стоимости самой камеры, позволяет оцифровывать изображение в разрешении 704 х 576 пикселей и обеспечивает оптимальные параметры сжатия информации при постоянном битрейте.
Очень важно понимать, что экономить на разрешении устройства неразумно – камеры видеонаблюдения с разрешением менее 600 ТВЛ дают менее четкую картинку (при оцифровке изображения теряется достаточно много ТВЛ), что усложняет видеонаблюдение и серьезно напрягает глаза оператора системы.
ТЕСТ. Аналоговый обман: видеокамеры 1000 ТВЛ
Практическое и теоретическое изыскание для установления истины в интересах потребителя.
Всего чуть более 3 лет назад компания Sony успешно внедрила новый стандарт в аналоговом видеонаблюдении – 960H. Тогда мир узнал о возможности получать видеозапись с разрешением, эквивалентным 700 ТВЛ. Фактически, как законодатель технического прогресса, Sony вдохнула новую жизнь (или продлила агонию – зависит от того, пессимист вы или оптимист) в рынок аналоговых видеокамер, находящийся под жесточайшим давлением IP высокого разрешения. Это продлило жизнь, собственно, не только аналоговому видеонаблюдению, но и в каком-то смысле CCD-сенсорам, позиции которых в IP-камерах драматически утеряны.
И вот проходит совсем небольшое время, когда само собой напрашивающаяся идея воплощается в реальность: почему бы не взять CMOS-сенсор с его бесконечно и дешево расширяющимся разрешением и использовать при построении аналоговых камер? Берем мегапиксельный сенсор, например тот же Sony IMX138, соединяем с процессором с аналоговым выходом и получаем аналоговую камеру. но какого, собственно, разрешения?
Этому и посвящен настоящий тест. Китайский спам, а за ним и быстрые на руку российские дистрибьюторы разных масштабов на перебой начали предлагать аналоговые видеокамеры с разрешением 800, 1000 и даже 1200 ТВ-линий. Однако какое реальное разрешение дает видеокамера с мегапиксельным сенсором и аналоговым видеовыходом? Для начала разберемся в теории, а также исследуем элементную базу данных видеокамер и их характеристики.
Разрешение и потеря качества
Как известно, разрешение аналоговых видеокамер принято заявлять и измерять в телевизионных линиях – характеристика, которая может быть с одинаковым успехом применена как к камерам на видиконах, так и на CCD- или CMOS-сенсорах, поскольку фактически отражает способность видеокамеры передавать детализацию изображения. Было разработано множество испытательных таблиц, в том числе стандартизированных ISO, одну из которых мы и используем данном в тесте (тестовая таблица ISO 12233 – рис. 1).
Существует также теоретическое обоснование потери качества изображения при преобразовании, называемое коэффициентом Келла (или Kell factor – фактор Келла), обычно принимаемое за 0,7 (но разными учеными используется диапазон от 0,64 до 0,85, где значение зависит от типа устройства, развертки и преобразований). Говоря простым языком, сколько бы пикселей изображения вы ни имели (или строк сканирования, например монитора ЭЛТ), воспринимаемое разрешение в ТВЛ будет не выше чем 0,85 от значения в пикселях, а реально стоит брать коэффициент 0,7, который, как показывает наше исследование, более близок, а возможно, даже завышен. Тогда очевидно, что видеокамера с разрешением сенсора 960H (976×582 разрешение в пикселях, например, CCD-сенсоров Sony) будет иметь горизонтальное разрешение около 700 ТВЛ (960 умножаем на 0,7) – что и подтверждается их спецификациями и заявлениями. Сенсоры 960H должны использоваться с процессорами, умеющими «справляться» с таким разрешением и дающими на выходе расширенный частотный диапазон (от 13,5 до 18 МГц) – PAL-сигнал стандарта 960H (рис. 2).
Процессоры и мегапиксельные сенсоры
Вернемся к мегапиксельным сенсорам. Их немало, но реально в настойчиво рекламируемых продуктах вы чаще всего встретите Sony IMX138 (разрешение 1280 по горизонтали, или 1,3 Мпкс), реже Aptina или OVT с аналогичным разрешением. Более высокого разрешения сенсоры не имеет смысла использовать, так будет дороже и нет процессоров с аналоговым выходом 960H с доступной ценой для их обработки.
