Что такое цифровая модуляция
Цифровая модуляция
Сведения о системах модуляции
В настоящее время все абонентские терминалы преобразуют сигналы в цифровую форму. Одна из важнейших проблем, как на абонентском участке, так и участке соединительных линий обеспечить максимальную скорость передачи цифровой информации.
Существующая абонентская проводная сеть имеет громадный объем. Замена ее на более скоростную среду передачи, например, на оптоволоконную среду, подобна замене песка на всех пляжах мира и не всегда возможна по экономическим причинам.
Поэтому основная задача, которую успешно решают связисты мира увеличение пропускной способности существующей.
Всегда возникает основной вопрос, телефонная связь уже существует более 150 лет. Эта проводная сеть рассчитана на диапазон человеческого голоса или точнее на пропускание аналоговой частоты в диапазоне от 0,3 до 3,4 кГц.
Как же удалось сегодня многократно увеличить этот диапазон и сделать возможным передачу информации, которая требует ресурс в более чем 100 раз. Это достигнуто различными способами, но в основном благодаря разработке способов модуляции.
Наиболее применяемый в настоящее время класс модуляции фазовый. Мы постепенно рассмотрим этот вид. Начиная от простейших видов такой модуляции, а потом рассмотрим наиболее применяемые методы.
Многоуровневая передача сигналов
Цифровое преобразование сигналов подразумевает двоичное кодирование сигналов. Когда же нужно получить высокую скорость передачи данных в условиях ограниченной полосы прибегают к методам повышения информационной емкости передаваемых символов. Одним из таких методов является многоуровневая система, когда каждый сигнал может принимать несколько уровней амплитуды в зависимости от значения исходного символа. Скорость передачи данных в многоуровневой системе передачи равна.
( 4.1) |
Скорость передачи сигнала, равная обычно называется скоростью передачи символов и измеряется в бодах. На практике понятие «бод» обычно понимают как синоним скорости в битах. Однако, строго говоря, скорость передачи в битах равна скорости передачи в бодах только в случае двоичной передачи (один бит за один интервал сигнала).
На рис.4.1 показан пример восьмиуровневого сигнала. Это позволяет увеличить скорость передачи 3 бита на сигнальный интервал (т.е. 3 бита на бод).
Многоуровневые передающие системы увеличивают скорость передачи данных в пределах заданной полосы частот, но требуют значительного увеличения уровня сигнал шум. Известно, что при большом уровне помех наиболее уязвима амплитуда сигнала. Поэтому такая система не получила распространения.
В современных системах примером применения такой системы может служить организация цифровой абонентской линии в системе ISDN (Integrated Services Digital Network ), в которой для достижения скорости 160 кбит/с. используется четырехуровневая передача [ 2 ]
Фазовые методы модуляции
Фазовая манипуляция
Фазовая модуляция связана с манипуляцией фазы. При такой манипуляции для получения бинарного сигнала в каждом тактовом интервале используется одна из фаз, отличающаяся на 180 градусов.
Возможна также многоуровневая ФМ. Фазовая манипуляция XE «Фазовая манипуляция» в настоящее время – наиболее распространенная форма модуляции.
Популярность этого типа модуляции определяется, прежде всего, наличием постоянной огибающей, что обеспечивает то, что она нечувствительна к изменениям уровня сигнала, влиянию затухания и характеристикам аппаратуры усиления и обеспечивает хорошую характеристику. С точки зрения отношения сигнал шум () системы фазовой модуляции обеспечивают оптимальные (теоретически) значения характеристик ошибок.
Общий вид n-уровневой фазовой манипуляции отображается формулой
( 4.1) |
На рис.4. 2 показаны примеры типичных 2-ФМ и 4-ФМ – сигналов. На рисунке скорость передачи при 4-ФМ, в два раза меньше, чем 2-ФМ, что обеспечивает одинаковую скорость передачи данных (из-за увеличения информационной емкости). На этом рисунке приведены фазовые диаграммы для косинусоидального сигнала (см. формулу 4.1).
