что такое скалярное магнитное поле
Опыт Траутона-Нобла – ещё одно доказательство существования скалярного магнитного поля
На моём канале в Ютубе размещены ролики Магниты. Второе магнитное поле Николаева 3 и Магниты. Второе магнитное поле Николаева 4, в которых показаны опыты по регистрации скалярного магнитного поля на примере притяжения двух тороидов, внутри которых продет проводник с током. Для уменьшения влияния векторного магнитного поля, наводимого от окружающих проводников с током, пришлось раздвигать проводники подальше от тороидов. Кстати, влияние наружных проводников приводило бы к отталкиванию тороидов, уменьшая при этом результирующую силу притяжения тороидов.
В комментариях к этим опытам некоторыми посетителями канала были высказаны сомнения в том, что, возможно, проводники, составляющие общую электрическую цепь, оказывают воздействие на ход проведения опыта, несмотря на большое расстояние, отделяющее их от тороидов, и оказывают заметное влияние на результирующую силу их притяжения.
Будучи по профессии журналистом, Виктор Николаевич владеет векторной алгеброй, что позволяет ему хорошо разбираться в теоретических вопросах, посвящённых векторному потенциалу магнитного поля. Многие знают его как участника нескольких форумов под ником Биолон. Им был предложен опыт, в котором указанные выше недостатки исключены, так как тороиды будут взаимодействовать без электрической цепи, будучи заранее намагниченными по принципу, введённому Эдвардом Лидскалниншем, который получил название магнитного хранителя.
В свете сказанного, можно предложить всем тем, кого серьёзно интересует этот вопрос, следующий эксперимент, который был задуман и проведён несколькими зарубежными авторами, в полном соответствии с классической электродинамикой. Отрицательный результат, полученный в данном опыте, по иронии судьбы является убедительным доказательством того, что скалярное магнитное поле существует, иначе авторы опыта оказались бы правы в своих предположениях.
Об этом опыте можно прочитать в короткой статье В. Н. Фефелова, размещённой на форуме RealStrannik.com: Форум; Форум свободной энергии; Бестопливные технологии; Скалярное магнитное поле Николаева; Эксперименты со скалярным магнитным полем: пост #77900 вместе с иллюстрацией к ней, так же выполненной им.
Я считаю, что на канале, который непосредственно посвящён исследованию скалярного магнитного поля, обязательно надо рассказать об этом историческом опыте. Для тех, кто недавно приступил к изучению скалярного магнитного поля, очень полезно будет познакомиться с одним курьёзным случаем, произошедшим в физике в начале 20-го века. Он будет хорошей тренировкой мышления, а также поможет убедиться в реальности существования скалярного магнитного поля. Итак, обо всём по порядку.
В начале 20-го века два учёных, один из которых был хорошо известен в научном мире (Траутон, wiki), задумались над следующим электродинамическим вопросом: как будет вести себя электрический диполь, установленный в лаборатории на чувствительных крутильных весах, движущихся вместе с Землёй со скоростью 30 км/сек вокруг Солнца?
Согласно гипотезе, каждый из двух разноимённых электрических зарядов, составляющих диполь, являясь как бы элементом тока, при своём движении создаёт вокруг себя векторное магнитное поле. В результате этого, каждый из двух зарядов должен оказывать силовое магнитное действие на другой, соседний электрический заряд. Магнитные поля, возникающие у двух разноимённых зарядов диполя, всегда заставляют его разворачиваться перпендикулярно направлению вектора скорости V.
Ф. Траутон (F. Trawton) и Г. Нобль (G. Noble) рассчитали величину и направление этих сил, и в 1904 году ими был поставлен опыт по регистрации поворота диполя. Но, вопреки ожиданиям, электрический диполь оставался неподвижным. Что же явилось причиной неудачи? Неверные законы электродинамики, или что-то ещё? Давайте рассмотрим опыт подробнее.
Опыт Траутона-Нобла
Если взять два равных по величине разноимённых заряда и закрепить их на концах диэлектрического стержня некоторой длины, то возникнет система, под названием электрический диполь. Если на тонкой нити подвесить его в поле тяготения Земли, то образованные таким образом крутильные весы, должны естественным путем прийти во вращение в полном соответствии с законами классической электродинамики. Данное обстоятельство позволило бы создать устройства для преобразования и практического использования бесплатной энергии, возникающей в результате движения Земли!
Всё дело в том, что вместе с Землёй, вместе с установленной на ней лабораторией, движутся вокруг Солнца со скоростью 30 км/с и разноимённые электрические заряды, расположенные на концах диэлектрического стержня, подвешенного на нити.
Согласно представлениям официальной электродинамики, известно, что любой движущийся электрический заряд представляет собой элементарный ток, который непременно возбуждает в пространстве вокруг себя векторное магнитное поле.
Поскольку два заряда жёстко закреплены на диэлектрическом стержне, то силу Кулона, с которой притягиваются друг к другу два электрических заряда, можно не учитывать. Остаются только силы магнитного взаимодействия, возникающие при движении двух зарядов диполя, которыми они оказывают силовое воздействие друг на друга. Такая сила известна под названием силы Лоренца. Эта дополнительная сила всегда будет перпендикулярна базовой скорости лабораторной системы – орбитальной скорости Земли и будет действовать с одинаковой силой на каждый из двух зарядов. Но вектор силы, приложенный к одному заряду, будет направлен в обратную сторону от вектора силы, приложенного к другому заряду. Итак, если угол между орбитальной скоростью V и нашим электрическим диполем не равен нулю или не составляет с ним прямой угол, то на крутильные весы будет действовать момент магнитных сил. Этот момент будет стремиться повернуть диполь, пока он не установится перпендикулярно вектору орбитальной скорости Земли, после чего его поворот остановится.
На Рис.1, а) и Рис.1, в) показана эта сила Лоренца, действующая отдельно на каждый из зарядов, а на Рис.1, с) показана равнодействующая этих двух сил Лоренца.
На Рис.1, а) и Рис.1, в) отдельно для каждого заряда показано созданное им тороидальное магнитное поле. Заряд одного знака этого диполя находится в зоне влияния магнитного поля, созданного зарядом другого знака, в результате они оказывают друг на друга силовое действие, и наоборот. Направление сил Лоренца всегда направлено перпендикулярно направлению вектора V скорости движения зарядов.
Чтобы наглядно проиллюстрировать силовое взаимодействие зарядов, магнитное поле, создаваемое каждым из зарядов, показано отдельно. Например, на Рис.1,а) показано тороидальное (векторное) магнитное поле только для положительного заряда, при этом хорошо видно как отрицательный заряд находится в поле влияния положительного заряда.
По правилу левой руки находим, что на отрицательный заряд действует сила Лоренца, направленная от центра подвеса и перпендикулярно вектору его скорости отрицательного заряда.
Аналогичный приём применяется и для других вариантов.
Действие векторного магнитного поля со стороны одного электрического заряда на другой заряд диполя, движущийся со скоростью V
Для облегчения восприятия, на Рис.1 были добавлены три координатные оси. На остальных рисунках оси располагаются аналогично, поэтому они не показаны.
Проделаем те же рассуждения и для силового действия скалярных магнитных полей. Напомню, что направление продольных сил всегда совпадает с направлением вектора скорости V движения зарядов.