В качестве процессора наиболее распространен Fullhan FH8520, способный работать с сенсорами 1,3 Мпкс и имеющий аналоговый выход 960H (внимание: 960H!). Что же дает основание производителям утверждать, что видеокамера имеет 1000 ТВЛ? Мы полагаем, совершенно необоснованное в данном случае применение Келл-фактора напрямую к разрешению матрицы: действительно, 1280 умножаем даже на 0,7 – получаем 900 ТВЛ. А если использовать коэффициент 0,85 – то и более 1000 ТВ-линий! Однако возвращаемся к слову «внимание» и смотрим в спецификацию процессора Fullhan 8520 – выход 960H, а значит умножать нужно не на разрешение сенсора, а на собственно выходное разрешение, а значит, теоретический предел выходного разрешения у CMOS-камеры и камеры на базе CCD и процессора типа Sony Effio одинаков и составляет в районе 700 ТВЛ. Даже сам производитель процессора указывает, что максимальное выходное разрешение – 750 ТВЛ (рис. 3).
Для меня в теоретической части очевиден обман производителей, заявляющих завышенные характеристики, но мы проверим это на практике.
Методика
Всего используем 3 метода. Потребуется испытательная таблица ISO 12233, дополнительные таблицы с разным количеством линий, аналоговый монитор с разрешением до 1000 ТВЛ, устройство захвата изображения с разрешением хотя бы 960H и осциллограф. Для сравнения мы выбрали 3 аналоговые видеокамеры одного производителя (неважно какого), 2 из них на CCD-матрицах Sony и с процессорами Effio E и Effio P, а третья – как раз главный испытуемый с заявкой на 1000 ТВЛ на базе Sony Exmor CMOS IMX138 с процессором Fullhan FH8520.
Результаты измерений вы можете видеть как в прилагаемых скриншотах и фотографиях, так и в таблице на стр. 23.
Первый метод – самый простой
Фактически это визуальная оценка изображения с камеры, напрямую подключенной к аналоговому монитору ЭЛТ – электронной лучевой трубке, так как все LCD TFT-мониторы оцифровывают аналоговое изображение с ограничением по разрешению. Монитор хоть и черно-белый, долгие годы использовавшийся у нас в тестах, но свою задачу выполняет исправно – мы видим вертикальный клин на таблице на всех трех камерах и понимаем, что, хотя никаких тысяч ТВЛ и нет, камера вполне себе на уровне дорогой модели Effio P и демонстрирует одинаковое с ней разрешение – можем субъективно утверждать, что видим 700 ТВЛ (рис. 4).
Второе испытание
Подключаем аналоговые камеры к нашей аналоговой плате захвата изображения TRASSIR 960H – оцифровка изображения происходит с разрешением 960 точек по горизонтали, сжатие не производится, максимальный теоретический предел (960х0,85 = 800 ТВЛ, реальный при Келл-факторе 0,7 – 700 ТВЛ).
Полученная картина не сильно отличается от предыдущей – обе дорогостоящие модели показывают 650 ТВЛ. Здесь разрешение ниже, чем на мониторе, и это абсолютно естественно, поскольку мы получили при оцифровке понижающий коэффициент как следствие еще одного преобразования (рис. 5).
Третье испытание – осциллограф
Плюс этого испытания в том, что он наиболее объективен. Наш осциллограф имеет частотный диапазон 50 МГц, может показать любую выбранную строку видеосигнала, позволяет сохранить полученное изображение на компьютере. Для испытания мы распечатали таблицы, заполненные разным количеством линий – от 700 до 1000 (фактически мы говорим о некоем «заборе» из черных и белых линий одинаковой ширины). Камеры направляются на таблицы таким образом, чтобы захватывать все напечатанные линии и подключаются к осциллографу.
Сигнал фиксируется, выбирается строка из середины кадра и проводится подсчет экстремумов белого и черного уровней. Каков итог сравнения? Sony Effio E дает нам всего 510 ТВЛ! Effio P и IMX138+FH8520 опять показывают одинаковый результат, но. 620 ТВЛ (рис. 6).
Почему значения на осциллограмме самые низкие? Дело в особенности восприятия и его субъективности: когда мы смотрим на монитор или на изображение клина на оцифрованном изображении, мы не можем объективно и 100%-но сказать, где заканчивается четкое изображение линий, а где начинается их «слипание» и переход в уровни серого, где муар делает их для объективного измерения неразличимыми. Мы говорим себе – «хотя линии начали слипаться и линия между черными линиями уже не белая, а скорее серая», будем считать, что детализация позволяет нам это различать. По осциллограмме мы просто считаем пики (белые и черные линии), не принимая во внимание их уход в «серость» (рис. 7).
Ну и, собственно, вывод?