Модуляция
При аналоговой модуляции модуляция применяется непрерывно в ответ на аналоговый информационный сигнал. Общие методы аналоговой модуляции включают:
Основные методы цифровой модуляции
Наиболее фундаментальные методы цифровой модуляции основаны на манипуляции :
Если алфавит состоит из M знак равно 2 N <\ Displaystyle M = 2 ^ альтернативные символы, каждый символ представляет сообщение, состоящее из N бит. Если скорость передачи символов (также известная как скорость передачи ) ж S <\ displaystyle f_
> символов в секунду (или бод ), скорость передачи данных равна N ж S <\ displaystyle Nf_
> бит / сек.
Например, в алфавите, состоящем из 16 альтернативных символов, каждый символ представляет 4 бита. Таким образом, скорость передачи данных в четыре раза превышает скорость передачи данных.
Принцип работы модулятора и детектора
Это общие шаги, используемые модулятором для передачи данных:
На стороне приемника демодулятор обычно выполняет:
Как и во всех цифровых системах связи, конструкция модулятора и демодулятора должна выполняться одновременно. Возможны схемы цифровой модуляции, поскольку пара передатчик-приемник заранее знает, как данные кодируются и представляются в системе связи. Во всех цифровых системах связи и модулятор в передатчике, и демодулятор в приемнике устроены так, что они выполняют обратные операции.
Список распространенных методов цифровой модуляции
Наиболее распространенными методами цифровой модуляции являются:
Автоматическое распознавание цифровой модуляции (ADMR)
Есть два основных подхода к автоматическому распознаванию модуляции. Первый подход использует методы, основанные на правдоподобии, для присвоения входного сигнала надлежащему классу. Другой недавний подход основан на извлечении признаков.
Цифровая модуляция основной полосы частот или линейное кодирование
Аналоговые методы по сравнению с аналоговыми
Аналоговые методы над цифровыми
Основы беспроводных сетей
Аналоговые и цифровые сигналы. Модуляция
Аналоговые и цифровые сигналы
При распространении сигналов в какой-либо среде, они носят непрерывный по величине и времени характер. Сигналы, непрерывные по величине напряжения и времени, называются аналоговыми (рисунок 1(а)). Основной причиной массового перехода от аналоговых сигналов к цифровым в беспроводных системах связи является развитие цифровой техники, которая оперирует численными данными, а не аналоговыми сигналами. Также, в пользу цифровых сигналов сыграли возможность восстановления в промежуточных узлах передачи и инструмент кодирования, используемый для восстановления утерянных данных и решения вопросов безопасности.
Результат двух операций, дискретизации и квантования, над аналоговым сигналом называется цифровым (рисунок 1(г)).
Используя цифровые сигналы, можно представить исходный аналоговый сигнал в виде конечной числовой последовательности, что облегчит хранение и обработку данных, а также сделает возможным использование схем кодирования.
Важным достоинством цифровых сигналов является возможность их воспроизведения: принятый аналоговый сигнал может быть усилен по амплитуде, однако, наряду с сигнальной составляющей, будет усилена помеха, тогда как цифровой сигнал может быть сначала декодирован, после чего сгенерирован заново.
Кодирование
Под кодированием подразумевается однозначное преобразование числовой последовательности в другую числовую последовательность, как правило, большей длины. Кодирование применяется с целью обнаружения и/или исправления ошибок, возникших при передаче данных.
Рассмотрим простейший вид кодирования с проверкой на чётность: для этого запишем числовую последовательность, полученную в предыдущем пункте, поэлементно в столбец:
К каждому из символов добавим дополнительный бит, который равен нулю, если сумма битов числа чётная, и равен единице, если сумма битов числа нечётная. Таким образом, сумма битов нового четырёхзначного числа является чётной.
