что такое симметрия в природе

Wonder Wild World

Страницы

Симметрия в природе

«Симметрия – символ красоты, гармонии и совершенства»

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Во всем царит гармонии закон, И в мире всё суть ритм, аккорд и тон. Дж. Драйден

Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Простейший вид симметрии зеркальная (осевая), возникающая при вращении фигуры вокруг оси симметрии.

В природе зеркальная симметрия характерна для растений и животных, которые произрастают или двигаются параллельно поверхности Земли. Например, крылья и туловище бабочки можно назвать эталоном зеркальной симметрии.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе
Симметрия, возникающая при вращении фигуры вокруг центра вращения, называется центральной.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Также существует винтовая симметрия.

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии.

Пример винтовой симметрии – расположение листьев на стебле многих растений.

Если рассматривать расположение листьев на ветке дерева мы заметим, что лист отстоит от другого, но и повернут вокруг оси ствола.

Листья располагаются на стволе по винтовой линии, чтобы не заслонять друг от друга солнечный свет. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым.

Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Источник

Что же такое симметрия?

«Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство».

Герман Вейль

Понятие симметрии проходит через всю многовековую историю человечества. Академик В. И. Вернадский писал: «. Представление о симметрии слагалось в течение десятков, сотен, тысяч поколений. Правильность его проверена коллективным реальным опытом и наблюдением, бытом человечества в разнообразнейших природных земных условиях».

Издавна человек, наблюдая симметрию, как в живой, так и в неживой природе, стремился использовать ее в различных ремеслах, архитектуре. Оказывается, симметрия проявляется не только в форме предметов. Изучает это понятие математика, но законы симметрии действуют в физике, химии, искусстве, поэзии, музыке.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

По преданию термин «симметрия» придумал скульптор Пифагор Регийский, живший в городе Регул. О нем нам говорили как о первом скульпторе, в творчестве которого была сделана попытка соблюсти ритм и соразмерность. Отклонение от симметрии он определил термином «асимметрия».

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Вейлю, в частности, мы обязаны тем, что отдаем себе сегодня полный отчет о значении для математики и физики общего понятия симметрии. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Понятие симметрии достаточно сложное. Различные словари по-разному определяют его.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Современная наука весь мир рассматривает как проявление единства симметрии и асимметрии.

Существует две группы симметрии. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно наблюдать. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Источник

Индивидуальный проект «Симметрия в природе»

Областное бюджетное профессиональное образовательное учреждение

«Курский педагогический колледж»

Проект по предмету

С И М М Е Т Р И Я В ПРИРОДЕ

Специальность среднего профессионального образования

44.02.02 Преподавание в начальных классах.

группы 1 Д школьного отделения

Заикина Яна Александровна

Проверил: преподаватель математических дисциплин

Волчкова Наталья Николаевна

1.1.Роль симметрии в нашей жизни…………………………………. 6

1.2. Что такое симметрия? В иды симметрии. 7

1.2.1. Центральная симметрия. 12

1.2.2. Осевая симметрия. 12

Зеркальная симметрия ………………….………. 14

Поворотная симметрия. 14

2.1. Значение симметрии в познании природы ………………. ……. 15

2.2. симметрия в живой природе. Асимметрия и симметрия. …. 18

2.3. Симметрия растений ………………………. 19

2.4. Симметрия животных ……………………………. 21

2.5. Симметрия в неживой природе. 21

2.6. Человек ― существо симметричное …………………. 24

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Платон (древнегреческий философ, 428 – 348 г. до н.э.)

Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наш взгляд и ласкает наше внимание. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну их красоты. Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных.

Мы выбрали для исследования очень необычную тему: «Симметрия в природе», потому, что она связана с интересующим нас вопросом о гармонии нашего мира.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. В своём проекте я покажу, что законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь подчиняются принципам симметрии. Мы узнаем, что существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчёркивает гармоничность нашего мира. В нашей исследовательской работе будет отмечено так же, что помимо симметрии существует понятие и асимметрии. Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте.

Асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание материи, при переходе от неживой к живой материи на микроуровне преобладает асимметрия.

Было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие областные науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей. Я обратила внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды ― от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.

Нам это важно, потому что для многих людей математика ― скучная и сложная наука, но для меня математика ― не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук.

Цели исследовательской работы:

Раскрыть особенности симметрии видов в природе.

Показать всю привлекательность математики, как науки её взаимосвязь с природой в целом.

Узнать, присутствует ли симметрия в окружающем нас мире.

Изучить особенности различных видов симметрии в природе.