Так, на Рис.2 а) показано скалярное магнитное поле отдельно для отрицательного магнитного поля. Здесь хорошо видно, почему положительный заряд находится в зоне влияния его поля. Из теории Николаева известно, что положительный заряд ускоряется, если находится в положительной зоне влияния СМП и тормозится в отрицательной зоне СМП. Для отрицательного заряда – всё наоборот.
На Рис.1, а) видно, что положительный заряд находится в отрицательной зоне СМП, поэтому он будет замедляться. Следовательно, вектор отрицательного ускорения будет совпадать в вектором силы, тормозящей движение заряда. И так далее…
На Рис.3 ниже представлен конечный результат взаимодействия всех сил. Следует обратить внимание, что Сила Лоренца, как и сила Николаева, являются функцией угла поворота электрического диполя. Слева внизу представлены формулы для напряжённостей продольных и поперечных магнитных полей, следовательно, и для сил магнитного взаимодействия. Таким образом, видно, что чем меньше сила Лоренца Fл, тем больше сила Николаева Fн, и наоборот. Силы изменяются в соответствии с тригонометрическими функциями, как показано ниже на Рис.3, а результирующая сила R± () всегда будет сохранять своё направление, совпадающее с направлением плеч электрического диполя.
Результирующая всех сил, действующих на электрический диполь крутильных весов, движущихся со скоростью V
На Рис.3 показан конечный вариант взаимодействия всех сил, возникающих при движении электрического диполя. Хорошо видно, что две результирующие силы R– и R+ со стороны отрицательного и положительного заряда соответственно всегда совпадают с направлениями плеч диполя, не создавая при этом момента сил, способного разворачивать диполь.
В завершении этого курьёзного случая следует добавить, что если бы не существовало скалярного магнитного поля, то диполь непременно вращался бы.
Вывод
Направление результирующей силы взаимодействия между собой двух сил – Лоренца и Николаева, всегда даст направление от центра диполя вдоль плеч диполя, растягивая его, но, не приводя его во вращение!
Источник
Что такое скалярное магнитное поле
В топографии мышления я бы сказал, что то, что мы называем знанием, есть невежество, окруженное смехом.
Скалярное магнитное поле.
На рисунках показано, что будет, если вращение поля (вихрь) будет остановлено встречным магнитным полем. С математической точки зрения останется нуль-вектор, что есть ничто.
Изменяющееся магнитное поле формирует в проводнике электрический ток, способный совершать вполне осязаемую работу, значит магнитное поле обладает энергией. По закону сохранения энергии, энергия неуничтожима и бесследно исчезнуть не может, а будет преобразована в иные формы. Вихревые магнитные поля, провзаимодействовав, прекратили своё вращение и существование. Где энергия вихря, остановленного встречным магнитным полем? Наука заявляет что нигде.
Так и результатом взаимодействия встречных магнитных полей является образование потенциального (скалярного) магнитного поля. В частности, математические и экспериментальные доказательства приводит в своих работах Кузнецов Юрий Николаевич, в создаваемом им направлении «Невихревая электродинамика»
К новым условиям нельзя применять теорию и практику вихревых полей. Для Исследователя открывается возможность выйти за рамки шаблонов, изучать принципиально иные свойства скалярного магнитного поля.
Стоит начать с колебательного контура. Для определения резонансной частоты колебательного контура можно обратиться к расчетам. При наличии осциллографа и генератора прямоугольных импульсов это можно сделать значительно проще. Во избежании недоразумений осциллограф следует подключать к витку индуктивной связи (желтый провод). Генератор импульсов подключен к обкладкам конденсатора на частоте до 1кГц. По спаду фронта прямоугольного сигнала возникает последовательность затухающих импульсов синусоидальной формы. Эту последовательность необходимо выделить:
Оптимально выбрать пару первых максимумов синусоиды и временным курсором осциллографа замерить частоту. Это и будет основной резонансной частотой. Количество затухающих импульсов определяется добротностью колебательного контура.
На фотографии видно, что расчетная частота для данного контура 70,4кГц. Далее необходимо установить частоту генератора равной 70,4кГц и уточнить частоту резонанса. Ориентироваться следует на рост амплитуды синусоидального сигнала до максимума.
Генератор формирует прямоугольные импульсы на частоте 72кГц, на витке связи частота синусоиды так же 72кГц. Это частота основного резонанса. Если установить частоту на генераторе, разделив основную частоту на 2,3,5 и далее. В колебательном контуре, а значит и на витке связи будет частота основного резонанса 72кГц, меньшей амплитуды.
На этом стоит прерваться и ознакомиться с работами Томского физика Николаева Геннадия Васильевича по проблематике скалярного магнитного поля. В предлагаемом фильме особое внимание прошу обратить на эксперимент с рамками. https://www.youtube.com/watch?v=bZbDhx6earA
Вместо рамок, предлагаемых Николаевым Г.В., в эксперименте использован вензель Мировинга. Частота генератора установлена таким образом, чтобы параллельный колебательный контур работал в резонансе.
На фотографии ниже приведены две осциллограммы. Нетрудно догадаться, что полное отсутствие сигнала (синий луч) принадлежит витку связи (синий провод). А вензель (жёлтый луч) озадачил. Чувствительность осциллографа и длины проводников одинаковы.
Ещё более убедительным является поворот вензеля на угол примерно в 45 градусов. Как указывает Николаев Г.В., на осциллографе будет полное отсутствие сигнала. При пересечениях данной плоскости вензелем происходит смена фазы сигнала. В том же положении, в обычном витке, происходит только изменение амплитуды сигнала.
Эксперимент показывает, что вензель Мировинга является не абстракцией, а действующим устройством, которое создаёт скалярное магнитное поле и взаимодействует с биологическими объектами.
Потенциальная энергия электрического тока.
Информации о том как поступает энергия от источника питания в колебательный контур найти не удалось, попытаюсь разобрать этот вопрос самостоятельно.
Общепринятой является парадигма, пока источник питания подключен к колебательному контуру, его энергия поступает в контур, это способствует поддержанию вынужденных гармонических колебаний. Допустим это так, но чем вызван рост напряжения в колебательном контуре, которое значительно больше напряжения источника питания? В отличии от академиков, широко известен факт, как не прилаживай нагрузку к батарейке напряжения больше не станет.
Убрав из параллельного колебательного контура конденсатор, рассмотрю процессы проходящие в электрической цепи состоящей из источника питания, произвольной индуктивности и электронного транзисторного ключа, управляемого генератором.
На осциллограмме далее жёлтый луч демонстрирует сигнал с генератора открывающего транзистор. В момент открытия транзистора через индуктивность начинает протекать электрический ток, динамику изменения тока демонстрирует красный луч осциллографа. В момент закрытия ключа, движение зарядов прекращается.
Обратите внимание что в одной клетке осциллографа для синего луча находится 100 вольт, при десяти вольтах источника питания.
С точки зрения науки электрический ток это движение электронов. Можно предположить, что электроны, являясь элементарными частицами, обладают инерцией. Если мяч от пинг-понга столкнётся со стеной, то произойдет преобразование кинетической энергии движения в потенциальную энергию деформации мяча. Так и в случае с электрическим током, после размыкания цепи замедляется движение носителей зарядов, уменьшается ток, но увеличивается потенциальная энергия.