При передаче последовательность модулирует несущий сигнал и передаётся в эфир. На приёмной стороне полученный сигнал декодируется и делится на 4-битные последовательности, каждая из которых кодирует один символ. Далее, каждое из четырёхбитных чисел проверяется на чётность и, в случае, если сумма битов является нечётной, то фиксируется ошибка в передаче данного символа. Код с проверкой на чётность может только обнаруживать одну ошибку при передаче символа, т.е. если будут неверно приняты два из четырёх битов, то ошибка обнаружена не будет. Рассмотренный метод кодирования является достаточно простым, однако существуют более сложные кодовые конструкции, которые позволяют не только обнаруживать, но и исправлять одну или несколько ошибок.
Модуляция
Сигнал, содержащий информацию, занимает определённую полосу, располагается в области низких частот и называется модулирующим. Высокочастотный сигнал, один или несколько параметров которого изменяются в соответствии с модулирующим сигналом называется модулируемым. При этом процесс преобразования высокочастотного гармонического сигнала, в ходе которого спектр информационного сигнала переносится в область высоких частот, называется модуляцией. Использование данного преобразования имеет два преимущества:
Схема модуляции
Процесс модуляции состоит в изменении амплитуды, частоты или фазы несущей частоты в соответствии с поступающими данными.
Обратимся к рисунку 4 для пояснения процесса модуляции. Генератор несущей формирует опорный сигнал, представляющий из себя гармонический сигнал заданной частоты, который поступает на вход модулятора. Источник передаваемого сообщения формирует поток бит, которые необходимо передать на приёмную сторону. В соответствии с сформированным потоком бит в блоке модулятора изменяются один или несколько параметров опорного сигнала, после чего, полученный сигнал передаётся в следующие каскады передатчика и излучается в направлении приёмника.
Сигнальное созвездие IQ
Одним из инструментов при оценке схемы модуляции сигнала является изображение сигнального созвездия, которое представляет из себя способ представления радиосигнала в виде двухмерной точечной диаграммы на комплексной плоскости. Любой сигнал может быть представлен как сумма синфазной ( I ) и квадратурной ( Q ) составляющих и изображается как точка на комплексной плоскости. Совокупность сигналов, которую формирует передатчик и которая, исказившись в процессе распространения, детектируется на приёмной стороне, образует на комплексной плоскости множество точек, называемых сигнальным созвездием.
Амплитудная манипуляция (ASK, AM)
Частотная манипуляция (FSK, ЧМ)
Фазовая манипуляция (PSK, ФМ)
Квадратурно-амплитудная манипуляция (QAM, КАМ)
В рассмотренных выше видах манипуляции, в соответствии с информационным сообщением изменялся один из параметров высокочастотного сигнала: амплитуда, частота или фаза. В квадратурно-амплитудной манипуляции используется комбинация различных амплитудных уровней и фазовых сдвигов, которые ставятся в соответствие передаваемым битам информации. Так, при использовании QAM-16 разрешено 4 значения амплитуды и 4 значения фазовых сдвигов, что при комбинации «каждый с каждым» даёт 16 возможных вариантов сигнала, каждому из которых соответствует точка на сигнальном созвездии:
Пусть, при передаче рассматриваемой информационной последовательности, используется QAM-16. Тогда осциллограммы модулированного сигнала будут выглядеть следующим образом:
Мультиплексирование с ортогональным частотным разделением каналов (OFDM)
Одной из проблем при распространении сигнала, как было показано в уроке «Принципы распространения радиосигнала», является многолучёвость, последствием которой является межсимвольная интерференция (МСИ). Одним из методов борьбы с МСИ является использование OFDM, применение которого делит используемый частотный диапазон на множество поднесущих, на каждой из которых используется сниженная модуляция с большим защитным интервалом, сохраняя при этом общую скорость передачи. Кроме того, использование OFDM позволяет повысить устойчивость системы к частотно-избирательным замираниям, поскольку влияние будет оказано лишь на отдельные поднесущие, а не на весь спектр сигнала. Недостатком метода является чувствительность к эффекту Допплера.
