Что такое цикл карно
Карно цикл
Полезное
Смотреть что такое «Карно цикл» в других словарях:
КАРНО ЦИКЛ — обратимый круговой процесс, в к ром совершается превращение теплоты в работу (или работы в теплоту). К. ц. состоит из последовательно чередующихся двух изотермич. и двух адиабатич. процессов, осуществляемых с рабочим телом (напр., паром). Впервые … Физическая энциклопедия
Карно цикл — обратимый круговой процесс, состоящий из двух изотермических и двух адиабатических процессов; впервые рассмотрен Н. Л. С. Карно (1824) в связи с определением кпд тепловых машин. Кпд Карно цикла η не зависит от свойств рабочего тела (пара, газа… … Энциклопедический словарь
КАРНО ЦИКЛ — обратимый круговой процесс, представляющий идеальный рабочий цикл тепловой машины. К. ц. состоит из четырех частей: 1) изотермического расширения (см. ); 2) адиабатического расширения (см. ), при котором происходит охлаждение; 3) изотермического… … Большая политехническая энциклопедия
Карно цикл — Термодинамические циклы Статья является частью серии «Термодинамика». Цикл Аткинсона Цикл Брайтона/Джоуля Цикл Гирна Цикл Дизеля Цикл Калины Цикл Карно Цикл Ленуара … Википедия
КАРНО ЦИКЛ — [по имени франц. физика Н. Л. С. Карно (N. L. S. Carnot; 1796 1832)] обратимый круговой процесс, состоящий из двух изотермических процессов и двух адиабатных процессов. На рис. изображён К. ц., совершаемый идеальным газом (р давление газа, V его… … Большой энциклопедический политехнический словарь
КАРНО ЦИКЛ — обратимый круговой процесс, состоящий из двух изотермич. и двух адиабатич. процессов; впервые рассмотрен Н. Л. С. Карно (1824) в связи с определением кпд тепловых машин. Кпд К. ц. ц не зависит от свойств рабочего тела (пара, газа и т. п.) и… … Естествознание. Энциклопедический словарь
КАРНО ТЕОРЕМА — теорема о макс. коэффициенте полезного действия тепловых двигателей (франц. физика Н. Л. С. Карно, N. L. S. Carnot; 1824): кпд h=(T1 T2)T1 Карно цикла максимален и не зависит от природы рабочего в ва и конструкции идеального теплового двигателя,… … Физическая энциклопедия
ЦИКЛ ТЕРМОДИНАМИЧЕСКИЙ — круговой процесс, осуществляемый термодинамич. системой. Изучаемые в термодинамике циклы представляют собой сочетания разл. термодинамич. процессов, и в первую очередь изотермич., адиабатич., изобарич., изохорических. К Ц. т., исследование к рых… … Физическая энциклопедия
цикл термодинамический — совокупность термодинамических процессов, в результате которых рабочее тело (пар, газ) возвращается в первоначальное состояние. Пример: идеальный Карно цикл. В так называемом прямом термодинамическом цикле часть теплоты, сообщаемой рабочему телу … Энциклопедический словарь
Основы теплотехники
Идеальный цикл Карно
Целью исследований Карно было определение условий, при которых можно получить максимальную работу из теплоты, подведенной к тепловой машине, т. е. наиболее эффективно преобразовать тепловую энергию в механическую.
В конце XVIII – начале XIX века единственным типом тепловых машин, используемых человечеством в практических целях, являлись двигатели внешнего сгорания – т. е. паровые машины. КПД этих машин был чрезвычайно низким – не более 2 %, при этом не существовало какой-либо убедительной теории, указывающей пути к повышению их эффективности.
Изготовить реальный двигатель, преобразующий энергию тепла в механическую энергию строго по циклу, предложенному Карно, невозможно по технологическим причинам, поэтому цикл Карно считается неосуществимым и идеальным.
Карно умер совсем молодым, в возрасте 36 лет от заболевания холерой.
Поскольку в те годы холера считалась ужасным и неизлечимым недугом, тела и вещи умерших полагалось сжигать. Наверняка в огне погибли многие ценные труды этого талантливейшего инженера. Чудом уцелели лишь ставшие знаменитыми «Размышления о движущих силах огня…», которые этот самый огонь, уничтоживший все прочие труды Карно и его безжизненное тело, пожалел.