Теоретически и практически доказан обман потребителя – аналоговых камер 1000 ТВЛ нет. В защиту протестированного решения на базе CMOS Sony IMX138 можно сказать, что оно имеет более высокое разрешение, чем Sony CCD-модель с процессором Effio-E при одинаковой или близкой стоимости. Даже говоря о детализации изображения, IMX138 субъективно лучше более дорогой Sony CCD с процессором Effio P, которую оправдывает только наличие WDR (широкого динамического диапазона). Однако стоит отметить, что Sony уже выпустила процессоры Effio A, по стоимости заменяющие Effio E, а на улучшение Effio P готова как версия v2, так и Effio V, так что CCD-решения еще поборются за рынок. Ну а для нас с вами чем выше конкуренция, тем лучше. 🙂
ТВЛ в камерах видеонаблюдения
Разрешающая способность в телевизионных линиях обозначает количество элементов в строке телевизионного изображения, передаваемых тем или иным устройством телевизионного тракта. Отражает исключительно горизонтальное разрешение, зависящее от частотных характеристик канала передачи или устройства записи. Вертикальная разрешающая способность в аналоговом и цифровом телевидении заложена в стандарте разложения. В России принят европейский стандарт разложения 625/50, обеспечивающий 576 различимых элементов по вертикали, соответствующих количеству активных строк. В отличие от аналогового телевидения, сигнал которого непрерывен вдоль строки, в цифровом телевидении горизонтальная чёткость строго регламентирована и зависит от частоты дискретизации видеосигнала. Во всех системах цифрового телевидении стандартной чёткости вдоль активной части строки выполняются 720 отсчётов (пикселей), соответствующих частоте дискретизации 13,5 МГц. В системах HDTV горизонтальная чёткость соответствует 1920 пикселям при частоте дискретизации 74,25 МГц для чересстрочных систем 1080i.
По сравнению с мерой оптической разрешающей способности в линиях на единицу длины, телевизионная обычно имеет удвоенное значение, поскольку оптическое разрешение отражает количество штрихов, для отображения каждого из которых требуется как минимум два элемента изображения. Если сказать простым языком, то чем больше ТВЛ, тем четче изображение. Это можно увидеть на снимке:
Цифры приведенные в таблицы являются ориентировочными.
Интернет пестрит заманчивыми предложениями. Аналоговая камера с композитным выходом обеспечивает 1200 твл. Продавцы и производители на перегонки предлагают эксклюзивные аналоговые камеры сверх высокого разрешения во всех конструктивных группах. Причем как обычно количество пикселей плавно переводится в телевизионные линии!
В этой чудесной CMOS матрице IMX138 SONYExmorна 1,3 Мп используется 1280х720р, что почему то дает в изображении 1200 твл, а не 800 как в реальности. А ведь это на весь кадр для формата HD (16:9). Погонное разрешение при HD составляет 600-650 твл, если сравнивать для одинаковых условий кадры 16:9 и 4:3. Цифры получаются очень знакомые. Сразу вспоминается технология Effio, правда некоторые отчаянные продавцы уже и для неё обещают и 700, и 750 и даже 800 твл. Сразу необходимо отметить, что обещания 700 твл для цветной камеры в ночном режиме совершенно мифические. Когда компания SONY для процессора Effio заявляет 650/700 твл, она имеет ввиду возможности процессора по обработке ч/б изображения с матрицы 960Н также черно-белого варианта. В этом легко убедится по изображению нормальной ( не китайской) таблицы на ч/б мониторе или цветном видеомониторе с гребенчатым фильтром. Мы ведь говорим о композитном аналоговом выходе, на каком и обещается такое разрешение.
Посмотрим теперь откуда берутся 1200твл на этом выходе. Все рекламируемые камеры с CMOS сенсором IMX138 SONY «Exmor” работают в этих камерах с процессором FH8520. Это замечательное многофункциональное устройство обеспечивает при входном изображении 1280х960р как цифровой выход изображения HD 1280x720p / 25, 30, 50 или 60 к/с, так и аналоговый композитный выход в стандарте PALили NTSC(просто других нет, если не считать мало распространенного французского и немного советского SECAM).
Естественно это предполагает переход на другую систему разложения (для PALэто 625 строк, 50 полукадров), а следовательно на другое разрешение не только по горизонтали но и по вертикали. И действительно, в технических характеристиках процессора на аналоговом выходе заявлено горизонтальное разрешение 720 или 960H, т.е как максимум, аналогичное системе 960H “Effio”. Другими словами в подобных камерах используется система HD, но не полнофункционально. Подобные варианты встречались в мегапиксельных камерах IPи HDcctv (SDI) в виде контрольного аналогового выхода, правда HDизображение там чаще всего просто сжималось до формата 4:3.
В остальном эти «замечательные» телекамеры имеют стандартный набор как необходимых (баланс белого, электронный затвор, управление автодиафрагмой) так и дополнительных, иногда даже полезных функций (WDR, Sens-Up, D-ZOOM, шумоподавление 2D/3D, детектор активности, приватные зоны, регулировка параметров изображения и т.п.).
Теперь сформулируем, что же мы получили, как говорится «в сухом остатке». А получили мы камеру Effio 960H на CMOS матрице Exmor,но с прогрессивной разверткой.