Для достижения поставленной цели, был определен ряд задач:

Проанализировать литературу по исследуемой проблеме;

Изучить основные виды симметрии ;

Подбор материала по теме «Симметрия в природе», и его обработка.

Систематизация и обобщение собранного материала.

Как часто встречаются симметричные и несимметричные формы в природе?

Как симметрия и асимметрия влияют на наше настроение?

Какова роль симметрии в природе?

Объектом исследования является понятие «симметрия».

Особенности различных видов симметрии в природе.

Гипотеза исследования состоит в том, чтобы показать важную, исключительную роль принципа симметрии в научном познании мира

Глава 1. Что такое симметрия?

1.1. Роль симметрии в нашей жизни

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами. Но в известной мере и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою жизнь, академика А. В. Шубникова (1887 — 1970 гг.) [12]

Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слова «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея неизменности относительно некоторых преобразований.[12]

Симметрия воспринимается в нашей жизни и вообще человеком как проявление закономерности, порядка, царящего в природе. Восприятие же закономерного всегда доставляет нам удовольствие, сообщает некоторую уверенность и даже бодрость.

В нашей жизни мы повседневно, всегда и везде встречаемся с симметрией. Это симметричные предметы и геометрические фигуры, живая природа и зеркальная симметрия и т.д. Итак, «сфера влияния» симметрии поистине безгранична. Природа — наука — искусство. Всюду мы видим противоборство, а часто и единство двух великих начал — симметрии и асимметрии, которые во многом определяют гармонию природы, мудрость науки и красоту искусства. Мы видели, что симметрия форм живой природы обязана своим существованием, прежде всего закону тяготения. Но тяготение — вечный закон природы; значит, вечна и симметрия и она всегда будет ассоциироваться с красотой.

Симметрия воспринимается нами, как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Теперь мы, понаблюдав и изучив специальную литературу, посмотрим, где найдет свое отображение симметрия. Почему симметрия буквально пронизывает весь окружающий нас мир?

1.2.Что такое симметрия. В иды симметрии

Существует множество понятий о симметрии.

Симметрия — это соответствие, неизменность (инвариантность), проявляемых при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

Симметрия. Основное понятие.

Симметрия — определённый геометрический порядок в расположении сходственных частей тела, имеет непосредственное отношение к характеру. Симметрия является жизненно важным признаком, который отражает особенности строения, образа жизни и поведения животного. [7]

Симметрия — соразмерность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости, прямой или плоскости.

Симметрия («соразмерность») — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. [7]

При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого. В физике общепринято выделять две формы симметрии: геометрическую и динамическую. Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии. Примерами геометрических симметрии являются: однородное пространство и время, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета. Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии. К динамическим симметриям относят симметрии внутренних свойств объектов и процессов, например симметрии электрического заряда. Геометрические и динамические симметрии можно рассматривать еще в одном аспекте, как внешние и внутренние симметрии.

Отсутствие или нарушение симметрии называют асимметрией или аритмией.

К основным формам геометрической симметрии относятся:

Кроме этого существует:

Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М 1 относительно оси а. [1]

Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента. [1]

Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент. [11]

Однако наряду с привычными формами симметрии существуют и другие виды симметрии:

Винтовая симметриясимметрия объекта относительно группы преобразований, являющихся композицией преобразования поворота объекта вокруг оси и переноса его вдоль этой оси.

Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента. [14]

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Асимметрия — отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии — вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы ) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.

У биологических объектов встречаются следующие типы симметрии:

Сферическая симметрия — симметричность относительно вращений в трёхмерном пространстве на произвольные углы.

Симметрия вращения n -ого порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси.

Двусторонняя ( билатеральная ) симметрия — симметричность относительно плоскости симметрии (симметрия зеркального отражения ).

Трансляционная симметрия — симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние (её частный случай у животных — метамерия (биология) ).

Триаксиальная асимметрия — отсутствие симметрии по всем трём пространственным осям.

В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у сифонофоры Velella имеется ось симметрии второго порядка и нет плоскостей симметриИ

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой — оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий ).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) — верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосновной-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков ). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют животные из группы Bilateria ).

У цветковых растений часто встречаются радиальносимметричные цветки : 3 плоскости симметрии ( водокрас лягушачий ), 4 плоскости симметрии ( лапчатка прямая ), 5 плоскостей симметрии ( колокольчик ), 6 плоскостей симметрии ( безвременник ). Цветки с радиальной симметрией называются актноморфные, цветки с билатеральной симметрией — зигоморфные.

У животных появление билатеральной симметрии в эволюции связано с ползанием по субстрату (по дну водоема), в связи с чем появляются спинная и брюшная, а также правая и левая половины тела. В целом среди животных билатеральная симметрия более выражена у активно подвижных форм, чем у сидячих.