Последовательность процессов в цикле Карно
Для современного специалиста-теплотехника предложенный Карно цикл вполне логичен и не вызовет особых эмоций – наиболее рациональное превращение теплоты в механическую энергию не может осуществляться по иному пути, как с помощью изотермического процесса. Возврат к начальной точке цикла без затрат энергии на паразитные внутренние процессы системы тоже должен проходить по изотерме. А в качестве промежуточных процессов, исключающих потери теплоты во внешнюю среду, наиболее логичны процессы адиабатные.
Тем не менее, не следует забывать, что на момент написания «Размышлений о движущей силы огня и о машинах, способных развивать эту силу» никаких теоретических изысканий в области тепловых двигателей не проводилось, поэтому труд молодого француза был поистине революционным.
Анализ полученной Карно круговой p-V диаграммы цикла показывает, что системой выполнена механическая работа, величина которой характеризуется площадью, заключенной между кривой, ограниченной точками 1-2-3 и кривой, ограниченной точками 3-4-1. При этом вся выполненная системой работа будет равна сумме работ, выполненных в течение каждого из четырех последовательных термодинамических процессов, перечисленных выше.
Математический анализ предложенной Сади Карно модели идеального цикла показывает, что максимальный термический КПД тепловой машины может быть определен из соотношения:
где: Т1 и Т2 – температура рабочего тела (газа) соответственно в начале и конце цикла.
Цикл Карно является эталоном, к которому стремятся инженеры, проектирующие тепловые машины. В условиях реальных температур, верхний предел которых определяется прочностью материалов, а нижний соответствует температуре окружающей среды, термический КПД цикла Карно может достигать величины 0,7…0,8.
Любой реальный тепловой двигатель будет тем совершеннее, чем ближе его КПД к расчетному КПД цикла Карно, протекающего в тех же температурных границах.
Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)
Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Цикл Карно
Термодинамические циклы |
---|
Статья является частью серии «Термодинамика». |
Цикл Аткинсона |
Цикл Брайтона/Джоуля |
Цикл Гирна |
Цикл Дизеля |
Цикл Калины |
Цикл Карно |
Цикл Ленуара |
Цикл Миллера |
Цикл Отто |
Цикл Ренкина |
Цикл Стирлинга |
Цикл Тринклера |
Цикл Хамфри |
Цикл Эрикссона |
Разделы термодинамики |
Начала термодинамики |
Уравнение состояния |
Термодинамические величины |
Термодинамические потенциалы |
Термодинамические циклы |
Фазовые переходы |
править |
См. также «Физический портал» |
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.
Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.
Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.
Содержание
Описание цикла Карно
Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой
и рабочего тела.
Цикл Карно состоит из четырёх стадий:
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:
при
.
Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).
КПД тепловой машины Карно
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
.
Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику
.
Отсюда коэффициент полезного действия тепловой машины Карно равен
.
Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.
Связь между обратимостью цикла и КПД
Для того, чтобы цикл был обратимым, из него должна быть исключена передача теплоты при наличии разности температур (так как такие процессы необратимы в силу постулата Томсона). Значит, передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того, чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД.
Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше чем КПД цикла Карно.
Краткая биография
Николя Леонард Сади Карно, сын высокопоставленного военачальника Лазаря Николая Маргарита Карно, родился в Париже в 1796 году. Его отец ушёл из армии в 1807 году, чтобы обучить Николаса и его брата Ипполита — оба получили широкое домашнее образование, включающее:
В 1812 году 16-летний Николас Карно был принят в Высшую политехническую школу в Париже. Его учителями были Джозеф Луи Гей-Люссак, Симеон Дени Пуассон и Андре-Мари Ампер, а сокурсниками — будущие учёные Клод-Луи Навье и Гаспар-Гюстав Кориолис. Во время учёбы в школе Карно проявил особый интерес к теории газов и решению задач промышленной инженерии. После окончания университета он поступил во французскую армию в качестве военного инженера и прослужил до 1814 года.
Освободившись от ограничений военной жизни, Карно начал широкий спектр исследований, которые продолжались, несмотря на многочисленные перерывы, до само́й смерти. В дополнение к частным занятиям он посещал курсы:
В последней он стал другом Николаса Клемента, который преподавал курс прикладной химии, а затем занимался важными исследованиями паровых двигателей и теории газов.
Одним из особых интересов Карно было промышленное развитие, которое он изучал во всех его аспектах. Он часто посещал фабрики и мастерские, читал новейшие теории политической экономии и оставлял в своих заметках подробные предложения по таким актуальным проблемам, как налоговая реформа. Помимо этого, его деятельность и способности охватили математику и изобразительное искусство.
