что такое rot и div в уравнениях максвелла
9.3. Уравнения Максвелла
Четыре уравнения, соответствующие нашим (модифицированным) утверждениям, называются уравнениями Максвелла в интегральной форме.
Выпишем их все рядом еще раз:
Чтобы получить уравнения Максвелла в среде, надо произвести замену:
,
то есть указать связь (так называемые «материальные» уравнения) между напряженностями и индукциями: и
и дополнить систему уравнением закона Ома
.
Отметим, что приведенными выше простейшими соотношениями можно пользоваться не всегда. Ситуация заметно сложнее в присутствии таких веществ как сегнетоэлектрики, пьезоэлектрики, ферромагнетики, вещества анизотропные и тому подобное. Здесь наша цель показать, как формируется полная система уравнений, позволяющая (с учетом начальных и граничных условий, разумеется) рассчитать электромагнитное поле.
От уравнений в интегральной форме можно с помощью теорем векторного анализа перейти к уравнениям в дифференциальной форме, связывающим значения полей и
и их пространственных и временных производных со значениями плотностей заряда и тока. Этими уравнениями мы пользоваться не будем, но все же приведем их хотя бы как часть шутки, опубликованной в одном из журналов в дни юбилея Максвелла:
Непонятные значки div (читается «дивергенция») и rot (читается «ротор») — это особые операции дифференцирования, выполняемые над векторными полями. Дивергенция — по латыни «расхождение». Эта операция описывает конфигурацию силовых линий типа «ежа», расходящихся из точек, где имеются электрические заряды. Слово «ротор» в переводе не нуждается, оно явно ассоциируется с вращением. Эта операция описывает вихревые поля (кольцеобразные — замкнутые силовые линии) вокруг их источников — токов или других полей, меняющихся во времени.
Четыре интегральных уравнения и четыре дифференциальных эквивалентны. Максвелл показал, что все явления электромагнетизма можно полностью описать этими четырьмя уравнениями, являющимися обобщением экспериментальных фактов.
В приведенной шутке упоминался свет. Действительно, свет — это электромагнитное излучение определенного диапазона частот. Предсказание электромагнитных волн стало одним из величайших достижений теории Максвелла. Представим себе, что заряды и токи отсутствуют. Посмотрим на уравнения Максвелла в дифференциальной форме. Видно, что если поля не статические, но зависят от времени, то имеется вихревое электрическое и магнитные поля (соответствующие роторы отличны от нуля). Распространение полей без зарядов и токов — это и есть электромагнитные волны. И можно углядеть в уравнениях намек на скорость их распространения: туда входит комбинация e0m0, через которую может быть выражена скорость света в вакууме (см. (6.3))
Но об этом — позже, в следующей части нашего курса.
В заключение же этой части процитируем слова Г. Герца об уравнениях Максвелла:
«Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».
Пример использования уравнений Максвелла
Определить величину магнитного поля в зазоре конденсатора как функцию r расстояния от оси симметрии (рис. 9.13)
Рис. 9.13. Конденсатор с круглыми пластинами в процессе зарядки
Решение
Запишем уравнение (9.13) для контура, показанного на Рис. 9.3 штрихованной линией. Интегрируя, получим
Очевидно, что магнитное поле не равно нулю только благодаря наличию меняющегося со временем электрического поля. В свою очередь, изменение электрического поля обусловлено увеличением заряда на обкладках конденсатора. Эту связь получим из соотношений
Согласно полученной формуле,
что явно неверно. В чем ошибка?
ОТВЕТ: формула справедлива только при .
Дополнительная информация
Уравнения Максвелла
Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.
Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):
Уравнения Максвелла в дифференциальной форме
Уравнение 1: Закон Гаусса или Теорема Гаусса
Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.
Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.
Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.
Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.
Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).
Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)
Можно создать электрическое поле, изменив магнитное поле.
Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:
Уравнение 3: Закон Гаусса для магнетизма
Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.
Закон Гаусса для магнетизма утверждает (очень кратко):
Уравнение 4: Закон Ампера
Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.
Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.
Уравнения Максвелла в интегральной и дифференциальной форме
Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.
Уравнение 1: Закон Гаусса (Теорема Гаусса)
Это же уравнение в интегральной форме:
Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).
Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)
И это же уравнение в интегральной форме:
Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.
