что такое sdram в оперативной памяти
Как выбрать оперативную память?
Большинство устройств оперативной памяти имеют различные интерфейсы и собственные рабочие частоты. Почти каждое вычислительное устройство нуждается в ОЗУ. Устройство (например, смартфоны, планшеты, настольные компьютеры, ноутбуки, графические калькуляторы, HD телевизоры, портативные игровые системы и т.д.). Объем ОЗУ разный для всех типов и моделей устройств. В основном вся оперативная память в служит одной и той же цели.
Известные типы ОЗУ:
Что такое оперативная память?
Оперативная память расшифровывается как «оперативное запоминающее устройство» или аббривиатурой «ОЗУ». Предоставляет компьютерам виртуальное пространство, необходимое для управления информацией и решения проблем в настоящий момент. Можно подумать что это бумага для повторного использования, на которой пишут карандашом заметки, цифры или рисунки.
Если не хватает места на бумаге, вы стираете то, что вам больше не нужно. Оперативная память работает аналогично, когда ей требуется больше места для работы с временной информацией (то есть с запущенным программным обеспечением или программами). Большие листы бумаги позволяют вам набрасывать больше и больше идей за раз, прежде чем стирать. Больше оперативной памяти внутри компьютеров разделяют информацию прежде чем стереть аналогичным сопособом.
Оперативная память имеет различные формы (то есть физическое соединение с вычислительными системами или взаимодействие с ними), емкости (измеряемые в МБ или ГБ), скорости (измеряемые в МГц или ГГц) и архитектуры. Эти и другие аспекты важно учитывать при обновлении систем с ОЗУ, поскольку компьютерные системы (например, аппаратные средства, материнские платы) должны придерживаться строгих критериев.
Статическая RAM (SRAM)
Преимуществами использования SRAM (по сравнению с DRAM) считается низкое энергопотребление и высокая скорость доступа. Недостатками использования SRAM (по сравнению с DRAM) это меньшая емкость памяти и высокие затраты на производство.
Из-за этих характеристик SRAM используется в таких компонентах:
Динамическое ОЗУ (DRAM)
Преимущества использования DRAM (по сравнению с SRAM) заключаются в низких затратах на производство и большей емкости памяти. Недостатками использования DRAM (по сравнению с SRAM) являются более медленные скорости доступа и высокое энергопотребление.
Из-за этих характеристик DRAM используется в таких устройствах:
В 1990-х годах разработана расширенная динамическая ОЗУ с данными (EDO DRAM), за которой последовала ее эволюция, ОЗУ Burst EDO (BEDO DRAM). Эти типы памяти были привлекательны благодаря повышенной производительности/эффективности при меньших затратах. Но технология устарела в результате разработки SDRAM.
Синхронное динамическое ОЗУ (SDRAM)
Конвейерная обработка не влияет на время, необходимое для обработки инструкций, она позволяет одновременно выполнять больше инструкций. Обработка одной инструкции чтения и одной записи за такт приводит к более высокой общей скорости передачи/производительности ЦП. SDRAM поддерживает конвейеризацию благодаря делению памяти на отдельные участки, что и обусловило ее широкое предпочтение по сравнению с базовым DRAM.
Синхронное динамическое ОЗУ с одной скоростью передачи данных (SDR SDRAM)
Сравнение между SDR SDRAM и DDR SDRAM:
Синхронное динамическое ОЗУ с двойной скоростью передачи данных (DDR SDRAM)
DDR SDRAM работает как SDR SDRAM, только в два раза быстрее. DDR SDRAM способна обрабатывать две инструкции чтения и две записи за такт (следовательно, «двойной»). Функция DDR SDRAM аналогична, и имеет физические различия (184 контакта и один паз на разъеме) по сравнению с SDR SDRAM (168 контактов и две выемки на разъеме). DDR SDRAM также работает при низком стандартном напряжении (2,5 В от 3,3 В), предотвращая обратную совместимость с SDR SDRAM.
Синхронное динамическое ОЗУ с двойной скоростью передачи данных (GDDR SDRAM)
Флэш-память
Флэш-память чаще используется в таких устройствах:
Новые технологии памяти: DDR SDRAM
Уже давно, еще со времен 486 процессоров, отставание скорости системной шины PC от скорости убыстряющихся CPU все более увеличивалось. Именно тогда Intel впервые отказался от частоты процессоров, синхронной с частотой системной шины, и применил технологию умножения частоты FSB. Этот факт отразился даже в названии — 486DX2. Хотя частота системной шины осталась той же, несмотря на название, производительность процессора выросла почти вдвое.