Объективности ради замечу, что официальная наука не знает что такое электрический ток, зато точно знает что такое чёрные дыры и тёмная материя. Гадания на кофейной гуще гораздо точнее покажут будущее, чем объяснения официальной науки электрического тока через движение электронов, которые и перемещаются с трудом. За одну секунду электрон проходит примерно одну седьмую часть миллиметра.
В рассматриваемой схеме электронный ключ размкнул цепь, а электрический ток в разомкнутой цепи невозможен, поэтому магнитное поле, образованное вокруг проводника, не в состоянии сформировать элекрический ток. Значит следует незамедлительно прекратить исполнять мантры про ОЭДС и подумать о реальных процессах в разомкнутой цепи, приводящих к образованию потенциальной энергии электрического тока.
Обратите внимание как официальная наука с ловкостью фокусника демонстрирует схемы скрывающие физику процессов и даёт по ним объяснения из которых следует, что после разрыва цери именно магнитное поле проводника формирует ток, который вызывает свечение лампы.
Максимум амплитуды потенциальной энергии соответствует отсутствию тока в цепи. Отсутствие тока означает отсутствие магнитного поля. Вопрос на который Вам следует найти ответ. В чём заключена потенциальная энергия, которая буквально через мгновение начинает формировать электрический ток, движение зарядов, следствием которого будет образование магнитного поля? При этом внешняя электродвижущая сила источника питания отсутствует.
На осциллограмме далее детально показано как ток, красный луч осциллографа, образованный потенциальной энергией, увеличивается в «отрицательной» области относительно синего луча и достигает максимума равному той величине, которая была в цепи на момент выключения транзисторного ключа.
Напрашивается аналогия работы потенциальной энергии с часовым механизмом, пружину которого при заводе следует максимально быстро вернуть в сжатое состояние, провернув её против часовой стрелки. И как только ходовая пружина часов будет в исходном состоянии, стрелки часов вновь возобновят своё движение.
На осциллограмме далее показано как формируются колебания образуемые взаимным преобразованием потенциальной энергии зарядов в электрический ток. Что важно:
Разрыв цепи с током, прерывает процесс энергообразования. До момента полной остановки движения зарядов идёт формирование потенциальной энергии. Но как только ток в цепи прекращается, начинается обратный процесс и потенциальная энергия образует электрический ток, изменив его направление.
О законе ома U=I*R, демонстрирующего взаимосвязь тока и напряжения через сопротивление говорить не имеет смысла, для разомкнутой цепи этот закон применять нельзя. Внешняя ЭДС отсутствует, тока нет, магнитное поле отсутсвует, мы же видим в этот момент максимум потенциальной энергии. Другая физика процессов требует не только иных законов, но и усилий по изменению мышления.
Потенциальная энергия электрического тока, которую формирует энергия движущихся зарядов при их остановке, всегда положительна и не зависит от направления движения электрических зарядов.
Внимательно изучив осциллограмму предложенную далее, вы можете воочию убедиться, как ток источника питания Вам вернули в полной мере через преобразование потенциальной электрической энергии в движение носителей электрических зарядов.
Интересно рассмотреть возможность использования потенциальной энергии образованной в процессе прекращения движения электрических зарядов. Несложно установить диод как показано в схеме и попытаться зарядить конденсатор. Движение носителей заряда формируемое потенциальной энергией демонстрирует окружность. В момент прохождения тока, образованного потенциальной энергией по указанному пути, ключ S1 разорван, значит ток от источника питания невозможен.
Видеоролик продемонстрировал заряд высоковольтных конденсаторов током образованным потенциальной энергией до пятисот и более вольт. По мере заряда ток через конденсатор прекращается, амплитуда импульса потенциальной энергии возвращается к своему максимуму. При замыкании обкладок конденсатора металлическим проводником ток потребления несколько увеличивается, что странно и требует дополнительных размышлений. Увеличение тока потребления вызывает сомнения в успехе разработчиков современных DC/DC преобразователей которые пытаются вернуть потенциальную энергию через диод в исходную цепь для повторного использования.
Далее конденсатор был заменён на лампу накаливания. В ролике показано, что лампа светится только от тока образованного потенциальной энергией. По индикации тока и напряжения на источнике питания можно посчитать, чтобы запустить процесс образования потенциальной энергии, потребовалось 0.17A * 25.7V = 4.369W При подключении электрической лампы, потребление увеличивается на 0.01А что составляет 0.257W. То есть для того, чтобы заставить светиться лампу 12V*10W в полный накал током образованным потенциальной энергией, дополнительно потребовалось 0.257W! Но и этих издержек вполне можно избежать, составив схему более грамотно.
Но а как быть с мощностью в 4.369W, которую мы потребляем от источника питания в холостом режиме, без подключенной нагрузки, возникает естественный вопрос? Увы, но эту энергию, способную совершить полезную работу, например нагревать тен, современная схемотехника прямиком направляет в мусорное ведро, дабы не возникало лишних вопросов и сверхединичных устройств. Если использовать энергию источника питания, проходящую через индуктивность, на лицо будет факт экономии электрической энергии источника питания в два раза.
Вопрос с потенциальной энергией фантастически интересен. По факту энергия есть, и как её использовать секретом ни для кого не является, повсеместно используется в DC/DC преобразователях. В то же время официальная наука потенциальную энергию электрического тока полностью игнорирует, подменяет понятия, а в ключевых моментах попросту лжёт. Но иначе и быть не может. Как ответить на вопрос, в какой реальности существует потенциальная энергия в разомкнутой электрической цепи, без внешней электродвижущей силы, при отсутствии тока и магнитного поля. Не место сей призрачной девице в прекрасных садах Семирамиды современной модели электрического тока.
Нематериальная природа потенциальной энергии и её метафизика раскрыта в разделе сайта потенциальная энергия.
Для демонстрации возможности энергосбережения последовательно с катушкой индуктивности была установлена лампа накаливания, имитирующая тепловой электронагреватель. Для формирования потенциальной энергии важен ток проходящий по проводнику индуктивности в момент разрыва цепи, напряжение источника питания может быть при этом менее вольта. В рассматриваемой схеме, при использовании диода VS-ETX0806, тока в 0.5А дотсаточно для формирования потенциальной энергии способной заряжать конденсатор в пять микрофорад до 600 вольт. Чтобы обеспечить данный ток напряжение источника питания было увеличено до 38 вольт, скважность импульса установлена в 50%.
Видеоролик продемонстрировал что лампа накаливания имитирующая ТЭН чувствует себя прекрасно. Но при этом мы получаем ДОПОЛНИТЕЛЬНО потенциальную способную способную заряжать конденсатор, энергию заряда которого можно использовать в дальнейшем.
Логичным является вопрос, насколько значительна энергия формируемая потенциальной энергией в сравнении с той, что прошла через лампу накаливания от источника питания? Классическая наука рассматривает импульс потенциальной энергии как досадное недоразумение, помеху от которой следует избавляться быстро и незаметно.
Чтобы разобрать этот вопрос вместо конденсаторов был подключен нагревательный элемент 0.5квт и выполнен нагрев 700мл воды на частоте 20кГц. Результаты калориметрии таковы, что энергия образованная потенциальной энергией при нагреве воды, равна энергии прошедшей от источника питания через лампу накаливания, имитирующую ТЭН. То есть без каких либо сложностей была получена свободная энергия в том же объёме, что была взята от источника питания. Это означает экономию электрической энергии в 50%.
