что такое сети волс
Как строятся оптоволоконные сети
Всем привет! Меня зовут Дмитрий, я занимаюсь проектированием и строительством волоконно-оптических линий связи (ВОЛС) в DataLine. Сегодня расскажу, как мы создаем оптические трассы для наших клиентов и как устраняем аварии.
Монтажник укладывает волокна двух кабелей в оптической муфте.
Когда я пришел в компанию в 2016-м, уже была построена опорная сеть, или «магистраль», из 144 волокон. Она объединила наши узлы связи (дата-центр OST, дата-центр NORD) с ММТС-9 и ММТС-10 в единое кольцо. Длина опорной сети на тот момент была около 210 км. Также было построено около 21 км так называемых «последних миль» – ответвлений от опорной сети, соединяющих удаленную площадку клиента с ближайшим нашим узлом связи. Тогда в компании не было выделенных специалистов по ВОЛС, все делали подрядчики под руководством сетевого отдела.
Сейчас «магистралей» не строим, так как имеющейся емкости пока хватает. Все мои проекты – это достройка трасс от нашей опорной сети до офисов клиентов. При мне построили 70 км таких трасс. Протяженность всей сети на сегодняшний день составляет 301 км.
Схема прохождения оптоволоконной сети DataLine на декабрь 2018.
Это кабель марки ОККМ (ОК – оптический кабель, К – канализация, М – многомодульная конструкция) производства Фуджикура. Его мы используем в наших проектах.
Мы прокладываем оптические кабели в телефонной канализации, коллекторах, тоннелях и мостах. Самостоятельно строим канализацию только в тех случаях, когда рядом с маршрутом будущей трассы нет подходящей инфраструктуры. Иначе это все равно что построить себе отдельную дорогу от дома до работы – долго и дорого.
В представлении многих коллекторы и телефонная канализация примерно одно и то же, но это не так. В коллекторах размещают не только кабели связи. Там проходят разные инженерные коммуникации: теплосеть, газопровод, силовые кабели. Некоторые коллекторы настолько большие, что в них спокойно может проехать грузовой автомобиль.
Телефонная же канализация – это просто зарытый в землю трубопровод с кабелями. Заглянуть в нее можно только через смотровые устройства – телефонные колодцы. Они бывают разные, но чаще в них не развернуться. Иногда это просто коробка глубиной 20 см. В качестве исключения видел несколько колодцев по Москве размером с трехкомнатную квартиру.
Смотровой колодец телефонной канализации.
Вот такой вид открывается в смотровом колодце. Кабели просто уходят в каналы в стене.
Обычно для наших клиентов мы строим две оптоволоконные трассы, идущие независимыми маршрутами до нашего дата-центра. Это нужно для резерва, на случай повреждения или полного обрыва основного кабеля. Тут многие сразу вспомнят поучительные истории про экскаватор и будут правы. Из свежего: во время работ по программе «Моя улица» одному нашему клиенту «повезло» с экскаватором 4 раза за 3 месяца. Хорошо, что у него была резервная трасса, которая не пересекалась с основным маршрутом, и его сервис не простаивал, пока мы восстанавливали пострадавшую трассу.
Маленькое движение ковшом – большие проблемы для провайдера. Обрыв кабелей в телефонной канализации.
Большинство клиентов понимают важность резерва и сразу просят нас проработать два разнесенных маршрута до их площадки. Или заказывают у нас трассу, которая будет резервной в дополнение к основной от другого провайдера.
Про процесс
Например, клиент хочет провести волокно из нашего дата-центра NORD к себе в офис.
На основе эскизов линейно-кабельных сооружений я определяю ориентировочный маршрут будущей трассы. Вычисляю расстояние достройки от офиса клиента до нашей сети и выбираю место для размещения соединительных муфт. Попутно собираю информацию об объекте, в котором расположен офис клиента: есть ли на пути будущей трассы линейно-кабельные сооружения, кто является их владельцем. Эта информация понадобится при согласовании рабочего проекта.
Маршрут оптических трасс от дата-центра NORD до офиса клиента.
В этом проекте мы соединяли два офиса клиента.