В дальнейшем разброд в тактовой частоте различных системных компонентов только увеличивался: в то время, как частота системной шины выросла сначала до 66 МГц, а затем и до 100, шина PCI осталась все на тех же давних 33 МГц, для AGP стандартной является 66 МГц и т.д. Шина памяти же до самого последнего времени оставалась синхронной с системной шиной (название обязывает — Synchronous DRAM, SDRAM). — Так появились спецификации PC66, затем PC100, потом, с несколько большими организационными усилиями, PC133 SDRAM.
Однако за то время, за которое частота шины памяти увеличилась на треть и, соответственно, на столько же возросла ее пропускная способность (с 800 Мбайт/с до 1,064 Мбайт/с), частота процессоров увеличилась в два с половиной раза — с 400 МГц до 1 ГГц. Наблюдается некоторый дисбаланс, не так ли? Пропускная способность PC133 SDRAM составляет лишь 1,064 Мбайт/с, тогда как сегодняшним PC требуется по крайней мере: 1 Гбайт/с для процессора с частотой системной шины 133 МГц, столько же — для графической шины AGP 4X, 132 Мбайт/с для 33 МГц шины PCI. То есть, около 2.1 Гбайт/с — как и говорилось только что, дисбаланс более чем в два раза.
Однако дальнейшее увеличение частоты SDRAM при современном техническом уровне оснащения ее производителей невозможно: уже 166 МГц SDRAM получается слишком дорогой, особенно с учетом сегодняшних объемов оперативной памяти в PC. Этот момент сыграл не слишком приятную шутку с Direct Rambus DRAM. В то же время отказываться от синхронизации шины памяти с системной шиной по ряду причин не хотелось бы.
Технологии, пытающиеся залатать SDRAM путем добавления кэша SRAM, вроде ESDRAM, или же путем оптимизации ее работы, вроде VCM SDRAM, не помогли. На выручку пришла популярная в последнее время в компонентах PC технология передачи данных одновременно по двум фронтам сигнала, когда за один такт передаются сразу два пакета данных. В случае с используемой сегодня 64-бит шиной — это два 8-байтных пакета, 16 байт за такт. Или, в случае с той же 133 МГц шиной, уже не 1,064, а 2,128 Мбайт/с. Те самые 2.1 Гбайт/с, что и требуются для сегодняшних PC.
Причем по цене, мало отличающейся от обычной 133 МГц памяти: технология та же (включая методику упаковки чипов — TSOP, не microBGA, как у RDRAM), оборудование — то же, энергопотребление, практически не отличающееся от SDRAM, площадь чипа отличается лишь на несколько процентов. Именно это сочетание доступности с требующейся на сегодняшний день производительностью и заинтересовало в первую очередь прагматичную индустрию DRAM — точно так же в свое время они выбирали PC66, PC100, PC133…
Однако в отличие от этих спецификаций, в название которых входила тактовая частота шины памяти, так же, как и в отличие от спецификации Direct Rambus DRAM, где за основу берется результирующая частота (тактовая частота, помноженная на те же два пакета на такт, что и у DDR SDRAM) — PC600, PC700, PC800, компании, разрабатывавшие DDR SDRAM, а точнее, маркетинговые отделы этих компаний, избрали ту систему (помните мультфильм про относительность единиц измерения — 48 попугаев?), которая позволила получить максимальную цифру в названии — они выбрали пиковую пропускную способность и получили PC1600 для 100 МГц и PC2100 для 133 МГц чипов DDR SDRAM.
Впрочем, эта система названий придумана совсем недавно, хотя чипы DDR SDRAM производятся уже достаточно давно: образцы 64 Мбит чипов появились почти два года назад — в середине 1998 г. Именно к тому времени, в декабре 1998 г., когда Intel уже продолжительное время поддерживал RDRAM, одобрена открытая спецификация DDR SDRAM, не требующая от производителей, использующих ее, никаких лицензионных отчислений. Как и в случае с PC133 SDRAM, основными сторонниками новой спецификации выступили IBM и VIA, к тому времени четко ориентировавшиеся на альтернативные RDRAM архитектуры. Несколькими месяцами спустя, в мае, одобрена спецификация 184-контактных модулей DIMM, а также закончена работа над спецификацией DDR SGRAM.