Использование сенсора с прогрессивной разверткой обеспечивает полное отсутствие интерлесинга при воспроизведении изображения на компьютерных VGA или DVIмониторах, несмотря на передачу изображения аналоговым сигналом с черезстрочной разверткой. Это весьма приятно, поскольку сейчас используется исключительно цифровая регистрация и компьютерные LCD мониторы. Это, наконец, позволит использовать оба полукадра при записи и увеличит разрешение регистрации в 2 раза по вертикали. Но на самом деле и по горизонтали, поскольку при полукадровой регистрации (352х288) переход на формат HD1 (704×288) в реальности не улучшал картинку.
Несмотря на применение CMOSсенсора общее потребление камер практически не изменилось, поскольку потребление современных процессоров достаточно велико и практически оно определяет потребление, не считая возможной ИК подсветки.
Матрица IMX138 SONY благодаря современной технологии «Exmor” характеризуется высокой чувствительностью и быстродействием, низким уровнем шума. Но это в сравнении с обычными сенсорами CMOS. Все таки сказываются малые размеры пикселя, Байеровский фильтр RGBвместо CMYGи особенности архитектуры самого сенсора. CCDсенсоры современных технологий той же SONYимеют безусловное преимущество в сравнении с CMOS. Данные о чувствительности сенсоров производства компании SONY сведены в таблицу.
Что такое ТВЛ?
ТВЛ – это телевизионные линии. На этом можно было бы и закончить, но мы решили копнуть глубже.
Давным-давно, когда деревья были выше, трава зеленее, а техника ламповой, людям захотелось принести видеоизображение из кинотеатров в дома, аки Прометеев огонь. Вначале 20-х годов ХХ века в ряде стран (США, СССР, Япония) стали проводить эксперименты с передачей и приемом изображения на расстояние с помощью электронных лучей.
В 1933 году американскому инженеру Владимиру Зворыкину удалось изобрести катодную трубку, которая долгое время была главной частью большинства телевизоров, а в последствии и мониторов.
В 1936 году под руководством Зворыкина в лаборатории RCA был разработан первый электронный телевизор, пригодный для практического применения, а в 1939 – первый телевизор для массового производства.
Закончим с историей и перейдем к теоретической части.
Если без лишних подробностей, то кинескоп, он же ЭЛТ (электронно-лучевая трубка), состоял из источника электронного пучка (катода), магнитной отклоняющей системы, фокусирующей магнитной системы и экрана.
Звучит страшно, на деле все гораздо проще. С помощью кинескопа можно было целенаправленно подсвечивать определенную часть экрана и регулировать то, какую из частей нужно подсветить.
Вы спросите, зачем все это нужно? Согласны, управление и наблюдение за светящейся точкой – спорное развлечение, если только ты не кот.
Но так же, как на этой гифке, точка лазера смазывается, становясь линией, как смазывается для нашего зрения бенгальский огонь в темноте – быстро перемещаемый электронный пучок начинает выглядеть на экране как линия. А если прибавить к этому еще и возможность менять яркость, мы получим самое настоящее черно-белое изображение. Цвет добавляется отдельно, об этом в следующих материалах.
Если вы хоть раз снимали что-то на камеру перед экраном старого телевизора, то видели как сменяются на нем линии. Экран телевизора обновлялся не чаще 60 раз в секунду, 60 Гц. Эта частота не совпадает с частотой записи камеры – в записи 2500 кадров в секунду и это выглядит так:
Но ведь мы вам рассказывали о пучке, не так ли? А на изображении это скорее линия, движущаяся сверху вниз.
Но если замедлить воспроизведение еще сильнее и снимать на скорости 118830 кадров в секунду, та же отрисовка выглядит вот так:
Вот так раньше, в эпоху кинескопных “пузатых” телевизоров, строилась картинка. Естественно, мы упустили многие детали, но иначе текст получается бы слишком заумным.
Картинка выглядит несколько размыто, это связано с тем, что разрешение исходного видео (на телевизоре) всего 512 х 320 пикселей. Стоп! Мы ведь только что говорили о том, что телевизор кинескопный, да и статья о ТВЛ!
Будьте спокойны, мы не забыли, с чего начали. У каждого из старых видеоустройств существовало ограничение по качеству видео. Для камер – в записи, для телевизоров – в воспроизведении. Как и сейчас, оно сводилось к разрешающей способности. Но если сейчас разрешение выражено в пикселях и мегапикселях, то раньше речь шла о телевизионных линиях, ввиду специфики отрисовки изображения. Естественно, чем больше таких линий было, тем четче выглядело изображение.
Ниже представлена примерная таблица соответствия ТВЛ, картинки в пикселях и разрешения аналогичных камер в мегапикселях.