В 1821 году Карно прервал учёбу, чтобы провести несколько недель со своим отцом и братом в Магдебурге. По-видимому, именно после этого визита он снова в Париже начал концентрироваться на проблемах парового двигателя. 12 июня 1824 года была опубликована его книга «Отражение в чистоте и весе».
После публикации Карно продолжил исследования, выводы из которых сохранились в его рукописных заметках. Однако реорганизация корпуса Генерального штаба вынудила Карно вернуться на службу в 1827 году в звании капитана. После менее чем годовой работы в качестве военного инженера Карно ушёл в отставку навсегда и вернулся в Париж. Он снова сосредоточил своё внимание на проблемах конструкции двигателя и теории тепла.
В 1831 году Карно начал исследовать физические свойства газов и паров, особенно связь между температурой и давлением. Однако в июне 1832 года он заболел скарлатиной. За этим последовала «мозговая лихорадка», которая настолько подорвала его хрупкое здоровье, что 24 августа 1832 года он стал жертвой эпидемии холеры и умер в течение дня, в возрасте 36 лет. Согласно обычаю, его личные вещи, включая почти все его бумаги, были сожжены.
Работы учёного
Самая ранняя из основных рукописей написана, вероятно, в 1823 году и озаглавлена «Поиск формулы для представления движущей силы водяного пара». Как видно из названия, это была попытка найти математическое выражение для движущей силы, производимой паром. Явно стремясь найти общее решение, охватывающее все типы паровых двигателей, Карно сократил их работу до трёх основных этапов:
Эссе как по методам, так и по целям похоже на многие статьи, опубликованные между 1818 и 1824 годами такими учёными, как Хашетт, Навье, Пети и Комбес. Работа Карно, однако, отличается своим тщательным, чётким анализом используемых единиц и концепций и тем, что он использует как адиабатическую рабочую стадию, так и изотермическую стадию. Отточенный характер, в отличие от его грубых заметок, делало её предназначенной для публикации, хотя она оставалась неизвестной в рукописи до 1966 года.
«Рефлексионы» (единственное произведение, опубликованное Карно за всю его жизнь) появилось в 1824 году как скромное эссе из 118 страниц. После краткого обзора промышленного, политического и экономического значения парового двигателя Карно поднял две проблемы, которые, по его мнению, помешали дальнейшему развитию как полезности, так и теории паровых двигателей:
Обе проблемы были своевременными и, хотя французские инженеры исследовали их в течение десятилетия, не было принято общепринятых решений. В отсутствии чёткой концепции эффективности предлагаемые конструкции паровых двигателей оценивались в основном по практичности, безопасности и экономии топлива.
Некоторые инженеры считали воздух, углекислоту и спирт лучшим рабочим веществом, чем пар. Обычным подходом к этим проблемам было либо эмпирическое исследование расхода топлива и выходной мощности отдельных двигателей, либо применение математической теории газов к абстрактным операциям конкретного типа двигателя. В своём выборе проблем Карно был твёрд в этой инженерской традиции, однако его метод был радикально новым и являлся сутью его вклада в науку о тепле.
Предыдущая работа над паровыми машинами, как видел Карно, провалилась из-за отсутствия достаточно общей теории, применимой ко всем тепловым двигателям и основанной на установленных принципах. В качестве основы своего исследования Карно тщательно изложил три предпосылки. Первой была невозможность вечного движения — принцип, который долгое время предполагался в механике. В своей второй предпосылке Карно использовал калорийную теорию тепла, которая, несмотря на некоторую оппозицию, была принятой и самой развитой, доступной теорией тепла.
Принципы работы цикла Карно
Этот теоретический идеальный круговой термодинамический цикл был предложен французским физиком Сади Карно в 1824 году. Он обеспечивал максимально возможный предел эффективности для любого классического термодинамического двигателя во время преобразования тепла в работу или, наоборот, эффективность системы охлаждения при создании разницы температур при приложении работы к системе. Фактический термодинамический цикл является теоретической конструкцией.
Каждая термодинамическая система существует в определённом состоянии. Когда система проходит через ряд различных явлений и, наконец, возвращается в исходное состояние, говорят, что произошёл термодинамический цикл. В процессе прохождения этого цикла система может выполнять работу, например, перемещая поршень, тем самым действуя, как тепловой двигатель.
Из каких процессов состоит Цикл Карно при работе в качестве теплового двигателя:
Система, проходящая через этот цикл, называется тепловым двигателем Карно, хотя такой «идеальный» двигатель является лишь теоретической конструкцией и не может быть построен на практике. Тем не менее был разработан и запущен микроскопический тепловой двигатель.