Однако первыми чипы DDR использовали отнюдь не производители модулей памяти. Производителям видеокарт проще — на карте они в праве применять что угодно, лишь бы на выходе был стандартный сигнал. Да и ширина шины памяти все же всегда была узким местом скорее для графических чипов, чем для центральных процессоров. Так что, производители видеокарт гораздо раньше воспользовались появившейся в графических чипах поддержкой DDR SDRAM/SGRAM.- Уже через несколько месяцев после выхода первого такого чипа, GeForce 256, появились карты с DDR SDRAM и SGRAM чипами на борту.
Стандартной скоростью чипов для первой волны DDR плат стали 150 и 166 МГц (результирующая частота — 300 и 333 МГц соответственно, пропускная способность шины, с учетом 128-бит разрядности — 4.8 и 5.2 Гбайт/с). Можно с большой уверенностью предположить, что осеннее поколение графических чипов будет ориентироваться на 183 МГц чипы (366 МГц, 6 Гбайт/с), а в 2001 г. мы увидим массовый выход видеокарт с 200 МГц (400 МГц, 6.4 Гбайт/с).
Результат замены SDRAM/SGRAM на их вдвое более быстрый аналог не замедлил сказаться. Производительность карт на системах с мощным центральным процессором при использовании приложений, оказывающих заметную нагрузку именно на шину памяти (например 32-бит цвет), возрастает до полутора раз.
Оценивая известную на сегодня информацию о планах разработчиков графических чипов на ближайший год, можно констатировать бесспорную победу DDR над RDRAM. После того как Intel со своим i740 успешно продвинул AGP и отказался от дальнейших попыток прямого влияния в этой области, ситуацией, к счастью, управляет рынок. Дорогой RDRAM оказался никому не нужен, тем более что 128-бит шина памяти выводит DDR SDRAM по производительности даже вперед двухканального RDRAM.
А вот с модулями памяти DIMM DDR SDRAM положение несколько иное: их востребовать некому — весь вопрос встал за чипсетами, обладающими поддержкой этого типа памяти и, соответственно, за материнскими платами на базе этих чипсетов. Первый пользовательский чипсет, обладающий поддержкой этого типа памяти, ожидался от VIA сначала осенью 99 г., затем зимой 2000, весной… Но вроде бы, наконец, ожидание подходит к концу. Уже во втором квартале должен выйти первый чипсет VIA, обладающий поддержкой DDR SDRAM — Apollo Pro266.
Ко все той же 133 МГц системной шине и AGP 4X добавится поддержка DDR SDRAM, а также V-Link — новой, ускоренной шины обмена информацией между северным и южным мостами чипсета, обеспечивающей пропускную способность 266 Мбайт/с (в два раза быстрее стандартной PCI). Кроме того, ожидается, что поддержка двухпроцессорных конфигураций, встроенная еще в Apollo Pro133A, станет официальной.
Чуть позже, в третьем квартале, ожидается выход варианта Apollo Pro266 с интегрированным видеоядром PM266. Причем, в отличие от PM133 с хиленьким по меркам третьего квартала Savage4, в этот чипсет будет встроен вариант Savage2000 (GX4C). Его производительности для дешевых систем, являющихся нишевым рынком для интегрированных чипсетов, должно быть более чем достаточно.
И в последнем квартале 2000 г. должен выйти первый серверный чипсет VIA, PX266V. Пока о нем известно мало, за исключением того, что там ожидается поддержка до 4 процессоров и двойная шина V-Link: к южному мосту и к подсистеме 64-бит 66 МГц PCI.
На вторую половину этого года запланирован выход и DDR чипсета для Athlon — KX266, по своим возможностям аналогичного своему собрату для Pentium III — Apollo Pro266. Но на всякий случай, AMD предпочла вновь подстраховаться, выпустив в третьем квартале свой чипсет с поддержкой DDR SDRAM — AMD 760. Ожидается поддержка новой частоты системной шины EV6 — 133 МГц (266 МГц), естественно, 133 МГц PC2100 DDR SDRAM, ATA100. Вскоре после AMD 760 должен последовать мультипроцессорный AMD 770 с аналогичными параметрами.
Если уж зашла речь о мультипроцессорных чипсетах, рассчитанных на серверные платформы, то нельзя не упомянуть еще двух игроков на этом рынке: Samsung со своим Caspian, разрабатываемым совместно с AMD, и ServerWorks со своей линейкой ServerSet, которая должна обзавестись DDR SDRAM чипсетом для процессоров Intel уже в первой половине этого года.