Если раскрыть магию импульса, то пятьдесят процентов экономии это минимум который мы можем себе позволить при великой лени. Магия импульса сложна, поскольку требует разрыва НЛП шаблона. Это тот самый случай, когда излагаемый материал прост и очевиден настолько, что сомнений не вызывает, но сознание откажется воспринимать эту очевидность в силу манипуляций проведенных с ним образовательным процессом с особым тщанием и усердием за долгие лета. Успехов, читатель!
Подключим к источнику постоянного тока ТЭН и последовательно с ним индуктивность. Пусть напряжение в цепи будет 200V и ток составит 1А. Добавляем в эту цепь генератор импульсов со скважностью 50% и начинаем прерывать ток проходящий через индуктивность с частотой тысячу раз в секунду. Среднеквадратичный ток через цепь снизится до 0.5А.
И начинается та самая магия импульса о которой шла речь выше. С какой частой бы не работал генератор, 10,100,200кГц, ток от источника никогда не превысит указанные 0.5А. Заметьте, НИКОГДА! Это понять не просто, но без этого понимания магия импульса останется сокрытой для Вас. Догадались?
Если нет, то проведите следующий эксперимент. Возьмите электро нагреватель и включите его в электросеть. Зафиксируйте ток потребления на электросчётчике и допустим ток будет один ампер. Выключите нагреватель из сети и снова его включите. Ток потребления на электросчётчике не изменится и снова будет один ампер. Проведите этот эксперимент тысячу раз, но и после тысячного включения Вы с удивлением обнаружите, что ток потребления на электросчётчике по прежнему будет один ампер.
Допустим потенциальная энергия формируется один раз в секунду и заряжает конденсатор на один вольт. Пятьсот раз в секунду включили и выключили цепь? Значит зарядили конденсатор до пятисот вольт. Дальнейшая арифметика проста и понятна. Но а что с током потребления от источника питания? Он никогда не превысит 0.5А. Заметьте, НИКОГДА! Согласитесь, разве это не магия? Большее количество раз в секунду прервали ток в цепи, больше реальной энергии получили. Греем воду в бойлере от электросети и одновременно вырабатываем электроэнергию в необходимых для зимнего сада количествах. И всё благодаря магии импульса.
Для наглядной демонстрации магии импульса снят видеоролик. Лампа EL1 подключена непосредственно к источнику питания, до дросселя, горит в полный накал. Потребление от источника питания на частоте 2кГц и длительности импульса 15% составляет 0.17A*34V = 5,78W Свечение лампы EL2 основано на преобразовании потенциальной энергии в электрический ток классического толка. На частоте в 2кГц потенциальной, свободной, энергии образуется недостаточно, поэтому лампа EL2 не светится. Увеличивая частоту генератора от двух до 100кГц, картина меняется на обратную.
Начинает работать магия импульса и лампа EL2, ток свечения которой формирует потенциальная энергия начинает ярко светиться, лампа подключенная к источнику питания гаснет, ток потребления падает до 0.07*34.0V = 2.038W. Тоесть чем чаще мы прерываем процесс энергообразования, тем больше образуется потенциальной, свободной энергии. В видео ролике ток потребления уменьшается, это связано с тем, что в генераторе длительность импульса задаётся в процентах и чем выше частота, тем на более короткое время лампа EL1 подключена к источнику питания в результате ток уменьшается.
Как и в случае с описанием работы уплотнителя мощности, Разница в свечении двух ламп наглядно демонстрируют что от источника питания берётся энергии значительно меньше, чем при этом образуется потенциальной энергии. Количество образованной свободной энергии зависит от частоты прерывания энергообразования тока в цепи, потребление от источника тока при этом не меняется.
А как относится математика симуляторов к потенциальной энергии? Как это ни странно, но совершенно спокойно. Иначе не получить увеличение напряжения при резонансе колебательного контура и в схемах DC/DС преобразователей. Узнаёте картину изменения тока после разрыва цепи и импульса характеризующего потенциальную энергию которую показал симулятор LTSpice? Снято как под копирку с реальной осциллограммы. Фокус внимания следует сосредоточить на том, что в эмуляции, как и в реальном эксперименте, потенциальная энергия образуется после разрыва цепи электронным ключом и приборами учёта не фиксируется, значит любое использование потенциальной энергии в симуляции следует рассматривать плюсом к источнику питания.
В LTspice-симуляции на резисторе R1, подключенного к источнику питания выделяется 709mJ. Ток на резисторе R2 формирует потенциальная энергия и на нём образуется 639.01mJ. Таким образом математика симулятора подтверждает получение свободной энергии и сопоставимое количество энергий, которое будет образовано на нагревательном элементе при использовании потенциальной энергии.
Ток образуемый потенциальной энергией не принадлежит источнику питания, приборами учёта не фиксируется. Потенциальная энергия является «свободной» и чем выше частота, тем её больше. Этот факт даёт нам в руки инструмент который позволит увеличить эффективность работы DC/DC преобразователей аналогичной схематики до 100 и более процентов.
Чтобы использовать конденсатор, заряженный потенциальной энергией можно воспользоваться схемой уплотнителя мощности контроля заряда АКБ/Конденсаторов с сайта. Использование схемотехники уплотнителя мощности, даёт дополнительную энергию при заряде конденсатора и его последующем разряде через нагрузку.
Если специалисты предложат Вам сравнить полученную в симуляторе потенциальную энергию с энергией источника питания, настоятельно рекомендую этого не делать, Вас пытаются ввести в заблуждение. У Вас квартирный счётчик энергию и деньги считает по току который прошёл через Вашу квартиру, или анализирует процессы на гидростанции где эта энергия производится? Поступайте аналогично. Сразу за источником питания в симуляторе ставьте резистор и анализируйте токи, энергию, мощность поступающую в электрическую цепь уже на нём.
Механизм преобразования энергии движения электрического тока в потенциальную энергию показан в полной мере, теперь остаётся вернуть в цепь конденсатор, определить частоту резонанса и посмотреть, что покажет синий луч осциллографа, характеризующий потенциальную энергию электрического тока.
Не возьмусь судить как происходит распределение и взаимодействие токов в колебательном контуре между индуктивностью и конденсатором, но синий луч осциллографа уже не даёт импульса в сотни вольт характерного для потенциальной энергии электрического тока. Это соответствует показанному в видеоролике заряду конденсатора потенциальной энергией. Импульс потенциальной энергии проявляется только когда конденсатор заряжен и через него прекращает проходить ток. До этого момента наблюдать его нет возможности. Именно потенциальная энергия образованная прерыванием подачи энергии от источника делает напряжение и токи в колебательном контуре больше чем предоставляет источник питания.
Возможен ли съём энергии с параллельного колебательного контура, находящегося в резонансе? Предварительный анализ показал, что колебательный контур в резонансе безусловно обеспечивает заряд конденсатора, но делает это гораздо менее эффективно чем работа с обычной индуктивностью. Большая эффективность заряда конденсаторов в резонансном колебательном контуре при использовании транзистора верхнего плеча достигается при установке диода, так как это показано в схеме ранее. И разряд конденсатора, заряженного при посредничестве потенциальной энергии следует проводить не полностью, а до напряжения источника питания.