Далее, каждый из потоков поступает в радиотракт, где каждый из них переносится на заданную частоту и передаётся в эфир:
Однако, в случае, если при распространении сигнал сильно искажается и, на самом деле, была передана другая последовательность, например «0011», то возникает ошибка. В беспроводных системах связи, с помощью периодической рассылки служебных сообщений, происходит постоянный контроль за параметрами радиоканала и, в случае возникновения описанной ситуации, система может понизить манипуляцию, например до QAM-4. Это позволит снизить число ошибок при передаче ценой снижения скорости в канале. Сигнальное созвездие после смены манипуляции представлено на рисунке 14(в). При снижении манипуляции, увеличивается область вокруг каждого из разрешённых состояний, что непосредственно влияет на уровень ошибок при передаче.
Скорость передачи данных
Виды модуляции цифровых сигналов (манипуляции)
Цифровой сигнал обладает большим числом преимуществ, отмеченных в статье «Виды сигналов, применяемых в телекоммуникации». Однако при передаче на дальние расстояния (более 100 метров) он начинает терять одно из своих самых важных свойств: помехозащищенность. Это связано с тем, что в качестве среды, как правило, используется воздушное пространство в случае радиопередачи и проводные каналы связи, а цифровой сигнал в этих средах очень быстро затухает. Использовать ретрансляторы через каждые несколько сотен метров при передаче на дальние расстояния экономически неэффективно. Кроме того, это не всегда технически реализуемо, в частности в сотовых системах связи максимальная удаленность мобильной станции (MS) от базовой станции (BTS) может достигать 35 км. Также есть еще одно важное свойство, требуемое для цифрового канала связи – широкополосность. Цифровой сигнал с резкими переходами между уровнями требует широкой полосы для его передачи. В противном случае переходы между уровнями будут «заламываться» и сигнал будет «смазанным», что может привести к высокому проценту ошибок. Для решения вышеуказанных проблем используют различные методы модуляции цифровых сигналов, о которых и пойдет речь в данной статье.
Модуляция – это процесс изменения каких-либо параметров несущего сигнала под действием информационного потока. Данный термин обычно применяют для аналоговых сигналов. Применительно к цифровым сигналам существует другой термин «манипуляция», однако его часто заменяют все тем же словом «модуляция» подразумевая, что речь идет о цифровых сигналах.
Существует 3 основных вида манипуляции сигналов: амплитудная (Amplitude-shift keying (ASK)), частотная (Frequency-shift keying (FSK)) и фазовая (Phase-shift keying (PSK)). Этот набор манипуляций определяется основными характеристиками, которыми обладает любой сигнал (см. статью «Сигнал и его основные характеристики»).
Виды манипуляции сигналов
АМ, ЧМ и ФМ являются базисом и достаточно редко применяются на практике поодиночке. Чаще применяются их модификации или в сочетании друг с другом. В частности в стандарте GSM (Global System for Mobile Communications) на радио интерфейсе применяется модуляция GMSK (Gaussian modulation with Minimum Shift Keying) – гауссовская манипуляция с минимальным фазовым сдвигом. Главное ее преимущество заключается в том, что манипулированный этим методом сигнал занимает гораздо меньшую частотную полосу, чем при обычной фазовой манипуляции. Однако в основу GMSK положена, рассмотренная выше обычная фазовая манипуляция, и это видно даже из названия.
Таким образом, выбор того или иного метода манипуляции обусловлен требованиями по помехозащищенности, пропускной способности канала связи, стоимостью реализации оборудования и т.п.
При использовании материалов ссылка на сайт обязательна
Сети кабельного телевидения для самых маленьких. Часть 4: Цифровая составляющая сигнала
Все мы прекрасно знаем, что мир техники вокруг — цифровой, либо стремится к этому. Цифровое телевещание — далеко не новость, однако если вы не интересовались этим специально, для вас могут быть неожиданными присущие ему технологии.