С этими исходными данными я рассчитываю бюджет на организацию новой линии связи. В него войдут наши разовые расходы на получение технических условий от собственников линейно-кабельных сооружений (Москоллектор, МГТС) и согласование рабочего проекта с ними же, проектно-изыскательские работы на линейную часть, строительно-монтажные работы по прокладке кабеля, стоимость используемых материалов, а также наши ежемесячные платежи за аренду линейно-кабельных сооружений. По рынку проектирование и строительство «под ключ» 1 км оптоволоконной трассы емкостью до 32 волокон обойдется сейчас в среднем 200 тыс. руб.
Мы самостоятельно делаем рабочий проект прокладки кабеля по зданию и согласовываем его с владельцем. В этом документе мы описываем, как будет организован ввод в здание, прокладка кабеля по зданию до места назначения (серверной или офиса) и монтаж оптического кросса.
Пример схемы прокладки оптического кабеля внутри здания.
Как только все проекты согласованы, начинается долгожданное строительство. В существующую сеть ВОЛС врезают новый кабель, который будет проложен до здания клиента. Ниже несколько рабочих фотографий.
Иногда телефонные колодцы оснащены антивандальными устройствами (заглушками). Приходится тратить время на их открытие при помощи специального подъемника.
Монтажники протягивают новый кабель.
На самом подходе к зданию клиента возник непроходимый участок: был обнаружен излом в канале, и кабель не получалось протолкнуть из смотрового колодца. Потребовалось снимать дорожное покрытие и вскрывать грунт.
На столе – оптическая муфта. Идёт подготовка монтажа нового кабеля в магистраль.
Врезка нового кабеля в магистраль.
Для монтажников-спайщиков мы готовим исполнительные схемы. По ним специалисты распознают нужные волокна в магистральных кабелях и сваривают их с волокнами нового кабеля. Затем сваренные волокна укладывают в оптическую муфту.
На фото разделанный кабель. Если присмотреться, то видно волокно, которое заходит в сварочный аппарат.
Оптическая муфта с соединенными волокнами двух кабелей.
Так оптический кабель приходит в здание.
Когда кабель проложили до здания, на его конце разваривают оптический кросс, который монтируют в стойку или на стену.
Оптический кросс в Meet-Me-Room дата-центра OST.
Дальше мы параллельно с подрядчиком тестируем новую трассу: проводим измерения кабеля методом импульсной рефлектометрии. Показания снимаются с оптического кросса с помощью рефлектометра. Значения ниже говорят о том, что все работает. Они же фиксируются в SLA с клиентом:
≤ 0,2 дБ максимальная величина потерь на неразъемных соединениях (сварке) при двунаправленном усредненном измерении. ≤ 0,5 дБ затухание оптического сигнала на длинах волн 1310 и 1550 нм в точках разъёмного соединения (транзита) оптических волокон. ≤ 40 дБ коэффициент отражения (reflectance) на 1 событие. ≥ 29 дБ значение оптических возвратных потерь (Optical Return Loss – ORL) на измеряемом участке. |
Рефлектометр.
Если все показания в норме, то трасса принимается в обслуживание и передается в эксплуатацию. Клиенту остается только подключиться в нужный порт.
Вежливые люди, пожары в коллекторах: как проходят работы и устраняются аварии на трассах
Когда происходит авария, не всегда сразу понятно, где повреждение. Совместно с инженерами проводим контрольные измерения с помощью рефлектометра на оптическом кроссе в наших дата-центрах, чтобы определить предполагаемое место аварии. Пока аварийная бригада собирается, я успеваю сориентировать их, куда ехать, и сам выезжаю на место обрыва.
Параллельно составляем список клиентов, чьи сервисы были нарушены при аварии, а коллеги из смежных отделов уведомляют клиентов. Наш отдел переключает клиентов на резервные каналы – клиентские и наши собственные (на свободные волокна), – если у клиента нет резерва. При необходимости тянем новые кроссировки и начинаем переключение.
Последняя крупная авария произошла из-за пожара в Ново-Дорогомиловском коллекторе. Всех провайдеров допустили к работам только через 5 дней, потому что сначала восстанавливали все городские коммуникации и связь специального назначения. Всем, у кого не было резерва, пришлось ждать (еще раз к вопросу о резерве:)). Но такие случаи скорее исключение, и обычно работоспособность сервисов восстанавливаем оперативно, для масштабных аварий – это 8 часов максимум.