Учитывая такие факторы как стоимость RDRAM, разницу в производительности RDRAM и DDR SDRAM и падение производительности подсистемы памяти RDRAM при увеличении объема памяти, подавляющее большинство производителей серверов намеревается предпочесть DDR SDRAM перед RDRAM. С этим желанием вынужден считаться даже Intel, который в своем следующем серверных чипсете под x86 (i870) планирует поддерживать именно DDR SDRAM. Да и помимо Intel на рынке серверных чипсетов будет достаточно желающих поддержать DDR — кроме независимых разработчиков, на этом рынке выступят и сами производители серверов, разрабатывающие чипсеты под свои системы — IBM, NEC…
Кварталом позже выхода соответствующих чипсетов, ожидаются материнские платы на них. Так что первые платы, позволяющие использовать модули DDR SDRAM, должны выйти уже в третьем квартале 2000 г. И именно эти временные рамки указаны в планах различных производителей материнских плат. Первым и единственным неудобством для их пользователей должен стать новый форм-фактор модулей DIMM.
К сожалению, ничто на свете не дается даром и увеличение пропускной способности памяти вдвое сопровождается изменением форм-фактора модулей. При сохранении тех же размеров модуля число контактов увеличилось со 168 до 184. Изменившееся положение ключа не позволит вставить модули DIMM DDR SDRAM в сегодняшние разъемы DIMM.
Но перейдем к наиболее интересному моменту, связанному с большинством компонентов PC, — конкретным значениям производительности. К сожалению, результаты чипсетов VIA, с которыми предстоит столкнуться обычным пользователям, неизвестны. Но, по крайней мере, уже известны результаты чипсета Samurai от Micron. VIA, кстати, лицензировала у Micron наработки по части DDR, а сам Micron вообще не горит желанием выходить на рынок чипсетов, рассматривая Samurai в первую очередь как страховочный вариант для стимуляции продажи чипов DDR SDRAM в сочетании с регистрированными 133 МГц модулями DDR SDRAM (серверный вариант — более надежные, но более медленные, пользовательский вариант — более быстрые небуферизованные модули DIMM):
StreamD — признанный индустрией тест, оценивающий эффективную пропускную способность шины памяти. Результаты вряд ли нуждаются в комментариях и как бы анонсируют все последующие результаты, полученные на приложениях, используемых в реальной жизни. Эти приложения, естественно, не столь зависят от пропускной способности шины памяти. Поэтому различия между платформами RDRAM и DDR очень сильно сглаживаются, но суть дела это не меняет: DDR в реальных приложениях в среднем незначительно превосходит RDRAM.
Теперь о перспективах. Стандарт модулей DIMM DDR SDRAM предполагает использование до 200 МГц чипов, с результирующей частотой 400 МГц и пропускной способностью 3.2 Гбайт/с — как у двухканального Direct Rambus DRAM. С того момента, когда DDR SDRAM исчерпает свои возможности, в 2003 г. должен стартовать DDR-II.
Скорость DDR-II чипов, как предполагается, начнется со 100 МГц, но за счет того, что будет передаваться 4 пакета данных за такт, их пропускная способность также должна составить 3.2 Гбайт/с. Учитывая такую технологию работы (передачу 32 байтов за такт) рост производительности DDR-II чипов при росте тактовой частоты будет максимальным — в 4 раза: 150 МГц дадут уже 4.8 Гбайт/с, а 200 МГц — 6.4 Гбайт/с.
Модули на этих чипах, как и модули на чипах DDR, также будут иметь свой собственный форм-фактор (230 контактов), и требовать новых чипсетов. То же самое можно сказать и о чипах Advanced DRAM Technology, которые должны появиться примерно в то же время.
До тех пор, еще три года, нам предстоит выбирать лишь между DDR SDRAM и Direct Rambus DRAM. Если Intel не будет силой влиять на рынок (а он будет!), то результат, учитывая соотношение цена/производительность, выглядит вполне понятным — выигрывает DDR SDRAM. В противном случае ситуация становится непредсказуемой: трудно просчитать, что пересилит — финансовая мощь Intel, или здравый смысл индустрии, и в какой пропорции проявят себя эти два компонента в конечном результате.
