Что такое цифровая запись звука
Цифровое представление аналогового аудиосигнала. Краткий ликбез
Дорогие читатели, меня зовут Феликс Арутюнян. Я студент, профессиональный скрипач. В этой статье хочу поделиться с Вами отрывком из моей презентации, которую я представил в университете музыки и театра Граца по предмету прикладная акустика.
Рассмотрим теоретические аспекты преобразования аналогового (аудио) сигнала в цифровой.
Статья не будет всеохватывающей, но в тексте будут гиперссылки для дальнейшего изучения темы.
Чем отличается цифровой аудиосигнал от аналогового?
Аналоговый (или континуальный) сигнал описывается непрерывной функцией времени, т.е. имеет непрерывную линию с непрерывным множеством возможных значений (рис. 1).
Цифровой сигнал — это сигнал, который можно представить как последовательность определенных цифровых значений. В любой момент времени он может принимать только одно определенное конечное значение (рис. 2).
Аналоговый сигнал в динамическом диапазоне может принимать любые значения. Аналоговый сигнал преобразуется в цифровой с помощью двух процессов — дискретизация и квантование. Очередь процессов не важна.
Дискретизацией называется процесс регистрации (измерения) значения сигнала через определенные промежутки (обычно равные) времени (рис. 3).
Квантование — это процесс разбиения диапазона амплитуды сигнала на определенное количество уровней и округление значений, измеренных во время дискретизации, до ближайшего уровня (рис. 4).
Дискретизация разбивает сигнал по временной составляющей (по вертикали, рис. 5, слева).
Квантование приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (по горизонтали, рис. 5, справа).
Эти два процесса создают как бы координатную систему, которая позволяет описывать аудиосигнал определенным значением в любой момент времени.
Цифровым называется сигнал, к которому применены дискретизация и квантование. Оцифровка происходит в аналого-цифровом преобразователе (АЦП). Чем больше число уровней квантования и чем выше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому (рис. 6).
Уровни квантования нумеруются и каждому уровню присваивается двоичный код. (рис. 7)
Количество битов, которые присваиваются каждому уровню квантования называют разрядностью или глубиной квантования (eng. bit depth). Чем выше разрядность, тем больше уровней можно представить двоичным кодом (рис. 8).
Данная формула позволяет вычислить количество уровней квантования:
Если N — количество уровней квантования,
n — разрядность, то
Обычно используют разрядности в 8, 12, 16 и 24 бит. Несложно вычислить, что при n=24 количество уровней N = 16,777,216.
При n = 1 аудиосигнал превратится в азбуку Морзе: либо есть «стук», либо нету. Существует также разрядность 32 бит с плавающей запятой. Обычный компактный Аудио-CD имеет разрядность 16 бит. Чем ниже разрядность, тем больше округляются значения и тем больше ошибка квантования.
Ошибкой квантований называют отклонение квантованного сигнала от аналогового, т.е. разница между входным значением и квантованным значением
(
)
Большие ошибки квантования приводят к сильным искажениям аудиосигнала (шум квантования).
Чем выше разрядность, тем незначительнее ошибки квантования и тем лучше отношение сигнал/шум (Signal-to-noise ratio, SNR), и наоборот: при низкой разрядности вырастает шум (рис. 9).
Разрядность также определяет динамический диапазон сигнала, то есть соотношение максимального и минимального значений. С каждым битом динамический диапазон вырастает примерно на 6dB (Децибел) (6dB это в 2 раза; то есть координатная сетка становиться плотнее, возрастает градация).
Ошибки квантования (округления) из-за недостаточного количество уровней не могут быть исправлены.
50dB SNR
примечание: если аудиофайлы не воспроизводятся онлайн, пожалуйста, скачивайте их.
Теперь о дискретизации.