По существу, есть два «тепловых резервуара», образующих часть теплового двигателя при температурах T h и T c (соответственно, горячий и холодный). Они обладают такой большой теплоёмкостью, что их температуры практически не зависят от одного цикла. Поскольку цикл теоретически обратим, энтропия в течение цикла не возникает, но сохраняется.
Поведение двигателя или холодильника Карно лучше всего понять с помощью диаграммы, в которой координатами являются температура и энтропия. Термодинамическое состояние определяется точкой на графике с энтропией (S) в качестве горизонтальной оси и температуры (T) в качестве вертикальной оси. Для простой замкнутой системы любая точка на графике будет представлять конкретное состояние системы. Термодинамический процесс будет состоять из кривой, соединяющей начальное состояние (A) и конечное состояние (B), и представляющей собой количество тепловой энергии, передаваемой в процессе.
Если процесс движется к большей энтропии, площадь под кривой будет количеством тепла, поглощённого системой. Когда процесс движется к меньшей энтропии, это будет количество отводимого тепла. Для любого циклического процесса есть верхняя часть цикла и нижняя часть. Для цикла по часовой стрелке область под верхней частью будет тепловой энергией, поглощённой в течение цикла, тогда как область под нижней частью будет тепловой энергией, удалённой во время цикла.
Площадь внутри цикла будет тогда разницей между ними, но поскольку внутренняя энергия системы должна вернуться к своему первоначальному значению, эта разница должна быть объёмом работы, которую должна совершать системой за цикл.
Перевёрнутый цикл
Описанный цикл теплового двигателя является полностью обратным циклом Карно. То есть все процессы, из которых он состоит, могут быть обращены вспять, и в этом случае цикл становится холодильным циклом Карно.
На этот раз цикл остаётся точно таким же, за исключением того, что направления любых тепловых и рабочих взаимодействий меняются местами. Тепло поглощается из низкотемпературного резервуара, отбрасывается в высокотемпературный резервуар, и для этого требуется работа. Диаграмма P-V обращённого цикла такая же, как и для цикла Карно, за исключением того, что направления процессов меняются местами.
Если же в цикле возникает передача теплоты при наличии разности температур, а такими являются все технические реализации термодинамических циклов, то цикл становится необратимым. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.
Теорема Карно
Эта теорема является формальным утверждением этого факта: ни один двигатель, работающий между двумя тепловыми резервуарами, не может быть более эффективным, чем двигатель Карно, работающий между этими же резервуарами.
Следствие из теоремы Карно гласит: все реверсивные двигатели, работающие между одними и теми же тепловыми резервуарами, одинаково эффективны. Теоретический максимальный КПД теплового двигателя равён разнице в температуре между горячим и холодным резервуаром, делённой на абсолютную температуру горячего резервуара.
Исходя из этого, становится очевидным интересный факт: понижение температуры холодного резервуара будет иметь большее влияние на потолочную эффективность теплового двигателя, чем повышение температуры горячего резервуара на ту же величину. В реальном мире это труднодостижимо, так как холодный резервуар часто имеет существующую температуру окружающей среды.
Другими словами, максимальная эффективность достигается тогда, когда в цикле не создаётся новая энтропия, что было бы в случае, если, например, трение привело к рассеиванию работы в тепло. В противном случае, поскольку энтропия является функцией состояния, требуемый сброс тепла в окружающую среду для удаления избыточной энтропии приводит к (минимальному) снижению эффективности.
В мезоскопических тепловых двигателях работа за цикл обычно колеблется из-за теплового шума. Если цикл выполняется квазистатически, флуктуации исчезают даже на мезомасштабах. Но если цикл выполняется быстрее, чем время релаксации рабочего тела, колебания работы неизбежны. Тем не менее когда учтены рабочие и тепловые колебания, существует точное равенство, которое связывает экспоненциальное среднее значение работы, выполненной любым тепловым двигателем, и теплопередачу от горячей тепловой ёмкости.
Карно понимал, что в действительности невозможно создать термодинамический обратимый двигатель, поэтому реальные тепловые двигатели менее эффективны. Кроме того, реальные двигатели, работающие в этом цикле, встречаются редко. Но хотя прямой цикл французского учёного является идеализацией, его выражение эффективности всё ещё полезно для дальнейших исследований.
Примером обратимого цикла также является идеальный цикл Стирлинга. Существует и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например, цикл Эрикссона.