В любом случае, если отстраниться от экстремистских точек зрения, то можно констатировать, что как бы ни сложилась ситуация, судьба DDR SDRAM сегодня видится в более радужных оттенках, нежели, скажем, год назад. За этот год успел выйти Athlon, AMD набрала вес, а VIA — сделала ставку на DDR SDRAM. Поэтому, что бы ни произошло на рынке решений от Intel, те, кто будет приобретать в конце этого года процессоры AMD, просто обречены на DDR SDRAM. А это, если ситуация с ценой на RDRAM не изменится кардинально до конца года, уже само по себе выглядит неплохим аргументом в пользу выбора решения от AMD/VIA для тех, кто предпочитает делать покупки, руководствуясь разумом, а не рекламой.
Платформы от ServerWorks, которая сегодня выступает для Intel в роли страховочного варианта, закрывая те области на серверном рынке x86, которые не в состоянии закрыть Intel, смогут выступить столь же достойным ответом на i840 с двумя каналами Rambus на рынке решений для рабочих станций и серверов, как чипсеты VIA — на рынке обычных пользовательских PC.
По предварительным тестам прототипа Samurai, производительность системы на его основе равна производительности системы на базе i840, а порой и обгоняет ее. Это, с учетом цены модулей RIMM, которая вряд ли уменьшится в несколько раз в течение года, и объем памяти в серверах и рабочих станциях дает разницу в стоимости между решениями на базе DDR SDRAM и RDRAM в тысячи долларов при равной производительности.
Итог: производители DRAM не могут позволить себе не выпускать DDR SDRAM. Рынок для этого типа памяти существует, он весьма велик. Затрат для перехода на DDR SDRAM почти не требуется. Себестоимость изготовления чипов не слишком отличается от себестоимости изготовления чипов SDRAM той же тактовой частоты. Стоимость RDRAM столь высока, что пользователи, даже при неудовлетворенном спросе на память, зачастую просто не могут позволить себе увеличить объем памяти в своих PC. Получился парадокс: если отбросить PC133 SDRAM, как технологию, принадлежащую к предыдущему поколению, то на рынке общедоступной памяти просто нет предложения. Ну не считать же таковым безбожно дорогой RDRAM? При данных обстоятельствах воздержаться от выпуска DDR SDRAM было бы непростительной глупостью.
Складывается, наконец, и вторая половина мозаики: чипсеты и материнские платы. Во второй половине 2000 г. на рынке будет вполне достаточно решений, полностью закрывающих поддержкой DDR SDRAM весь спектр рынка: чипсеты VIA и AMD — High-End PC на базе Pentium III и Athlon, чипсеты AMD и Samsung — серверы и рабочие станции на базе Athlon, чипсеты ServerWorks — серверы и рабочие станции на базе Pentium III.
Доступен, дешев, производительность RDRAM по цене SDRAM… Жить будет. И неплохо.
Synchronouse DRAM
Синхронная оперативная память (SDRAM) — это первая технология оперативной памяти со случайным доступом (DRAM) разработанная для синхронизации работы памяти с тактами работы центрального процессора с внешней шиной данных. SDRAM основана на основе стандартной DRAM и работает почти также, как стандартная DRAM, но она имеет несколько отличительных характеристик, которые и делают ее более прогрессивной:
Синхронная работа SDRAM в отличие от стандартной и асинхронной DRAMs, имеет таймер ввода данных, таким образом системный таймер, который пошагово контролирует деятельность микропроцессора, может также управлять работой SDRAM. Это означает, что контроллер памяти знает точный цикл таймера на котором запрошенные данные будут обработаны. В результате, это освобождает процессор от необходимости находится в состоянии ожидания между моментами доступа к памяти.
Общие свойства SDRAM
Банки ячеек — это ячейки памяти внтри чипа SDRAM, которые разделяются на два, независимых банка ячеек. Поскольку оба банка могут быть задействованны одновременно, непрерывный поток данных может обеспечиваться простым переключением между банками. Этот метод называется чередованием, и он позволяет снизить общее количество циклов обращения к памяти и увеличить, в результате, скорость передачи данных. пакетный режим ускорения — это техника быстрой передачи данных, при которой автоматически генерируется блок данных (серия последовательных адресов), в каждый момент, когда процессор запрашивает один адрес. Исходя из предположения о том, что адрес следующих данных, которые будут запрошенных процессором, будет следующим, по отношению к предыдущему запрошенному адресу, который обычно истиный (это такое же предсказание, которое используется в алгоритме работы кэш-памяти). Пакетный режим может применятся как при операциях чтения (из памяти), так и при операциях записи (в память).