1.2.1. Центральная симметрия

Введём понятие центральной симметрии: «Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры». Поэтому говорят, что фигура обладает центральной симметрией. [1]

Понятия центра симметрии в «Началах» Евклида нет, но, однако в 38-ом предложении 6 книги содержится понятие пространственной оси симметрии. Впервые понятие центра симметрии встречается в шестнадцатом веке. В одной из теорем Клавиуса, гласящей: «Если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к рёбрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма ― точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличии от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много ― любая точка прямой является центром её симметрии. Примером фигуры, не имеющей цента симметрии, является произвольный треугольник.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси координат, а график нечётной функции ― относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция ― осевой. [1]

Таким образом, две центрально симметричные плоские фигуры всегда можно наложить друг на друга, не выводя их из общей плоскости. Для этого достаточно одну из них повернуть на угол 180 около центра симметрии. Как в случае зеркальной, так и в случае центральной симметрии плоская фигура непременно имеет ось симметрии второго порядка, но в первом случае эта ось лежит в плоскости фигуры, а во втором ― перпендикулярна к этой плоскости.

1.2.2. Осевая симметрия

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке С, соответствует такая принадлежащая этой же фигуре точка Д, что отрезок АВ перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведём примеры фигур, обладающих осевой симметрий. У неразвёрнутого угла одна ось симметрии ― прямая, на которой расположена биссектриса угла.

Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси, а квадрат ― четыре оси симметрии. У окружности их бесконечно много ― любая прямая, проходящая через её центр, является осью симметрии. Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник. [1]

1.2.3. Зеркальная симметрия

Зеркальная симметрия хорошо известна каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Многие очень любят фотографировать природу. Особенно когда весной разливается река, то на дальних лугах можно увидеть красивую картину, когда в воде отражаются: облака, трава.

Важно отметить, что два симметричных друг другу тела, не могут быть вложены или наложены друг на друга. Так перчатку правой руки нельзя надеть на левую руку. Симметрично зеркальные фигуры при всём своём сходстве существенно отличаются друг от друга. Чтобы убедиться в этом, достаточно поднести лист бумаги к зеркалу и попытаться прочесть несколько слов, напечатанных на ней, буквы и слова просто-напросто будут перевёрнуты справа налево. По этой причине симметричные предметы нельзя назвать равными, поэтому их называют зеркально равными.

Две зеркально симметричные плоские плоские фигуры всегда можно наложить друг га друга. Однако для этого необходимо вывести одну из них (или обе) из их общей плоскости. Вообще зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры). [3]

Поворотная симметриячто такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

Поворотная симметрия — это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n-го порядка.

что такое симметрия в природе. Смотреть фото что такое симметрия в природе. Смотреть картинку что такое симметрия в природе. Картинка про что такое симметрия в природе. Фото что такое симметрия в природе

При п=2 все точки фигуры поворачиваются на угол 1800 (3600 /2 = 1800 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии.

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Глава 2. Симметрия в природе

2.1. Значение симметрии в познании природы

Идея симметрии часто являлась основным пунктом в гипотезах и теориях учёных прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно провести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдалённой галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако, достоверно, что игральные кости имеют одну из пяти форм — тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма форма игральной кости в принципе исключена, поскольку требование равно вероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять.

Идея симметрии часто служила учёным путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звё1зд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них — симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием её внутренней симметрии — упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решётки из атомов, так называемой кристаллической решётки.[6]

Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы «сохраняющая величина», являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует.

В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах.

Видный советский ученый академик В. И. Вернадский писал в 1927 году: «Новым в науке являлось не выявление принципа симметрии, а выявление его всеобщности». Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны.[6]

Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твёрдого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идёт не только о физических законах, но и о других, например, биологических.

Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект — носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки — величины, свойства, отношения, явления — объекты, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными.

3) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих изменений[12].

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям — к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с эти выделяются разные типы симметрии.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а — элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решёток, которые могут быть и плоскими, и пространственными. [13]

ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трёхмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии. [13]

СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрией с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрёшки. Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной обладают некоторые буквы: Ж, Н, Ф, О, Х.

Существует много других видов симметрий, имеющих абстрактный характер.

Например, ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; НАСЛЕДСТВЕННОСТЬ — это тоже определённая симметрия.

КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.

В неживой природе симметрия, прежде всего, возникает в таком явлении природы, как кристаллы, из которых состоят практически все твёрдые тела.

Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов — это известная всем снежинка.[7]

Внимательное наблюдение показывает, что основу красоты многих форм, созданных природой, составляет симметрия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *