что такое слагаемое сумма разность уменьшаемое вычитаемое разность
Математика. 1 класс
Конспект урока
Математика, 1 класс
Урок № 35. Уменьшаемое. Вычитаемое. Разность. Использование этих терминов при чтении записей
Перечень вопросов, рассматриваемых в теме:
Вычитание – действие обратное сложению.
Уменьшаемое – число, из которого вычитают.
Вычитаемое – число, которое вычитают.
Разность – результат вычитания.
Слагаемое – число, которое складывают.
Сумма – результат сложения.
Обязательная литература и дополнительная литература:
Теоретический материал для самостоятельного изучения
Давайте решим задачу. В гараже стояли 5 машин. 2 машины уехали. Сколько машин осталось в гараже?
Для решения задачи выберем действие вычитание. Так как машины уехали, их стало меньше.
Ответ: 3 машины в гараже.
Как называются числа при вычитании?
Первое число 8 – число, из которого вычитают. Это уменьшаемое.
Второе число 5 – число, которое вычитают. Это вычитаемое.
Третье число 3 – результат вычитания. Это разность.
Выражение 8 – 5 тоже называется разность.
Равенство 8 – 5 = 3 можно прочитать так. Уменьшаемое – 8, вычитаемое – 5. Разность – 3. Или, разность восьми и пяти равна трем.
Назовем числа при вычитании.
6 – уменьшаемое, 2 – вычитаемое, 4 – разность. Выражение 6 – 2 тоже разность.
Соединим предложение с математической записью.
Уменьшаемое – 9, вычитаемое – 6. 8 – 3
Вычитаемое – 3, уменьшаемое – 8. 7 – 2
Разность чисел 7 и 2. 9 – 6
В коробке было 10 карандашей. Взяли 4 карандаша. Сколько карандашей осталось в коробке.
Для решения задачи выберем действие вычитание. Запишем разность чисел.
Ответ: 6 карандашей.
Ответим на вопросы, поставленные в начале урока.
Числа при вычитании называются уменьшаемое, вычитаемое, разность.
Уменьшаемое – число, из которого вычитают. Вычитаемое – число, которое вычитают. Разность – результат вычитания.
Выражение на вычитание можно читать по-разному. Например, 8 – 1 = 7
Уменьшаемое – 8, вычитаемое – 1, разность – 7. Или, разность чисел 8 и 1 равна 7.
Выполним несколько тренировочных заданий.
а) Вычитаемое – 3. Уменьшаемое – 5.
б) Разность чисел 7 и 2.
в) Сумма чисел 5 и 4.
Свойства сложения и вычитания
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Уменьшаемое | Вычитаемое | Разность | |
18 | 11 | = | 7 |
14 | 5 | = | 9 |
26 | 22 | = | 4 |
Полезное видео: уменьшаемое, вычитаемое, разность
Правила нахождения неизвестного элемента
Разобравшись в терминах, несложно установить, по какому правилу находится каждый из элементов вычитания.
Поскольку разность – результат данного арифметического действия, то ее и находят с помощью этого действия, никаких других правил тут не требуется. Но они есть на случай, если неизвестен другой член математического выражения.
Это интересно! Уроки математики: умножение на ноль главное правило
Как найти уменьшаемое
Данным термином, как было выяснено, называют количество, из которого вычли часть. Но если одну вычли, а другая осталась в итоге, следовательно, из этих двух частей число и состоит. Получается, что найти неизвестное уменьшаемое можно, сложив два известных элемента.
Итак, в данном случае, чтобы найти неизвестное, следует выполнить сложение вычитаемого и разности:
? | – | 11 | = | 7 |
Искомое находится путем сложения известных элементов:
7 | + | 11 | = | 18 |
Так же и во всех подобных случаях:
? | – | 5 | = | 9 |
9 | + | 5 | = | 14 |
? | – | 22 | = | 4 |
4 | + | 22 | = | 26 |
Как найти вычитаемое
Если целое состоит из двух частей (в данном случае количеств), то при вычитании одной из них в результате получится вторая. Таким образом, чтобы найти неизвестное вычитаемое, достаточно вместо него вычесть из целого разность.
18 | – | ? | = | 7 |
Из примера видно, что от 18 отняли некоторую величину, и осталось 7. Чтобы найти эту величину, надо от 18 отнять 7.
18 | – | 7 | = | 11 |
По тому же правилу решаются и другие подобные примеры.
14 | – | ? | = | 9 |
14 | – | 9 | = | 5 |
26 | – | ? | = | 4 |
26 | – | 4 | = | 22 |
Таким образом, зная точное значение названий, можно легко догадаться, по какому правилу следует искать каждый неизвестный элемент.