Теперь о фразе, что SDRAM более быстрая память. Даже при том, что SDRAM основана на стандартной DRAM архитектуре, комбинация указанных выше трех характеристик позволяет получит более быстрый и более эффективный процесс передачи данных. SDRAM уже может передавать данные со скоростью вплоть до 100MHz, что почти в четыре раза быстрее работы стандартной DRAM. Это ставит SDRAM в один ряд с более дорогой SRAM (статическое ОЗУ) используемой в качестве внешней кэш-памяти.
Почему именно SDRAM?
Поскольку оперативная память компьютера хранит в себе информацию, которая требуется CPU для функционирования, время прохождения данных между CPU и памятью является критичным. Более быстрый процессор может увеличить производительность системы только, если он не попадает в состояние цикла «поторопись и подожди», в то время, как остальная часть системы борется за то, чтобы оставаться в этом состоянии. К несчастью, с тех пор, как Intel представила пятнадцать лет тому назад свой процессор x286, обычные микросхемы памяти больше не в состоянии идти в ногу с чрезвычайно возросшей производительностью процессоров.
Стандартная, асинхронная DRAM работае без управления ввода таймером, который не требовался для передачи данных вплоть до второго десятилетия развития микропроцессоров. Начиная с этого момента, в системах с более быстрыми процессорами, которые используют стандартную DRAM необходимо принудительно устанавливать состояния ожидания (временные задержки), чтобы избежать переполнения памяти.Состояние ожидания, это когда микропроцессор приостанавливает исполнение всего, что он делает, пока другие компоненты не перейдут в режим приема команд.По этой причине, новые технологии памяти внедряются не только с целью увеличения скорости обмена, но также и с целью сокращения цикла поиска и выборки данных. Перед лицом возникших требований, изготовителями микросхем памяти были представлены серии новшеств, включающие память страничного режима, статического столбца, чередующиюся память, и FPM DRAM (быстространичного режима). Когда скорости процессоров возросли до частот 100MHz и выше, разработчики систем предложили для использования небольшой высокоскоростной внешний кэш SRAM (кэш второго уровня), а также новую быстродействующую память тиа EDO (расширенный доступ к данным) и BEDO (пакетно-расширенный доступ). FPM DRAM И EDO DRAM наиболее часто применяемая памяти в современных PC, но их асинхронная электрическая схема не предназначена для скоростей более 66MHz (максимум для BEDO). К несчастью, это фактор ограничивает сегодняшние системы, на основе процессоров типа Pentium с тактовой частотой более 133MHz, частотой по шине памяти величиной в 66MHz.
Первоначально, SDRAM была предложена в качестве более дешевой по стоимщсти альтернативы для дорогой видеопамяти VRAM (Video RAM), используемой в графических подсистемах. Тем не менее, она быстро получила применение во многих приложения и стала кандидатом номер один на роль основной памяти для следующих поколений PC.
Как работает SDRAM?
SDRAM производится на основе стандартной DRAM и работает также, как стандартная DRAM — осуществляя доступ с строкам и колонкам ячеек данных. Только SDRAM объединяет свои специфичные свойства синхронного функционирования банков ячеек, и пакетной работы, для эффективного устранения состояний задержек-ожидания. Когда процессору необходимо получить данные из оперативной памяти, он может получить их в требуемый момент. Таким образом, фактическое время обработки данных непосредственно не изменилось, в отличии от увеличения эффективности выборки и передачи данных. Для того, чтобы понять как SDRAM ускоряет процесс выборки и поиска данных в памяти, представьте себе, что центральный процессор имеет посыльного, который возит тележку по зданию оперативной памяти, и каждый раз ему нужно бросать или подбирать информацию. В здании оперативной памяти клерк, отвечающий за пересылку/получение информации, обычно тратит около 60ns, чтобы обработать запрос. Посыльный знает только, сколько требуется времени, чтобы обработать запрос, после того, как он получен. Но он не знает будет ли готов клерк, когда он приедет к нему, так что обычно он отводит немного времени на случай ошибки. Он ждет, пока клерк не будет готов получить запрос. Затем он ожидает обычное время, требующееся для обработки запроса. А затем, он задерживается, чтобы проверить, что запрошенные данные загружены в его тележку, прежде, чем отвезти тележку с данными обратно центральному процессору. Предположим, с другой стороны, что каждые 10 наносекунд пресылающий клерк в здании оперативной памяти должны быть снаружи и готовым получить другой запрос или ответить на запрос, который был получен ранее. Это делает процесс более эффективным, поскольку посыльный может прибыть именно в нужное время. Обработка запроса начинается в момент его получени. Информация посылается в CPU, когда она готова.