Так выглядят обгоревшие кабели. Последствия пожара в Ново-Дорогомиловском коллекторе.
Восстановительные работы в том же коллекторе. Монтажники изготавливают кабельную вставку для поврежденного кабеля. Запах гари после пожара все еще очень сильный, поэтому работают в респираторах.
Волоконно-оптические линии связи (ВОЛС) и компоненты
Компоненты ВОЛС

Компоненты ВОЛС или его оборудование это перечень различных устройств и оборудования для создания волоконно-оптической сети. Правильный их подбор и монтаж, являются залогом производительности и безопасности сети.
Компоненты сети делятся на два вида:
К активному оборудованию относится оборудование потребляющее электроэнергию, это маршрутизаторы, коммутаторы, модуляторы и т.д.
Одной из самых важных частей любой ВОЛС является оптоволоконный кабель, а точнее оптическое волокно, из которого он состоит. Такие волокна бывают двух видов, одномодовые и многомодовые, отличающиеся тем, как в них распространяется излучение. Структура у них одинаковая, они состоят из сердцевины и оболочки, у которых отличаются показатели преломления.
Отличие состоит в том, что в волокне с одной модой диаметр сердцевины 8-10 мкм, а в многомодовом 50-60 мкм. Соответственно в первом случае проходит только один луч, а во втором несколько.
Также оптоволокно оцениваются по затуханию и дисперсии. Затухание определяет потери на поглощение и рассеивание излучения в оптическом волокне. А дисперсия, это временной разброс спектральной и модовой составляющих оптического сигнала.
Тут преимущество имеют одномодовые оптические волокна, но надо учитывать, что такие источники излучения в несколько раз дороже. Кроме того, в такое волокно труднее ввести излучение и срастить с небольшими потерями.
Преимущества и недостатки ВОЛС

Если стоит выбор, где купить оптоволоконные компоненты, выбирайте надёжного поставщика. Компания « АнЛан » занимает лидирующие позиции на рынке РФ с 2007 года. Разумная цена и европейское качество — то, что отличает продукцию компании от других организаций.
ВОЛС: волоконно-оптические линии связи
ИЦ ТЕЛЕКОМ-СЕРВИС имеет партнерские отношения с ведущими разработчиками решений по созданию структурированных кабельных систем. Компания обладает полным пакетом действующих лицензий, позволяющим осуществлять весь комплекс работ по сетевой интеграции на разноотраслевых объектах.
Специалисты компании осуществляют полный цикл проекта по построению или модернизации сетевой инфраструктуры заказчика, построению ВОЛС и СКС – начиная от аудита до запуска системы и ее последующего технического обслуживания.
В то время как возможности медных кабельных линий приближаются к своим предельным значениям и требуются все больших затрат на дальнейшее развитие этого направления, перспективы использования ВОЛС становятся все экономичнее и эффективнее. Сегодня ВОЛС, безусловно, являются одним из самых перспективных направлений в области связи. Пропускные способности оптических каналов на порядки выше, чем у информационных линий на основе медного кабеля. Кроме того волоконно-оптические линии связи невосприимчивы к электромагнитным полям, что снимает некоторые типичные проблемы медных систем связи.
Основные понятия и области применения ВОЛС
Волоконно-оптическая линия связи (ВОЛС) – это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием «оптическое волокно».
Волс – это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии Волс помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.
ВОЛС в основном используются при построении объектов, в которых монтаж СКС должен объединить многоэтажное здание или здание большой протяженности, а также при объединении территориально-разрозненных зданий.
Структурная схема ВОЛС, применяемой для создания подсистемы внешних магистралей, изображена на рисунке.
Области применения и классификация волоконно-оптических кабелей (ВОК)
В зависимости от основной области применения волоконно-оптические кабели подразделяются на три основных вида:
Кабели внешней прокладки используются при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Основной областью использования кабелей внутренней прокладки является организация внутренней магистрали здания, тогда как кабели для шнуров предназначены в основном для изготовления соединительных и коммутационных шнуров, а также для выполнения горизонтальной разводки при реализации проектов класса «fiber to the desk» (волокно до рабочего места) и «fiber to the room» (волокно до комнаты). Общую классификацию оптических кабелей СКС можно представить в виде как показано на рисунке.
Преимущества ВОЛС
Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.