Это интересно! Как разложить на множители квадратный трехчлен: формула
Полезное видео: как найти неизвестное уменьшаемое
Вывод
Четыре основных арифметических действия – та база, на которой основываются все математические вычисления, от простых до самых сложных. Конечно, в наше время, когда люди стремятся перепоручить технике все вплоть до мыслительного процесса, привычнее и быстрее производить вычисления с помощью калькулятора. Но любое умение увеличивает независимость человека – от технических средств, от окружающих. Не обязательно делать математику своей специальностью, но обладать хотя бы минимальными знаниями и умениями – значит иметь дополнительную опору для собственной уверенности.
Вычитание натуральных чисел
Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!
Мы можем не только собирать в группы различные предметы, то есть, складывать их, но и забирать из существующей группы определенное их количество.
Разность (или остаток) – это такое число, которое получится, если от одного числа отнять другое, то есть, от всех единиц одного числа отнять все единицы, которые содержатся в другом числе.
Уменьшаемое – это то число, от которого мы отнимаем единицы другого числа.
Вычитаемое – это число, которое мы вычитаем из другого числа. То есть, то число, на количество единиц которого мы уменьшаем другое число.
Вычитание – это арифметическое действие, которое выполняется для получения разности двух или нескольких чисел.
то есть, совершить действие вычитания – это найти такое число, которое получится, если от данного числа отнять определенное количество единиц другого числа.
Совершая вычитание натуральных чисел, вы должны помнить, что из одного натурального числа можно вычесть только равное ему или меньшее натуральное число. Действительно, мы никак не можем отобрать единиц предметов больше, чем их есть в наличии.
Связь вычитания и сложения
Действительно, когда мы ищем сумму, мы складываем все единицы, из которых состоят числа, вместе. То есть, получаем число, которое складывается из разных чисел.
Поэтому, вычитание и сложение – это взаимно обратные действия. Если нам известна сумма двух слагаемых, мы можем превратить ее в разность двух чисел, и наоборот, разность можно перевести в сумму.
Свойства разности натуральных чисел
Свойства разности натуральных чисел состоят из:
Рассмотрим каждый пункт подробнее.
Правила вычитания суммы из числа и числа из суммы
Как вычесть сумму из числа
Чтобы найти разность числа и суммы чисел нужно из данного числа вычесть последовательно каждое слагаемое суммы.
То есть, сначала мы находим разность между данным числом и первым слагаемым, потом от этой полученной разности отнимаем второе слагаемое, третье, и так далее до последнего слагаемого суммы.
Рассмотрим это на примере из урока сложение чисел.
325 +( 12 + 64 + 5 ) = 325 +81 = 406
Я запишу это в виде разности:
и покажу, что результат будет равен первому слагаемому:
Как видите, все верно.
Как вычесть число из суммы
Чтобы найти разность суммы чисел и некоторого числа, нужно отнять это число от какого-нибудь подходящего слагаемого этой суммы.
То есть, мы сначала находим разность одного из слагаемых и данного числа, а потом складываем получившийся результат последовательно с остальными слагаемыми.
Действительно, вы знаете, что, если уменьшить одно из слагаемых на какое-то число, то и сумма уменьшится на это же самое число. Следовательно, если нам нужно сумму чисел уменьшить на какое-то число, то для этого достаточно уменьшить на это число одно из слагаемых суммы.
Для рассмотрения я возьму тот же пример, только сумму расчленю на слагаемые, а слагаемое в скобках заменю суммой:
325 +81 = ( 191 + 65 + 150 )
Превращаю выражение в разность:
( 191 + 65 + 150 )-81 = 325
и покажу, что результат также будет равен первому слагаемому:
Как меняется разность при изменении вычитаемого или уменьшаемого
Изменение разности при изменении вычитаемого и уменьшаемого является следствием описанных в уроке изменений суммы чисел с изменением ее слагаемых.
Если уменьшаемое увеличить на некоторое количество единиц, то и разность увеличится на такое же количество единиц.
Если уменьшаемое уменьшить на некоторое количество единиц, то и разность уменьшится на такое же количество единиц.
Если вычитаемое увеличить на некоторое количество единиц, то разность уменьшится на такое же количество единиц.
Если вычитаемое уменьшить на некоторое количество единиц, то разность увеличится на такое же количество единиц.
Если сразу оба числа, и уменьшаемое, и вычитаемое, увеличить или уменьшить на одно и то же количество единиц, то разность не изменится.
Правила вычитания разности
Если нужно вычесть из числа разность других чисел, можно воспользоваться одним из двух способов:
1. Прибавить к данному числу вычитаемое, и из получившейся суммы вычесть уменьшаемое;
2. Вычесть из данного числа уменьшаемое, а потом результат этого действия сложить с вычитаемым.