Какие преимущества в производительности?
Время доступа (комманды по адресу до выбора данных) одинаково для всех типов памяти, как видно из таблицы выше, поскольку их внутренняя архитектура в основном одинакова. Более показательным параметром является время цикла, который показывает, насколько быстро можгут быть осуществлены два последовательных доступа в чипе. Первый цикл считывания одинаков для всех четырех типов памяти — 50ns, 60ns или 70ns. Но реальные различия можно увидеть, посмотрев как быстро осуществляется второй, третий, четвертый, и т.д. цикл считывания. Для этого мы посмотрим на время цикла. Для «-6» FPM DRAM (60ns), второй цикл может быть осуществлен за 35ns. Сравните это с «-12» SDRAM (время доступа 60ns), когда второй цикл считывания проходит за 12ns. Это в три раза быстрее, и при этом, без какой-либо значительной переделки системы!
Каково место SDRAM среди будущей памяти PC?
В настоящее время, FPM DRAM и EDO DRAM составляют большинство основного потока памяти PC, но ожидается, что SDRAM быстро станет основной альтернативой стандартной DRAM. Модернизация с FPM памяти до EDO (плюс L2-кэш) увеличивает производительность на 50%, а модернизируя с EDO до BEDO или SDRAM обеспечивает дополнительный прирост производительности еще на 50%. Все-таки, многие поставщики готовых систем видят BEDO лишь как промежуточный этап между EDO и SDRAM из-за присущих BEDO ограничений по скорости. SDRAM, которую они ожидают будет основной памятью при выборе.
Текущие потребности исходят от приложений с интенсивной графикой и требующих больших вычислений, таких, как малтимедиа, серверы, digital set-top boxex (системы для домашнего использования, совмещающие в себе телевизор, музыкальный центр, веб-броузер и т.д.), коммутаторы ATM, и другое сетевое и коммуникационное оборудование, требующие высокой пропускной способности и скоротей передачи данных. В недалеком будущем, тем не менее, промышленные эксперты прогнозируют, что SDRAM станет новым стандартом памяти в персональных компьютерах.
Следующий шаг в развитии SDRAM уже сделан, это DDR SDRAM или SDRAM II
И сделала этот шаг компания Samsung, известная как крупнейший производитель чипов памяти с маркировкой SEC. Официально о выпуске новой памяти будет объявлено в ближайшее время, но уже известны некоторые подробности. Имя новой памяти «Double Data Rate SDRAM» или просто «SDRAM II». Соль в том, что новая синхронная память может передавать данные по восходящему и падающиму уровню сигнала шины, что позволяет увеличить пропускную способность до 1.6 Гб/сек при частоте шины в 100MHz. Это позволит увеличить вдвое пропускную способность памяти по сравнению с существующей SDRAM. Заявлено, что новый чипсет VIA VP3 будет обеспечивать возможность использования новой памяти в системах.
Будте осторожны при выборе SDRAM для применения в системах на основе чипсета i440LX
Как показала практика, материнские платы, сделанные на основе последнего чипсета i440LX очень чувствительно относятся к типу применямой памяти SDRAM. Это связано с тем, что новая спецификация Intel SPD для SDRAM, определяет дополнительные требования к содержанию специальной информации о используемом модуле DIMM, которая должна находиться в маленьком по объемам и размерам элементе электронно-программируемой памяти EPROM, располагающейся на самом модуле памяти. Однако это не означает, что любой модуль SDRAM имеющий на себе EPROM, соответствует спецификации SPD, но в частности, это означает что модуль без EPROM этой спецификации точно не соответствует. Некоторые платы на базе набора i440LX требуют для работы только такие специальные модули, однако большинство существующих прекрасно функционируют и с обычными модулями SDRAM. Данный шаг Intel, по введения стандарта на модули синхронной памяти, связан, прежде всего, со стремлением обеспечить надежную работу и совместимость памяти с будущим чипсетом i440BX, который уже будет поддерживать шинную частоту в 100MHz.