В связи с темой съёма энергии с резонансного колебательного контура, следует отметить работы Менакера Константина Владимировича связанных с созданием методологии и практической реализацией высокоэффективных импульсных резонансных преобразователей напряжения.
Токи потенциальной энергии.
Собрана электрическая схема, состоящая из блока питания постоянного тока, индуктивности и электронного ключа прерывающего ток с частотой 100кHz. Измерен ток и сняты осциллограммы при подключенной нагрузке лампы накаливания и без неё.
В разделе потенциальная энергия электрического тока показано, что в момент прерывания процесса энергообразования образуется потенциальная энергия, которая, при наличии замкнутой цепи, образует электрический ток. Потенциальная энергия обладает большим потенциалом, а значит образованный ток будет направлен против тока источника питания и ыполняет переодический дозаряд конденсаторов источника питания.
Уменьшение потребления в цепи с индуктивностью обусловлено наличием токов, образованными потенциальной энергией которые направлены против тока от источника питания и выполняют дозаряд конденсаторов источника питания. Замкнутый контур для возврата потенциальной энергиии обусловлен наличием внутреннего диода в MOSFET транзисторе, у IGBT транзисторов данный диод отсутсвует. Меняется и логика работы системы.
Вероятно Вы обратили внимание, что колебательный контур настроен на резонансную частоту неточно. Сделано это намеренно и если уточнить настройку резонансной частоты, то ток в цепи стока транзистора (зелёный луч) равен нулю. Это означает только одно, накопительные конденсаторы не заряжаются, так для как образования потенциальной энергии в цепи необходим ток.
После расстройки колебательного контура, момент выключения транзистора происходит при наличии тока на стоке транзистора. Прерывание тока и даёт заряд конденсаторов. При этом энергии образуется в избытке, можно наблюдать свечение лампы 220V*60W в полный накал.
Токи и напряжение в электрической цепи.
Энергии в колебательном контуре.
При соединении конденсатора с катушкой индуктивности в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Википедия подробно расписывает переход энергии заряда конденсатора, в энергию магнитного поля индуктивности. Но Вы нигде не встретите разъяснений о характере этих преобразований. Энергия конденсатора представлена электрическим полем (потенциальная энергия). Энергия индуктивности представлена вихревым магнитным полем. Таким образом, в маятнике, с которым принято ассоцировать колебательный контур, необходимо видеть не только математику амплитуды колебаний, но и преобразование потенциальной энергии поднятого груза, в кинетическую энергию движения.
Колебательный контур это устройство взаимного преобразования энергий разного рода.
Но что заставит двигаться маятник в следующий момент времени? В механической аналогии это поле притяжения земли. Соответственно и в электрической аналогии существует «третья» сила делающая преобразование энергий возможной.
Ещё раз внимательно перечитаем википедию. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Ладони хороший пример ещё и тем, что без включения в процесс удержания равновесия Вашего Интеллекта, основанного на знании предстоящих усилий левой ладони, анализе текущей ситуации, достигнуть равновесия невозможно. Можно более точно провести и аналогию с механизмами охраны границ мерностей, как Искуственный Интеллект.
Резонанс обмотки на ферритовом кольце.
Для образца был использован феррит неизвестного происхождения. Рабочий диапазон в котором передаётся (индуцируется) прямоугольный сигнал с генератора на виток связи для данной марки феррита менее 30Гц. Методика поиска резонансной частоты осталась прежней.
Среди разновидностей сигналов необходимо подобрать частоту генератора таким образом, чтобы на витке связи появилась кривая напоминающая половину синуса. Нашлась она достаточно быстро по характерному пропаданию звука и после увеличения уровня сигнала генератора до 9V. Курсором осциллографа отмечена частота 392Гц. Основная резонансная частота 392*4=1568Гц.
Осталось выяснить чем ферритовое кольцо подпортило себе карму и осталась только с четвертью сигнала и как найти для Инь недостающую Янь.
Недостающую четверть периода возможно найти, используя две обмотки намотанных встречно.
Доматываем до конца, затем короткий переход от конца катушки к началу, следующий слой в том же направлении. Провода шввп 2*0,75 (разделен на две жилы) ушло не более 15 метров. Мистические результаты возможно ожидать на 21 метре при высоком качестве исполнения.
На низкочастотном феррите сложно рассчитать частоту резонанса по предложенной выше схеме. Подобрать резонансную частоту необходимо генератором сигналов. На высокочастотных ферритах одновременно по спаду и подъёму фронтов прямоугольного сигнала формируются последовательности затухающих синусоидальных импульсов. Замерив временным курсором осциллографа частоту затухающих синусоидальных импульсов, основную резонансную частоту можно получить сразу.
Стоит обратить внимание на подключение конденсатора. Для высокочастотного феррита конденсатор необходимо подключать с противоположной стороны входа (точка подключения генератора).
В отличии от ранее рассмотренного параллельного колебательного контура, в данном контуре присутствуют «ВЧ всплески» закрытия транзисторов генератора на максимумах синусоиды и возникают как при закрытии, так и при открытии транзистора. Данный момент более детально показан на фотографии ниже.
Ёмкость конденсатора была увеличена в два раза, до двух микрофарад. Тем не менее, для данного типа феррита, частота резонанса осталась неизменной 67кгц. Наличие конденсатора и его ёмкость не оказывает влияния на амплитуду, частоту и сдвиг фазы сигнала.
Синусоида резонанса в ферритовом кольце сдвинута (если речь о фазе, то на 90 градусов) относительно фронтов сигнала задающего генератора. Это позволяет легко определять и работать с максимумом амплитуды, которая в точности соответствует фронтам сигнала задающего генератора.
Скалярное магнитное поле встречных обмоток на ферритовом кольце.
Николаев Г.В. указывает в качестве одной из особенностей скалярного магнитного поля снижение сигнала до нуля при взаимном расположении передающей и принимающей рамок под углом примерно в 45 градусов, при переходе через данную точку меняется фаза сигнала. То же самое можно наблюдать и на ферритовом кольце с двумя встречными обмотками (жёлтый луч). При обычной намотке изменяется только амплитуда сигнала.
В примере использован произвольный колебательный контур возбуждения, работающий в резонансе. При подборе резонансной частоты контура возбуждения, равной резонансной частоте встречных обмоток на ферритовом кольце, (67кГц в моём случае) в разы возрастает ЭДС наведенное скалярным магнитным полем.
Подключение нагрузки к обмоткам на ферритовом кольце.
Виток возбуждения (индуктор), находится в резонансе. Его точная частота 35,8кГц. Ёмкость конденсатора 1МКФ. Виток возбуждения наброшен на ферритовое кольцо таким образом, чтобы на выходе получилась максимальная амплитуда сигнала. В качестве «нагрузки» использованы светодиоды FYL-10013UBC1A (цвет синий) 2.8-3.6V, FYL-10013LRC1A (цвет красный) 1.7-2.5V Фотография сравнения свечения диодов с ферритом со стандартной обмоткой не приводится. Сравнивать не с чем, светодиоды не горят.
Если к выходам обмотки на ферритовом кольце подключать один светодиод, он ярко вспыхивает, затем гаснет. Разворачиваем диод на сто восемьдесят градусов (меняем катод с анодом). Диод опять ярко вспыхивает, затем гаснет.