Это свойство выводится из предыдущих, рассмотренных нами.
22 — 17 = 5
5+ 3 = 8
22 +3-( 17 +3- 3 )
25- 17 +0 = 8
Как видите, оба способа показали верный результат.
Вычитание однозначного числа
Вычитание в столбик многозначных чисел
Вычитание в столбик – это способ нахождения разности чисел при помощи их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим), и последующего вычисления.
После нахождения разности чисел способом вычитания в столбик записываем ответ в строчном примере:
50063-4825 = 45238.
Как проверить действия сложение и вычитание?
Проверить сложение можно двумя способами: обратным сложением и вычитанием.
Обратное сложение означает, что мы меняем слагаемые местами, и складываем их еще раз. Если результат будет такой же, как и после первого сложения, значит, вычисление было верным.
Проверка сложения вычитанием – это способ, при котором нужно из суммы, которую получили после выполнения действия сложение, отнять одно из слагаемых. Если результат этого вычитания будет равен второму слагаемому (или сумме остальных слагаемых, если их больше двух), значит сложение было выполнено верно.
И этот способ проверки показал правильность нашего решения.
Проверить вычитание также возможно и сложением, и другим вычитанием.
Проверка вычитания сложением основана на взаимосвязи вычитания и сложения. Зная, что уменьшаемое – это сумма, а остаток и вычитаемое – это слагаемые, мы можем сложить между собой вычитаемое и остаток, и, если получим в результате уменьшаемое, значит, мы правильно сделали действие.
Вот так выглядит проверка вычитания сложением на примере вычисленной на этом уроке разницы 50063-4825 = 45238 :
Что такое слагаемое сумма разность уменьшаемое вычитаемое разность
Числа – это единицы счёта. С помощью чисел можно сосчитать количество предметов и определить различные величины (длину, ширину, высоту и т.д.).
Для записи чисел используются специальные знаки – цифры.
1 2 3 4 5 6 7 8 9 0
Числа, которые используются при счёте, называются натуральными.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …, □
1 – самое маленькое число.
□ – самого большого числа не существует.
Число 0 (нуль) обозначает отсутствие предмета. Нуль не является натуральным число.
Из двух натуральных чисел больше то, которое в натуральном ряду расположено правее, а меньше то, которое расположено левее:
Из двух натуральных чисел с разным количеством разрядов больше то число, в котором разрядов больше.
Из двух натуральных чисел с одинаковым количеством разрядов больше то, у которого больше цифра старшего разряда.
45 861 47 361 47361 > 45 681
Сложение – это математическое действие.
Числа, которые складываются, называются слагаемыми.
Результат сложение называется суммой.
первое слагаемое второе слагаемое сумма
Если одно из слагаемых равно 0, сумма равна второму слагаемому:
Если оба слагаемых равны 0, то и сумма равна 0: 0 + 0 = 0
Вычитание – действие, обратное сложению.
уменьшаемое вычитаемое разность
Если к разности прибавить вычитаемое, то получится уменьшаемое.
Если из уменьшаемого вычесть разность, то получится вычитаемое.
Переместительный закон сложения.
От перемены мест слагаемых значение суммы не меняется:
Сочетательный закон сложения.
Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего чисел или ко второму числу прибавить сумму первого и третьего чисел:
(a + b) + c = a + (b + c) = (a + c) + b
(2 + 4) + 8 = 2 + (4 + 8) = (2 + 8) + 4
Умножение – это сложение одинаковых слагаемых.
3 – число, которое показывает, сколько раз повторяется слагаемое 2 (по два три раза)
первый множитель второй множитель произведение
Деление – это действие, обратное умножению.
делимое делитель частное
Переместительный закон умножения.
От перестановки множителей произведение не меняется:
Сочетательный закон умножения.
Чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего чисел или второе число умножить на произведении первого и третьего чисел:
(2 · 4) · 8 = 2 · (4 · 8) = (2 · 8) · 4
Распределительный закон умножения.
Произведение суммы на число равно сумме произведений каждого слагаемого на это число.
(a + b + c) · d = a · d + b · d + c · d
( 2 + 5 + 3 ) · 2 = 2 · 2 + 5 · 2 + 3 · 2 = 20
Чтобы умножить разность на число, достаточно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе произведение.
Чтобы разделить сумму на число, достаточно разделить каждое слагаемое на это число, а полученные результаты сложить.
Чтобы разделить разность на число, достаточно разделить на это число уменьшаемое и вычитаемое, а затем из первого частного вычесть второе частное.
Частное от деления произведений двух множителей на число равно произведению одного из множителей на частное от деления второго множителя на это число.