Уравнение 3: Закон Гаусса для магнетизма
И это же уравнение в интегральной форме:
Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.
Уравнение 4: Закон Ампера
И это же уравнение в интегральной форме:
Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.
Уравнения Максвелла
Вы будете перенаправлены на Автор24
Значение уравнений Максвелла
Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.
Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.
Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду. С помощью этих уравнений можно описать все электромагнитные явления.
Система уравнений Максвелла
Систему уравнений Максвелла составляют:
Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:
Готовые работы на аналогичную тему
В скалярном виде уравнение (2) запишем как:
Третье уравнение из системы Максвелла в скалярном виде:
Четвертое уравнение в скалярной форме примет следующий вид:
Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:
Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.
Физический смысл уравнений Максвелла
Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow
Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.
Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.
Уравнения поля линейны и учитывают принцип суперпозиции.
Границы применимости уравнений Максвелла
Система уравнений Максвелла ограничена следующими условиями:
Материальные тела должны быть неподвижны в поле.
В поле не должно находиться постоянных магнитов и ферромагнитных тел.
Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.
Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.
Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.
Решение:
В качестве основания для решения задачи используем из системы Максвелла уравнение:
Проведем операцию дивергирования в обеих частях выражения (1.1):
Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:
Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:
В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:
Что позволяет нам записать уравнение (1.4) в виде:
Что дает нам закон сохранения заряда, который записан в виде:
Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:
тогда если области замкнуты и изолированы получаем:
Что требовалось доказать.
Решение:
За основу решения примем уравнение:
Возьмём дивергенцию от обеих частей уравнения:
В соответствии с теоремой равенстве нулю дивергенции ротора имеем:
Соответственно, получаем, что
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 01 03 2021
Уравнения Максвелла
Уравнения Максвелла — основная идея и физическая суть
Закономерности, выведенные Максвеллом, в электродинамике имеют такое значение, как, к примеру, законы Ньютона для классической механики и постулаты Эйнштейна в теории относительности. Это фундаментальные уравнения, которые подтверждены экспериментальным путем.
Уравнения Максвелла являются системой уравнений в дифференциальном или интегральном виде, которые описывают любые электромагнитные поля, взаимосвязи токов и электрических зарядов в разных средах, включая вакуум.
Уравнения Максвелла подвергались критике со стороны современников ученого, так как не вписывались в установленные стандарты и представления того времени. Однако закономерности послужили началом активного развития науки и причиной переворота в восприятии картины мира. Постулаты предшествовали открытию радиоволн и продемонстрировали электромагнитную природу света. Формулы Максвелла справедливы для макромира и области квантовой механики.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Что описывают четыре уравнения
Смысл уравнений Максвелла:
Как записать в интегральной форме
Первое уравнение
Первое уравнение Максвелла представляет собой дифференциальную формулировку закона полного тока. Формула выглядит следующим образом:
S опирается на контур L.
Согласно теореме Стокса:
Уравнение справедливо для любых поверхностей, которые опираются на материальный контур L. Исходя из этого, подынтегральные функции равны.
Данная формула является дифференциальной формой закона Ома.
Первое уравнение Максвелла имеет вид:
Физический смысл данной расшифровки заключается в том, что в качестве источников вихревых магнитных полей выступают токи проводимости и токи смещения.
Второе уравнение
Второе уравнение Максвелла представляет собой дифференциальную формулировку закона электромагнитной индукции и ее свойств:
Второе уравнение Максвелла имеет следующий вид:
Физический смысл заключается в том, что переменное электрическое поле создается вихревым электрическим полем.
Третье уравнение
Третье уравнение Максвелла представляет собой дифференциальную формулировку теоремы Гаусса для электрических полей:
С помощью теоремы Островского-Гаусса можно выполнить переход от поверхностного интеграла \( \left(\vec
Можно записать правую часть формулы для объемного заряда. После объединения двух уравнений получим:
Третье уравнение Максвелла:
Физический смысл закономерности заключается в том, что электрическое поле образовано источниками в виде зарядов с определенной плотностью.
Четвертое уравнение
Четвертым уравнением Максвелла является дифференциальная формулировка теоремы Гаусса, справедливая в условиях магнитного поля:
Четвертое уравнение Максвелла имеет вид:
Физический смысл четвертого уравнения Максвелла выражается в нулевом значении дивергенции вектора \(\vec\) для какой-либо точки в пространстве. Таким образом, сделан вывод об отсутствии источников или магнитных зарядов в природе.