Если предложенная техника включения диодов не устраивает, необходимо включить диоды встречно-параллельно и подключить к выходам обмоток ферритового кольца.
Две пары диодов горят «постоянно» на полную яркость. На процедуру включения диода конденсатор не оказывает влияния. Если конденсатор закоротить, оба диода продолжают гореть без изменения яркости свечения. Включить один диод возможно, если току «придать» направление, заменив конденсатор на диод.
Выше продемонстрировано. Осциллограф, подключенный к выходам обмотки на ферритовом кольце, показывает синусоидальный сигнал. После подключения нагрузки в виде пары диодов включеных встречно на осциллографе меандр. Ёмкость кондесатора влияет на скважность импульса на диодах.
Генератор скалярного магнитного поля.
Ферритовое кольцо с двумя встречными катушками, каждая из которых расположена на своей стороне кольца является трансформатором с разомкнутым магнитопроводом.
Считается, что что встречный магнитный поток каждой из обмоток в точе «нуль» заворачивает в свое противоположное направление и каждый магнитный поток индуцирует в витке эдс встречную другому. ЭДС компенсируются, ток потребления данного трансформатора равен нулю. Практическая ценность данного трансформатора так же близка нулю. Как это примерно происходит показано на картинке.
Меняя частоту генератора до 10кГц, можно подобрать частоту с практически полным отсутствием тока потребления. Подключение и выключение нагрузки не влияет на изменение тока потребления. Для большей эффективности катушку съёма можно убрать и нагрузку подключать непосредственно к конденсаторам 2мКф.
Характер описанных явлений можно описать как взаимодействие электрических полей.
Обратимся к работам Николаева Г.В. либо к «Основам обобщённой электродинамики.» Томилина А.К.. «Точка пространства, в которой создано нестационарное скалярное магнитное поле, является источником или стоком электрического поля.»
Частота в 219кГц для данного кольца показывает на трансформаторе тока максимальную амплитуду, но не относится к резонансным частотам RC контура. Данная частота характеризует выход генератора в точку максимального противодействия магнитных полей. Электромагнитное поле зарядов в проводнике наведенное скалярным магнитным полем и ЭДС генератора различны, возникает противодействие со стороны тока генератора, ток «потребления» растёт. После подключения «нагрузки» потребление тока падает.
В схемах показано использование конденсатора емкостью 2мКф. Необходимость в такой ёмкости предстоит выяснить. Поскольку скалярное магнитное поле носит характер электрического взаимодействия (ёмкостной), конденсатор был заменён на двусторонний фольгированный текстолит. Вместо катушки съема можно использовать односторонний текстолит, расположенный вблизи от ферритового кольца. Сток энергии на землю с медной обложки был обеспечен через диоды.
Нагрузка для скалярного магнитного понятие условное. Необходимо обеспечить, как указывает Томилина А.К., сток либо исток возникшего энергетического поля. В рассмотренном выше примера стоком или истоком для энергии скалярного магнитного поля является «земля».
Нельзя рассматривать скалярное магнитное поле как особый вид взаимодействия известных полей. Скалярное магнитное поле формируется в точке и присутствует в пространстве. В рассмотренной схеме скалярное магнитное поле проявляет себя на расстоянии до одного метра посредством ярко-выраженного электрического поля. Косвенно и правильно судить о наличии СМП по уровню сигнала на экране осциллографа без подключения щупов к каким либо элементам схемы. Любое подключение осциллографа обеспечивает дополнительные сток либо исток для энергии СМП и меняет картину восприятия. Необходимо очень осторожно относится к подключению приборов имеющим связь с землёй. Скалярное магнитное поле пространственно и наводит ЭДС непосредственно в проводниках без подключения к каким либо элементам схемы.
Заряд конденсаторов скалярным магнитным полем.
Использовано ферритовое кольцо с двумя встречными намотками, каждая из которых расположена на своей стороне кольца.
Генератор подключен через развязывающий трансформатор. Начиная с 5-10кГц (меандр) ток потребления схемой составляет 28-50 миллиампер. Конденсаторы 45*0,22=9,9мкф заряжаются до значений 700-750V. Заряд батареи конденсаторов обеспечивают только диоды шоттки.
Скорость заряда конденсатора зависит от мощности встречных магнитных потоков в ферритовом кольце. Магнитное поле определяется током идущим по обмоткам, но для данного типа намотки он близок к нулю (28-50 миллиампер). Скорость заряда конденсатора растёт при увеличении напряжение питания.
Заряд конденсаторов высокой ёмкости рассмотрен в разделе Заряд электролитических конденсаторов.
Данную схему можно использовать для заряда аккумуляторов. Если в качестве источника питания использовать дополнительный аккумулятор, то ток потребления не превысит 50ма. При этом второй аккумулятор будет заряжен полностью.
При подключении схемы к аккумулятору компьютерного источника бесперебойного питания лампа в 220V*90ватт включается один раз в секунду. Энергии поля недостаточно чтобы скорость заряда аккумулятора компьютерного ИБП равнялась или превышала скорость его разряда.
Необходимо добиться большей энергии скалярного магнитного поля и организовать схему разряда конденсаторов на активную, низкоомную нагрузку по достижению некоторого значения напряжения либо иному критерию.
Осциллограммы схемы заряда конденсаторов.
Для оценки тока потребления используется трансформатор тока, который одет непосредственно за источником питания на плюсовой провод. На источнике питания KXN-6020D было установлено напряжение 12V, к транзисторному ключу подключена лама накаливания 12V*21W. На частотах 10-20кГц на индикаторе источника питания ток потребления 1,7А. Осциллограмма токового трансформатора c подключенной лампой накаливания приведена ниже.
Индикация тока потребления на источнике питания в 1,7A на частотах в районе 20кГц соответствует максимальной амплитуде на трансформаторе тока в 2,4V.
На фотографиях и видео заряда конденсаторов схемой со встречными намотками показано, что на частотах от 10кГц ток потребления на индикаторе источника питания равен нулю. При этом критерием выбора частоты генератора является значение нулевого тока на индикаторе источника питания и максимальном значении амплитуды на трансформаторе тока, которая в данном случае равна 296V и превышает на порядки значения тока в случае с лампой накаливания.
Индикация тока потребления на источнике питания в 1,7A на частотах в районе 20кГц соответствует максимальной амплитуде на трансформаторе тока в 2,4V.
На фотографиях и видео заряда конденсаторов схемой со встречными намотками показано, что на частотах от 10кГц ток потребления на индикаторе источника питания равен нулю. При этом критерием выбора частоты генератора является значение нулевого тока на индикаторе источника питания и максимальном значении амплитуды на трансформаторе тока, которая в данном случае равна 296V и превышает на порядки значения тока в случае с лампой накаливания.
Давать оценки фронтам сигнала по трансформатору тока неверно, так как их искажает индуктивное сопротивление трансформатора тока.
На выходе импульсного источника питания установлен диодный мост и конденсаторы. ЭДС энергии скалярного поля, по аналогии с зарядом блока конденсаторов схемы, через диодный мост заряжает и электролитические конденсаторы источника питания. При разряде конденсатора амплитуда на трансформаторе тока растёт.