(a · b) : c = (a : c) · b = a · (b : c)
Чтобы разделить число на частное, достаточно разделить это число на делимое и полученный результат умножить на делитель.
Чтобы разделить частное на число, достаточно умножить делитель на это число и разделить делимое на полученный результат
Можно так же разделить делимое на это число, а полученный результат разделить на делитель.
НАХОЖДЕНИЕ КОМПОНЕНТОВ ДЕЛЕНИЯ.
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
ОСОБЫЕ СЛУЧАИ УМНОЖЕНИЯ.
ОСОБЫЕ СЛУЧАИ ДЕЛЕНИЯ.
На нуль делить НЕЛЬЗЯ!
Нуль можно делить на любое число, получится 0.
На 2 делятся все чётные числа, то есть числа, которые оканчиваются цифрами 0, 2, 4, 6, 8.
На 3 делятся все числа, сумма цифр которых делится на 3.
На 5 делятся все числа, которые оканчиваются на 0 или 5.
На 6 делятся числа, которые делятся одновременно и на 2, и на 3.
На 9 делятся числа, сумма цифр которых делится на 9.
Именованные числа – это числа, полученные при измерении величин и сопровождающиеся названием единиц измерения.
Например: 2 кг, 4 см, 8 л
Именованные числа бывают простые и составные.
Простые именованные числа: 7 м, 18 т, 21 кг – в них входит только одн единица измерения.
Составные именованные числа: 2 м 4 см, 24 кг 45 г, 8 км 520 м – в них входят несколько единиц измерения.
ПРЕОБРАЗОВАНИЕ ИМЕНОВАННЫХ ЧИСЕЛ.
Чтобы перейти от одних единиц измерения к другим, пользуйся таблицей величин.
Единицы измерения длины
1 м = 10 дм = 100 см = 1000 мм
1 км = 1000 м = 10000 дм = 100000 см
Единицы измерения массы
1 т = 10 ц = 1000 кг
Единицы измерения времени
1 ч = 60 мин = 3600 с
1 месяц = 30 или 31 день (в феврале 28 или 29 дней)
1 год = 12 месяцев = 52 недели = 365 или 366 дней
1 век (столетие) = 100 лет
Единицы измерения площади
1 м 2 = 100 дм 2 = 10000 см 2
1 км 2 = 1000000 м 2
1 ар (1 а) = 1 сотка = 100 м 2
1 гектар (1 га) = 10000 м 2
СЛОЖЕНИЕ И ВЫЧИТАНИЕ ИМЕНОВАННЫХ ЧИСЕЛ.
Складывать и вычитать можно именованные числа, выраженные в одинаковых единицах измерения.
УМНОЖЕНИЕ И ДЕЛЕНИЕ ИМЕНОВАННЫХ ЧИСЕЛ.
При умножении и делении составные именованные числа сначала заменяют простыми, а затем выполняют вычисления. В ответе простое именованное число заменяют составным.
Математическое выражение – это фраза, записанная с помощью чисел, знаков и букв.
Выражение, записанное только с помощью чисел и знаков, называется числовым.
Выражение, в котором кроме чисел и знаков есть буквы, называется буквенным.
Любое числовое выражение имеет значение. Найти значение числового выражения – значит найти его ответ.
ПОРЯДОК ДЕЙСТВИЙ В ВЫРАЖЕНИЯХ.
В выражениях без скобок, где выполняются только сложение и вычитание, действия выполняются в том порядке, в котором они записаны (то есть слева направо).
В выражениях без скобок, где выполняются только умножение и деление, действия выполняются в том порядке, в котором они записаны.
В выражениях со скобками первым выполняется действие в скобках, затем умножение или деление и только потом сложение или вычитание.
Уравнение – это равенство, которое содержит в себе неизвестное (переменную), значение которого нужно найти, чтобы равенство было верным.
Решить уравнение – значит найти все значения переменной, при которых уравнение превращается в верное равенство.
РЕШЕНИЕ ПРОСТЕЙШИХ УРАВНЕНИЙ.
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
Чтобы найти неизвестное делимое, нужно к вычитаемому прибавить разность.
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
УЧИМСЯ РЕШАТЬ ЗАДАЧИ.
Как работать над задачей.
1. Прочитай внимательно условие задачи и представь то, о чём идёт речь.
2. Запиши кратко задачу или сделай к ней рисунок, схему, чертёж.
3. Объясни, что означает каждое число.
4. Устно составь план решения задачи.
5. Реши задачу и найди ответ.
6. Проверь решение, составив обратную задачу.
- чем отделать осб внутри дома на даче стены
- что такое антибиотик ассоциированная диарея