Состав цифрового телевизионного сигнала
Цифровой телевизионный сигнал представляет из себя транспортный поток разных версий MPEG (иногда и других кодеков), передаваемый радиосигналом с применением квадратурно-амплитудной модуляции QAM разной степени. Любому связисту эти слова должны быть ясны как день, поэтому приведу лишь гифку из википедии, которая, надеюсь, даст понимание что это такое для тех, кто просто ещё не интересовался:
UPD: В комментариях эта картинка признана некорректной, но, тем не менее, она весьма наглядна. Поэтому оставлю для тех, кто ничего не знает о модуляции и не очень хочет углубляться, но хочет понять что за точки мы тут обсуждаем.
Такая модуляция в том или ином виде используется не только для «телеанахронизма», но и всех, находящихся на пике технологий систем передачи данных. Скорость цифрового потока в «антенном» кабеле составляет сотни мегабит!
Параметры цифрового сигнала
Воспользовавшись прибором Deviser DS2400T в режиме отображения параметров цифрового сигнала, мы сможем увидеть как это бывает на самом деле:
В нашей сети пристутсвуют сигналы сразу трёх стандартов: это DVB-T, DVB-T2 и DVB-C. Рассмотрим их по очереди.
Этот стандарт не стал основным в нашей стране, уступив место второй версии, однако он вполне пригоден для использования оператором по той причине, что приёмники DVB-T2 обратно совместимы со стандартом первого поколения, а значит абонент может принять такой сигнал на практически любой цифровой телевизор без дополнительных приставок. Кроме того, предназначенный для передачи по воздуху стандарт (буква T — означает Terrestrial, эфир), обладает столь хорошей помехозащищённостью и избыточностью, что порой работает там, где по каким-то причинам не пролезает аналоговый сигнал.
На экране прибора мы можем наблюдать как строится созвездие 64QAM (стандарт поддерживает QPSK, 16QAM, 64QAM). Видно, что в реальных условиях точки отнюдь не складываются в одну, а приходят с некоторым разлётом. Это нормально до тех пор, пока декодер может определить к какому именно квадрату относится прилетевшая точка, но даже на приведённом изображении видны участки, где они расположены на границе или близко к ней. По этой картине можно быстро «на глаз» определить качество сигнала: при плохой работе усилителя, например, точки располагаются хаотично, а телевизор не может собрать картинку из полученных данных: «пикселит», а то и совсем замирает. Бывают случаи, когда процессор усилителя «забывает» добавить в сигнал одну из составляющих (амплитуду или фазу). В таких случаях на экране прибора можно увидеть круг или кольцо размером во всё поле. Две точки за пределами основного поля являются опорными для приёмника и не несут информации.
В левой части экрана под номером канала мы видим количественные параметры:
Уровень сигнала (P) в тех же дБмкВ, что и для аналога, однако для цифрового сигнала ГОСТ регламентирует уже лишь 50дБмкВ на входе в приёмник. То есть на участках с бо́льшим затуханием «цифра» будет работать лучше аналога.
DVB-T2
Принятый в России стандарт цифрового эфирного вещания так же может быть передан по кабелю. Форма созвездия при первом взгляде может несколько удивить:
Этот стандарт изначально создан для передачи по кабелю (C — Cable) — среде намного стабильнее воздуха, поэтому позволяет использовать более высокую степень модуляции чем DVB-T, а значит и передавать больший объём информации, не используя при этом сложное кодирование.
Тут мы видим созвездие 256QAM. Квадратов стало больше, размер их стал меньше. Вероятность ошибки увеличилась, а значит для передачи такого сигнала нужна более надёжная среда (или более сложное кодирование, как в DVB-T2). Такой сигнал может «рассыпаться» там, где работают аналог и DVB-T/T2, однако он так же имеет запас помехозащищённости и алгоритмы исправления ошибок.
В силу большей вероятности ошибки, параметр MER для 256-QAM нормирован уже в 32дБ.
Счётчик ошибочных бит поднялся ещё на порядок и вычисляет уже один ошибочный бит на миллиард, но даже если их будет сотни миллионов (PRE-BER
E-07-8), то используемый в этом стандарте декодер Рида-Соломона устранит все ошибки.