Ниже приведена пара осциллограмм напряжений с витков вокруг ферритового кольца (жёлтый провод) на разных частотах и напряжениях. И в первом и во втором случае конденсаторы заряжаются. Синий луч даёт представление о моментах включения и выключения транзистора. Появление резонансных гармонических колебаний не привязано к моментам открытия или закрытия транзисторов, так же не имеет значения открыт в данный момент транзистор или закрыт.
RLC цепь с транзисторным ключом начинает резонировать (появляются гармонические колебания) в момент закрытия транзистора, при резком прекращении тока. В рассматриваемой схеме использованы диоды шоттки обладающие высокой ёмкостью. По моменту начала гармонических колебаний RLC контура включающими ёмкость диодов шоттки можно оценить момент резкого прекращения тока и возникновение энергии скалярного магнитного поля, которое обусловлено взаимной компенсаций магнитных потоков в сердечнике.
Работу ферритового кольца со встречными намотками можно сравнить с транзисторным ключом и использовать вместо него. Если в транзисторе прекращение тока связано с разрывом электрической цепи. В ферритовом кольце со встречными намотками прекращение тока вызвано взаимной компенсацией магнитных полей. И в том и другом случае резкое прекращение тока даёт скачок напряжения который заряжает конденсаторы.
Скалярное МП в индукционном нагреве.
Трансформатор связи был заменён на рассматренное ранее кольцо с двумя встречными намотками по 20м, каждая из которых расположена на своей половине кольца. Данное кольцо с подобным типом намотки принято считать безиндукционным. Тем не менее, кольцо оказалось альтернативой ОЭДС обычного трансформатора связи.
ОЭДС индуктивности для вывода и поддержания резонанса параллельного колебательного контура не нужна, достаточно в «нуле» создать импульс формируемый встречными катушками на ферритовом кольце, скважность от 20% до 50%.
Ток потребления встречных намоток менее 100мА. Этот вопрос рассматривался ранее.
Абсолютно важно взаимное расположение спирали индукционной плиты и кольца со стречными намотками. При размещении как на фотографии, магнитные поля начинают взаимодействовать и происходит многократное усиление тока в колебательном контуре. Кратковременно удавалось добиться взаимного расположения спирали и ферритового кольца, что ток в колебательном контуре вырастал на порядки.
По большому счёту различия в импульсах разной природы использованных для вывода и поддержания резонанса параллельного колебательного контура незначительна. Энергия на выходе разная. Осцилограммы приведены ниже.
Осциллограмма импульса (красный луч) и ток К.К. встречных катушек.
Осциллограмма импульса (жёлтый луч) и ток К.К. обчной ОЭДС.
Взаимодействие магнитных полей.
На фотографии показан параллельный колебательный контур состоящий из конденсатора и спирали индукционной плиты. Энергия в контур поступает через трансформатор связи, выполненный на ферритовом кольце (красный провод). Частота задаётся генератором.
Ферритовое кольцо с обычной намоткой подключено к транзисторному ключу. Магнитное поле за пределами кольца отсутсвует, диоды не горят. Изменения тока (жёлтый луч) интереса не представляет.
Ферритовое кольцо с двумя встречными катушками, каждая из которых размещена на своей половине кольца, подключено к транзисторному ключу. Витки проволоки, свёрнутые в кольцо, с подключенными встречно-парралельными светодиодами размещены таким образом, что витки обязательно пересекают обе катушки по внешней стороне ферритового кольца так, как показано на фотографии.
Меняяя частоту генератора несложно найти широкий диапазон частот в котором начинает гореть светодиод. Всегда горит только один. Ток потребления из сети ниже чувствительности амперметра (100мА) блока питания. Напряжение источника питания менялось в пределах от 8 до 13V. При больших значениях сгорают светодиоды.
Магнитное поле существует вне ферритового кольца и наводит ЭДС в витках проволоки с подключенными встречно-параллельными диодами. Магнитное поле имеет только одно направление, иначе горели бы два светодиода.
Витки проволоки с подключенными встречно-параллельными диодами должны пересекать магнитные поля вне кольца каждой из встречных катушек.
Ферритовое кольцо с обычной намоткой для спирального индуктора не существует. Напротив, ферритовое кольцо со встречными катушками было размещено в центре спирального индуктора. Магнитное поле индуктора начинает взаимодействовать с магнитным полем ферритового кольца. Магнитное поле ферритового кольца усиливается, как следствие многократно усиливается и ток в параллельном колебательном контуре.
Холодный ток.
Особых предпочтений по частоте нет. Для данного кольца лампа горит на частоте в районе 100кГц. На частотах ниже 10кГц ток перестаёт быть «холодным». Энергетика встречных обмоток такова, что начинают резонировать (усиливаются колебания) практически во всём диапозоне от 10кГц до 500кгц.
Я не рассматриваю коэффициент преобразовании энергии > 1. Считаю его ниже. Интересно наличие тока и мощности, при отсутствии напряжения. При изменении частоты от 10кГц до 500кГц напряжение на вольтметре есть, но не превышало 200 милливольт. При перемещениях жёлтого кольца съёма, меняется форма тока. С землёй «взаимодействует» обмотка к которой подключена неоновая лампа. Вокруг кольца электрическое поле.
Кольцо даёт два типа токов. Высоковольтно-высокочастотный по внешней стороне кольца и холодный. Как правило, холодным, радиантным, током ошибочно считают высоковольтно-высокочастотный. Не уверен, что приводимые осциллограммы имеют хоть какое-то отношение к холодному току. При подключении к аккумулятору через диод, импульсы тока с осциллографа исчезают. Потенциал на диодах появляется, аккумулятор начинает заряжаться. Приниципиально другие законы и техника работы с холодным током.
Электростатика.
Односторонняя магнитная индукция.
В эксперименте использована встречная намотка бифиляром купера. Видео можно просмотреть по ссылке.
В случае с односторонней магнитной индукцией, подключение нагрузки к катушке съёма не влияет на ток потребления. Патент на изобритение принадлежит Ефимову Евгению Михайловичу. Дополнительная информация в статье Демон Тесла
Экономный режим включения трансформаторов.
Не стоит замыкаться на моделях трансформаторов используемых в схеме. Пробуйте пару примерно одинаковых трансформаторов с понятными первичной и вторичной обмотками. Данные трансформаторы от источников бесперебойного питания.
Подключение нагрузки 12V и короткое замыкание производилась на обмотках, предназначенных для подключения низковольтной части в схеме ИБП, группа проводов расположенная снизу, далее по тексту вторичная обмотка
Без конденсаторов схема не работоспособна. Трансформаторы тока добавлены с целью дальнейшего изучения работы схемы.
При включении в сеть индуктивное сопротивление первичных обмоток двух трансформаторов высоко, ток в цепи минимален. Контрольная лампа не горит. Ток потребления соответствует току холостого хода.
На первом трансформаторе закорачиваем низковольтную (вторичную) обмотку. Это режим короткого замыкания Ток в первичной обмотке первого увеличивается контрольная лампа 220V загорается. Дано объяснение понятное, но неверное.
Лампа подключенная ко вторичной обмотке второго трансформатора не только горит, но и возвращает значение тока потребления из сети к току холостого хода трансформаторов.
Осциллограмма тока двух трансформаторов. Первичные обмотки включены последовательно через конденсатор. Ток холостого хода:
Вторичная обмотка первого трансформатора закорочена:
Вторичная обмотка первого трансформатора закорочена. Подключена нагрузка на второй трансформатор:
Трансформатор.