Как уже говорили ранее, это разбиение сигнала по вертикали и измерение величины значения через определенный промежуток времени. Этот промежуток называется периодом дискретизации или интервалом выборок. Частотой выборок, или частотой дискретизации (всеми известный sample rate) называется величина, обратная периоду дискретизации и измеряется в герцах. Если
T — период дискретизации,
F — частота дискретизации, то
Чтобы аналоговый сигнал можно было преобразовать обратно из цифрового сигнала (точно реконструировать непрерывную и плавную функцию из дискретных, «точечных» значении), нужно следовать теореме Котельникова (теорема Найквиста — Шеннона).
Теорема Котельникова гласит:
Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.
Вам знакомо число 44.1kHz? Это один из стандартов частоты дискретизации, и это число выбрали именно потому, что человеческое ухо слышит только сигналы до 20kHz. Число 44.1 более чем в два раза больше чем 20, поэтому все частоты в цифровом сигнале, доступные человеческому уху, могут быть преобразованы в аналоговом виде без искажении.
Но ведь 20*2=40, почему 44.1? Все дело в совместимости с стандартами PAL и NTSC. Но сегодня не будем рассматривать этот момент. Что будет, если не следовать теореме Котельникова?
Когда в аудиосигнале встречается частота, которая выше чем 1/2 частоты дискретизации, тогда возникает алиасинг — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.
Как видно из предыдущей картинки, точки дискретизации расположены так далеко друг от друга, что при интерполировании (т.е. преобразовании дискретных точек обратно в аналоговый сигнал) по ошибке восстанавливается совершенно другая частота.
Аудиопример 4: Линейно возрастающая частота от
100 до 8000Hz. Частота дискретизации — 16000Hz. Нет алиасинга.
Аудиопример 5: Тот же файл. Частота дискретизации — 8000Hz. Присутствует алиасинг
Пример:
Имеется аудиоматериал, где пиковая частота — 2500Hz. Значит, частоту дискретизации нужно выбрать как минимум 5000Hz.
Следующая характеристика цифрового аудио это битрейт. Битрейт (bitrate) — это объем данных, передаваемых в единицу времени. Битрейт обычно измеряют в битах в секунду (Bit/s или bps). Битрейт может быть переменным, постоянным или усреднённым.
Следующая формула позволяет вычислить битрейт (действительна только для несжатых потоков данных):
Битрейт = Частота дискретизации * Разрядность * Количество каналов
Например, битрейт Audio-CD можно рассчитать так:
44100 (частота дискретизации) * 16 (разрядность) * 2 (количество каналов, stereo)= 1411200 bps = 1411.2 kbit/s
При постоянном битрейте (constant bitrate, CBR) передача объема потока данных в единицу времени не изменяется на протяжении всей передачи. Главное преимущество — возможность довольно точно предсказать размер конечного файла. Из минусов — не оптимальное соотношение размер/качество, так как «плотность» аудиоматериала в течении музыкального произведения динамично изменяется.
При кодировании переменным битрейтом (VBR), кодек выбирает битрейт исходя из задаваемого желаемого качества. Как видно из названия, битрейт варьируется в течение кодируемого аудиофайла. Данный метод даёт наилучшее соотношение качество/размер выходного файла. Из минусов: точный размер конечного файла очень плохо предсказуем.
Усреднённый битрейт (ABR) является частным случаем VBR и занимает промежуточное место между постоянным и переменным битрейтом. Конкретный битрейт задаётся пользователем. Программа все же варьирует его в определенном диапазоне, но не выходит за заданную среднюю величину.
При заданном битрейте качество VBR обычно выше чем ABR. Качество ABR в свою очередь выше чем CBR: VBR > ABR > CBR.
ABR подходит для пользователей, которым нужны преимущества кодирования VBR, но с относительно предсказуемым размером файла. Для ABR обычно требуется кодирование в 2 прохода, так как на первом проходе кодек не знает какие части аудиоматериала должны кодироваться с максимальным битрейтом.