Закон сохранения заряда в дифференциальной форме
Данная формула имеет следующий вид:
С помощью теоремы Островского-Гаусс можно вывести уравнение, которое будет являться результатов предыдущих закономерностей:
Уравнения Максвелла и их физический смысл
Все электромагнитные процессы макроскопической электродинамики подчиняются уравнениям Максвелла, сформулированным в 1873 г. в виде дифференциальных уравнений. Эти уравнения связывают воедино электрические и магнитные характеристики поля:
rot H = Iпр + D/
t;(5.9,а)
div D = ; (5.9,в)
Физический смысл этих уравнений заключается в следующем.
Первое уравнение Максвелла(5.9,а) является обобщенным законом Ампера (закон полного тока) и говорит о том, что если в некоторой точке пространства существует переменное электрическое поле Е, создающее токи проводимости Iпр = σE и токи смещения Iсм = iω аE, то в окрестности этой точки возникает переменное вихревое магнитное поле rot Н, создаваемое этим токами. Электрическое поле и создаваемое им магнитное поле образуют правовинтовую систему.
Второе уравнение Максвелла (5.9,б) является обобщенным законом магнитной индукции Фарадея. Фарадей установил, что если замкнутый контур пронизывается переменным магнитным потоком Ф, то в контуре возникает электродвижущая сила (ЭДС) равная скорости изменения магнитного потока:
Знак «минус» в правой части означает, что возникающая в контуре ЭДС стремится воспрепятствовать изменению потока, пронизывающего контур.
Физический смысл второго уравнения Максвелла заключается в том, что всякое изменение магнитного поля во времени непрерывно вызывает независимо от параметров среды появление электрического поля.
Второе уравнение Максвелла связано с гармоническим колебанием соотношением:
т.е. оно утверждает, что если в некоторой точке пространства существует переменное магнитное поле, то в окрестностях этой точки возникает переменное вихревое электрическое поле. Магнитное поле и создаваемое им электрическое поле образуют левовинтовую систему.
Следует отметить, что электрическое поле может быть как вихревым, так и потенциальным. Источником потенциального электрического поля являются заряды (в случае электрических полей), которые находятся в тех точках пространства, где текут токи проводимости, представляющие собой движущиеся заряды.
Таким образом, гармоническое электрическое поле может быть вихревым, потенциальным или представлять суперпозицию (сумму) потенциального и вихревого полей, тогда как магнитное поле только вихревое.
Первое и второе уравнения Максвелла говорят о том, что между электрической и магнитной составляющими в переменном электромагнитном поле существует тесная взаимосвязь, которая выражается тем, что созданное сторонними источниками меняющееся во времени электромагнитное поле, может существовать вне этого источника за счет собственной энергии, перекачивающейся из энергии электрического поля в энергию магнитного поля и обратно.
Четвертое уравнениеМаксвелла (материальное уравнение 5.9,г) показывает, что в природе отсутствуют магнитные заряды, а линии вектора В непрерывны и всегда пронизывают любую замкнутую поверхность.
Таким образом, третье и четвертое уравнения Максвелла учитывают электрическую и магнитную характеристики среды. Действительно, в случае линейных изотропных сред можно записать:
D = аE; B =
аH. (5.12)
Следует отметить, что к основным уравнениям электродинамики относят и закон Ома в дифференциальной форме (5.6), который выражает зависимость плотности тока Iпр в какой-либо точке проводящей сферы от напряженности электрического поля в этой точке.
Таким образом, мы рассмотрели основные уравнения электродинамики, каждое из которых описывает те или иные свойства электромагнитного поля. Однако, для полного анализа электродинамических процессов необходимо использовать полную систему уравнений Максвелла, содержащую основные уравнения Максвелла (5.9,а-г) и материальные уравнения (5.6) и (5.10), которая записывается в виде:
rot H = Iпр +
D/
t =iωD + ωE + iω
аE;
div D = ; (5.13)
D = аE; B =
аH. (5.14)
Поскольку уравнения (5.13) и (5.14) являются линейными дифференциальными уравнениями, можно утверждать, что электромагнитные поля удовлетворяют принципу суперпозиции.