Изменена схема подключения. В качестве трансформатора использован ОСМ 1,6 УЗ. Ток холостого хода трансформатора 1,504А. При подключении лампы 220V*75W непосредственно к выходу 110V ток потребления увеличивается до 1,537А. При включении электролампы по приведенной ниже схеме, ток потребления падает до 1,422А
Если режим короткого замыкания заменить транзистором управляемого с генератора можно добиться значительного роста тока.
Двуликий Янус и бифилярная намотка.
Колебательный контур — это система, которая совершает повторяющиеся во времени колебания и представляет собой электрическую цепь, состоящую из соединённых катушки индуктивности и конденсатора.
При рассмотрении явлений резонанса колебательного контура классические представления об индукционных токах становятся неполными. Возникают явления противоречащие классическим представлениям. Данные свойства наукой не изучается, факты игнорируются, новые явления искусственно подтягиваются под имеющийся математический аппарат.
В чём заключается хорошо забытая новизна явлений резонансного колебательного контура не только математически доказал, но и продемонстрировал на практике томский физик Николаев Геннадий Васильевич на опытах с П-образными рамками при передаче электромагнитных колебаний.
Аналогичный опыт был проведён с параллельным колебательным контуром в резонансе. Вместо рамок использован вензель мировинга.
На осциллограммах видно, что при размещении обычного витка относительно оси соленоида, в нём полностью отсутствует электрический ток. В то же время, вензель даёт максимальную амплитуду сигнала. Более убедительным доказательством является поворот вензеля на угол примерно в 45 градусов. Как и указывает Николаев Г.В., на осциллографе можно наблюдать полное отсутствие сигнала. При пересечениях данной плоскости происходит смена фазы сигнала. В том же положении, в обычном витке, найти нулевой уровень сигнала не представляется возможным, происходит только изменение амплитуды сигнала.
Простые примеры с П-Рамками Николаева Г.В. и вензель наглядно показывают ущербность классической электродинамики. Более ста лет ученые мужи не замечают слона в посудной лавке, но при этом самозабвенно ищут частицу бога в коллайдерах.
Двуликий Янус.
Никола Тесла в своих изобретениях использовал всю полноту электромагнитных взаимодействий — скалярного и поперечного магнитных полей. Скалярное магнитное поле, по сути несуществующее (виртуальное) Никола Тесла называл радиантным. Только понимание полноты электромагнитных взаимодействий заставит устройства, собранные по патентам Нмколы Теслы, работать.
Принять и осознать этот дуализм, научиться его использовать, исследователям мешает искусственно созданная неполнота классических теорий. В дальнейшем, эта неполнота, подтвержденная практикой, ставит психологический барьер и делает практически невозможной восприятие новых истин. Исследователь подсознательно начинает следовать замечательному постулату Альберта Эйнштейна, гораздо более фундаментальному чем вся теория относительности: «Если факты противоречат моей теории, тем хуже для фактов.» При этом всякий исследователь осознаёт абсурдность приведенного постулата, насмехаясь над ним.
От психологического дуализма стоит перейти к дуализму колебательного контура состоящего из катушки индуктивности с бифилярной намоткой и конденсатора.
Пружина — это механический аналог демонстрации распространения продольных колебаний.
Наличие конденсатора в цепи с бифилярной намоткой для продольной электромагнитной волны не является припятствием. Поэтому данная цепь образует кольцо (бесконечный проводник). Стоит обратить внимание на «добротность» бифилярной катушки. В сравнении с обычной, той же индуктивности, она несоизмеримо выше.
В распределённых системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды возможно возникновение стоячей волны. Кроме стоячей волны присутствует и бегущая волна, переносящая энергию к местам поглощения и излучения.
В схеме использован конденсатор относительно большой ёмкости для бифилярных катушек — 0.22мКф. Между нижним и верхним слоем бифилярной катушки на соленоиде подключен конденсатор 0,22мКф. Изменение его ёмкости в разы не влияет на частоту колебаний. Это говорит о наличии продольных колебаний в данной цепи. (В дальнейшем будет показан ряд интересных особенностей при его использования.)
Скалярное магнитное поле проявляет себя только в случае вывода в резонанс колебательного контура. Из имеющихся в наличии был взят индуктор и собран параллельный колебательный контур. После подбора ёмкости, индуктор был настроен на частоту близкую к резонансной частоте бифилярной намотки. Безусловно, требуется более ответственный подход к настройке и изготовлению как бифилярной катушки, так и к индуктора.
В схеме использован конденсатор относительно большой ёмкости — 0.22мКф. В разрыв обмоток так же вставлен конденсатор 0,22мКф. Трудно судить о его функциональной ценности в данной цепи, но изменение его ёмкости в разы не влияет на частоту колебаний. Это говорит о продольном характере колебаний в данной цепи.
Следует чётко понимать, что сигнал на экране осцилографа может относиться как к ЭДС продольного (скалярного) магнитного поля, так и к ЭДС поперечного магнитного поля. Ток, образованный отдельно взятым любым из полей, не способен совершить работу по перемещению электрических зарядов. Перемещением индуктора вдоль соленоида осуществляется выбор типа эдс либо их совмещение. В последнем случае у тока появится «активная» составляющая.
Наличие активной составляющей в сигнале можно оценить по значению RMS (среднеквадратичное значение мощности переменного напряжения) на экране осциллографа. Синий луч осциллографа подключен к колебательному контуру. Настройка заключается в том, чтобы найти баланс (ось Януса) между максимальными значениями амплитуды на индукторе и в колебательном контуре бифилярной намотки. Результатом успешной настройки является то, что подключение активной нагрузки (встречно включенных светодиодов) не влияет на амплитуду исходного сигнала. Сдвигается только его фаза.
Энергия источника не тратится, но происходит сдвиг фазы исходного сигнала. С бытовой точки зрения данный способ получения активного тока никакой экономии не даёт. Современные электросчётчики определяют сдвиг фазы от эталона и рассчитывают его финансовую составляющую. Данный способ получения активно тока требует обязательной установки компенсатора реактивной мощности, либо корректора коэффициента мощности.
Продольные волны.
Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной. Пример распространения продольной упругой волны изображен на рисунке (А), поперечной на рисунке (Б). По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. По пружине распространятся сгущения и разрежения витков, или упругая волна.
Резонанс Шумана.
Электромагнитные колебания сверхнизкой частоты, возникающие в резонансной полости между поверхностью земли и ионосферой.
Частота резонанса Шумана — 7,83 Гц. Из-за волновых процессов плазмы внутри Земли наиболее чётко наблюдаются пики на частотах примерно 8, 14, 20, 26, 32 Гц. Для основной, самой низкой частоты, возможны вариации в пределах 7—11 Гц, но большей частью в течение суток разброс резонансных частот обычно лежит в пределах ±(0,1—0,2) Гц. Спектральная плотность колебаний составляет 0,1 мВ/м.
Копилка.
В новом выпуске авторской программы «БесогонТВ» Никита Михалков предлагает обсудить интервью Германа Грефа, касающееся, в частности, программы «Бесогон» и темы образования. Что именно скрывается за наукообразием и иностранной терминологией, которой оперирует Герман Оскарович?