Широкая полоса пропускания – обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания – это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.
Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.
Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.
Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.
Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно «одеть» в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.
Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить «взламываемый» канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.
Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических «земельных» петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.
Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.
Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.
Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.
Волоконно-оптические линии связи
Основа любой волоконно-оптической линии связи (ВОЛС) — оптическое волокно. Само по себе оптическое волокно хрупкое, поэтому для его сохранности используют различные защитные элементы, которые объединены в общую конструкцию — оптический кабель. Помимо оптического кабеля, к пассивным элементам ВОЛС относят: оптические муфты, оптические кроссы (в том числе коннекторы и разъемы) и оптические сплиттеры (делители).
Пассивная часть ВОЛС представляет собой элементарный кабельный участок (ЭКУ). Строительные длины оптического кабеля соединяются между собой оптическими муфтами (прямыми или разветвительными), а на дальних концах этой трассы располагаются оптические кроссы (для дальнейшей коммутации) — это и есть ЭКУ. Весь процесс начинается с проектирования, далее следует строительство ВОЛС. В процессе постройки ВОЛС важным шагом является качественное производство работ по сварке оптики и измерениям ОВ.
К активным компонентам ВОЛС относят:
Именно связка пассивных и активных компонентов обеспечивает ВОЛС непревзойдённую дальность и скорость передачи информации: голосовой связи, текстовых сообщений, видеопотока, данных и т. д.
Принцип работы ВОЛС основан на передаче света по оптическому волокну. Более подробно можно изучить в материале про одномодовое и многомодовое волокно.
Преимущества ВОЛС
Недостатки ВОЛС
Типы ВОЛС
Виды волоконно-оптических сетей по способу их прокладки:
Заключение
На сегодняшний день волоконно-оптические линии связи широко используются не только для передачи информации на дальние расстояния между городами, континентами, но и в рамках предприятий, заводов, зданий и сооружений. Оптическое волокно заменяет традиционную медь в судостроение, авиастроение, автомобильной промышленности и других отраслях.
Повсеместное распространение ВОЛС требует наличие квалифицированных кадров для строительства и эксплуатации. Учебный центр ВОЛС.Эксперт проводит как очные, так и онлайн-курсы. Повышаем квалификацию монтажников, сварщиков, проектировщиков и других специалистов ВОЛС.
Равиль Волков,
технический эксперт, преподаватель ВОЛС.Эксперт
ВОЛС (волоконно-оптические линии связи)
Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания ВОЛС – волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).
Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством – малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.
Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже – в силу высокой стоимости строительства оптических линий связи.
Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.
Преимущества ВОЛС
При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:
Область применения ВОЛС
Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.
К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.
Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.
Технологии соединения ВОЛС
Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.
Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).
Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон. Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.
Сварка оптических волокон
Наиболее распространённой на сегодняшний день является технология сварки волокон.
Аппараты для сварки оптического волокна
Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.
Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.
Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование – автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.
После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.
Склеивание оптических волокон
Технология склеивания волокон применяется реже, в основном при производстве патч кордов и пигтейлов. Она включает несколько технологических операций. В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.
После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа. Полировка может осуществляться вручную или с помощью полированной машины.
Механическое соединение оптических волокон
Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС – механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.
Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.
Механическое сращивание подразумевает использование специальных соединителей – так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.
Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.
ВОЛС: типы оптических волокон
Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.
По типу путей, которые проходит свет в сердцевине волокна, различают одно- и многомодовые волокна (в первом случае распространяется один луч света, во втором – несколько: десятки, сотни и даже тысячи).
Все современные ВОК (и одно-, и многомодовые), с помощью которых создаются линии передачи данных, имеют одинаковый внешний диаметр – 125 мкм. Толщина первичного защитного буферного покрытия составляет 250 мкм. Толщина вторичного буферного покрытия составляет 900 мкм (используется для защиты соединительных шнуров и внутренних кабелей). Оболочка многоволоконных кабелей для удобства работы окрашивается в различные цвета (для каждого волокна).
Диагностика волоконно-оптических линий связи
Основным инструментом для диагностики волоконно-оптических линий связи является оптический рефлектометр. Пример работы с таким прибором смотрите в следующем видео:
Примеры оборудования
Материал подготовлен
техническими специалистами компании “СвязКомплект”.