Существуют 3 метода хранения цифрового аудиоматериала:
Несжатый (RAW) формат данных
Другой формат хранения несжатого аудиопотока это WAV. В отличие от RAW, WAV содержит заголовок файла.
Аудиоформаты с сжатием без потерь
Принцип сжатия схож с архиваторами (Winrar, Winzip и т.д.). Данные могут быть сжаты и снова распакованы любое количество раз без потери информации.
Как доказать, что при сжатии без потерь, информация действительно остаётся не тронутой? Это можно доказать методом деструктивной интерференции. Берем две аудиодорожки. В первой дорожке импортируем оригинальный, несжатый wav файл. Во второй дорожке импортируем тот же аудиофайл, сжатый без потерь. Инвертируем фазу одного из дорожек (зеркальное отображение). При проигрывании одновременно обеих дорожек выходной сигнал будет тишиной.
Это доказывает, что оба файла содержат абсолютно идентичные информации (рис. 11).
Кодеки сжатия без потерь: flac, WavPack, Monkey’s Audio…
При сжатии с потерями
акцент делается не на избежание потерь информации, а на спекуляцию с субъективными восприятиями (Психоакустика). Например, ухо взрослого человек обычно не воспринимает частоты выше 16kHz. Используя этот факт, кодек сжатия с потерями может просто жестко срезать все частоты выше 16kHz, так как «все равно никто не услышит разницу».
Другой пример — эффект маскировки. Слабые амплитуды, которые перекрываются сильными амплитудами, могут быть воспроизведены с меньшим качеством. При громких низких частотах тихие средние частоты не улавливаются ухом. Например, если присутствует звук в 1kHz с уровнем громкости в 80dB, то 2kHz-звук с громкостью 40dB больше не слышим.
Этим и пользуется кодек: 2kHz-звук можно убрать.
Кодеки сжатия с потерям: mp3, aac, ogg, wma, Musepack…
Цифровая звукозапись
Цифрово́й звук — кодирование аналогового звукового сигнала в виде битовой последовательности. Простейшая форма кодирования аналогового звукового сигнала состоит в представлении последовательности уровней электрических звуковых колебаний в определенные промежутки времени с применением импульсно-кодовой модуляции. Также издавна известна сигма-дельта-модуляция. Современные системы кодирования в цифровой звук используют более сложные подходы, некоторые из которых, но не все, основаны на изначальном незначительном искажении, обычно невоспринимаемом человеческим ухом. Кроме описания звуковых колебаний в цифровом виде, применяется также создание специальных команд для автоматического воспроизведения на различных электронных музыкальных инструментах, ярчайшим примером такой технологии является MIDI.
Преимущества битового кода используются при передаче кодированного сигнала на расстояние, криптовании сигнала, цифровой подписи сигнала, восстановлении потерь, вызванной помехами при передаче, а также в прочих приложениях.
Цифровая звукозапись — технология преобразования аналогового звука в цифровой с целью сохранения его на физическом носителе для возможности последующего воспроизведения записанного сигнала.
Для воспроизведения цифрового звука применяют специальное оборудование, например музыкальные центры, цифровые плееры, компьютеры с звуковой картой и установленным программным обеспечением аудиоплеером или медиаплеером.
Содержание
История
Принцип цифровой звукозаписи методом периодической дискретизации и квантования сигнала
Принцип цифрового представления колебаний звукозаписи достаточно прост:
Принцип действия АЦП тоже достаточно прост: аналоговый сигнал, полученный от микрофонов и электро-музыкальных инструментов, преобразовывается в цифровой. Это преобразование включает в себя следующие операции:
Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для качественной записи звука в полосе частот 20-20 000 Гц применяется минимальная стандартная частота дискретизации от 44,1 кГц и выше (в настоящее время появились АЦП и ЦАП c частотой дискретизации 192,3 и даже 384,6 кГц). Для получения довольно качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 (реже 32) бита.
Помехоустойчивое и канальное кодирование
Помехоустойчивое кодирование позволяет при воспроизведении сигнала выявить и устранить (или снизить частоту их появления) ошибки чтения с носителя. Для этого при записи к сигналу полученному на выходе АЦП добавляется искусственная избыточность (контрольный бит), которая впоследствии помогает восстановить поврежденный отсчет. В устройствах записи звука обычно используется комбинация из двух или трех помехоустойчивых кодов. Для лучшей защиты от пакетных ошибок также применяется перемежние.
Канальное кодирование служит для согласования цифровых сигналов с параметрами канала передачи (записи/воспроизведения). К полезному сигналу добавляются вспомогательные данные, которые облегчают последующее декодирование. Это могут быть сигналы временного кода, служебные сигналы, сигналы синхронизации.
В устройствах воспроизведения цифровых сигналов канальный декодер выделяет из общего потока данных тактовые сигналы и преобразует поступивший канальный сигнал в цифровой поток данных. После коррекции ошибок сигнал поступает в ЦАП.
Принцип действия ЦАП
Цифровой сигнал, полученный с декодера, преобразовывается в аналоговый. Это преобразование происходит следующим образом:
Методы цифровой звукозаписи
По принципу записи выделяют следующие методы:
На цифровых носителях и в персональных компьютерах для хранения звука (музыки, голоса и т. п.) применяются различные форматы, позволяющие выбрать приемлемое соотношение сжатия, качества звука и объёма данных.
Популярные форматы файлов для персональных компьютеров и соответствующих устройств:
Параметры, влияющие на качество цифровой звукозаписи
Основными параметрами, влияющими на качество цифровой звукозаписи, являются:
Также немаловажными остаются параметры аналогового тракта цифровых устройств звукозаписи и звуковоспроизведения:
Техника цифровой звукозаписи
Запись цифрового звука в настоящее время осуществляется на студиях звукозаписи, под управлением персональных компьютеров и другой дорогостоящей и качественной аппаратуры. Также довольно широко развито понятие «домашней студии», в которой применяется профессиональное и полупрофессиональное звукозаписывающее оборудование, позволяющее создавать качественные записи в домашних условиях.
Применяются звуковые карты в составе компьютеров, которые производят обработку в своих АЦП и ЦАП — чаще всего в 24 битах и 96 кГц, дальнейшее повышение битности и частоты дискретизации, практически не увеличивает качества записи.
Некоторые простые программы, позволяют осуществлять только конвертацию форматов и кодеков.
Некоторые виды цифрового звука в сравнении
Название формата | Квантование, бит | Частота дискретизации, кГц | Число каналов | Величина потока данных с диска, кбит/с | Степень сжатия/упаковки |
---|---|---|---|---|---|
CD | 16 | 44,1 | 2 | 1411,2 | 1:1 без потерь |
Dolby Digital (AC3) | 16-24 | 48 | 6 | до 640 | |
DTS | 20-24 | 48; 96 | до 8 | до 1536 | |
DVD-Audio | 16; 20; 24 | 44,1; 48; 88,2; 96 | 6 | 6912 | 2:1 без потерь |
DVD-Audio | 16; 20; 24 | 176,4; 192 | 2 | 4608 | 2:1 без потерь |
MP3 | плавающий | до 48 | 2 | до 320 | |
AAC | плавающий | до 96 | до 48 | до 529 | с потерями |
AAC+ (SBR) | плавающий | до 48 | 2 | до 320 | с потерями |
Ogg Vorbis | до 32 | до 192 | до 255 | до 1000 | с потерями |
WMA | до 24 | до 96 | до 8 | до 768 | 2:1, есть версия без потерь |
См. также
Примечания
Литература
Ссылки
Аналоговые | Валик фонографа (1877) • Грампластинка (1894) • Проволока телеграфона (1898) • Магнитофонная катушка (1940-е) • SoundScriber (1945) • Gray Audograph (1945) • Dictabelt (1947) • Долгоиграющая пластинка (1948) • RCA картридж (1958) • Fidelipac (1959) • Stereo-Pak (1962) • Компакт-кассета (1963) и cassette single (1982) • Stereo 8 (1964) • DC International (1965) • PlayTape (1966) • Миникассета (1967) • Микрокассета (1969) • Steno-Cassette (1971) • Elcaset (1976) • Пикокассета (1985) |
---|---|
Цифровые | Цифровые аудиоформаты• Soundstream (1976) • X80/ProDigi (1980) • DASH (1982) • Звуковой компакт-диск (1982) • Digital Audio Tape (1987) • ADAT (1991) • MiniDisc (1991) • Digital Compact Cassette (1992) • NT (1992) • Extended Resolution Compact Disc (1995) • High Definition Compatible Digital (1995) • 5.1 Music Disc (1997) • Super Audio CD (1999) • DVD-Audio (2000) • Hi-MD (2004) • K2 High Definition (2007) • SlotMusic (2008) • Super High Material CD (2008) |
Полезное
Смотреть что такое «Цифровая звукозапись» в других словарях:
Звукозапись — Не следует путать с Звукопись. Звукозапись процесс сохранения колебаний в диапазоне 20 20 000 Гц (музыки, речи или иных звуков) на каком либо носителе (грампластинки, магнитная лента, компакт диск и т. д.) с помощью специальных приборов (микрофон … Википедия
ЦЗЗ — цифровая звукозапись … Словарь сокращений русского языка
История звукозаписи — Методы и носители для звукозаписи менялись и подверглись значительным изменениям с момента записи первых звуков (для последующего их воспроизведения) до настоящего времени. Содержание 1 Механические музыкальные инструменты 2 … Википедия
Микшерный пульт — Yamaha 2403 Микшерный пульт («микш … Википедия
ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ — воспроизведение натуральных звучаний электромеханическими средствами и сохранение их в форме, позволяющей восстанавливать их с максимальной верностью оригиналу. Более подробная информация о физических принципах, лежащих в основе затрагиваемых… … Энциклопедия Кольера
ADAT — Alesis ADAT XT самый распространенный в 1990 е годы цифровой многодорожечный магнитофон ADAT (англ. Alesis Digital Audio Tape цифровая аудиолента фирмы Alesis) пакет стандартов … Википедия
Digital Audio Tape — У этого термина существуют и другие значения, см. DAT. DAT … Википедия
Сигма-дельта-модуляция — Технологии модуляции п·Аналоговая модуляция AM · SSB · ЧМ(FM) · ЛЧМ · ФМ(PM) · СКМ Цифровая модуляция АМн … Википедия
Звуковой компакт-диск — Это статья об одной из разновидностей оптических дисков. О других реализациях см.: Компакт диск. Звуковой компакт диск … Википедия
Цифровые аудиоформаты — Цифровой аудиоформат формат представления звуковых данных, используемый при цифровой звукозаписи, а также для дальнейшего хранения записанного материала на компьютере и других электронных носителях информации, так называемых звуковых… … Википедия
Отличия аналогового звука от цифрового
Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?
Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.
У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.
Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).
Преимущества и недостатки аналогового сигнала
Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.
Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.
Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.
Преимущества и недостатки цифрового сигнала
К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.
Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.
На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.
Как ЦАП строят волну
ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.
Мультибитные ЦАП
Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.
На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.
Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.
Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).
При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.
Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.
Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.
Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).
Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.
Импульсные ЦАП
В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.
Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).
Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.
Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).
Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.
На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.
В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.
Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.
Являются ли идеальными импульсные ЦАП?
Но на практике не все безоблачно, и существует ряд проблем и ограничений.
Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.
Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.
Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.
Формат DSD
После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).
Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.
В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).
Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.
Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.
На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.
Общий вывод
Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.
Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.
Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.