что такое rnp в авиации
Требуемые навигационные характеристики RNP
Определение
Точность навигации
Системы зональной навигации (RNAV) и RNP в основном схожи. Основное различие между ними заключается в необходимости мониторинга и оповещения о производительности на борту. Навигационная спецификация, которая включает в себя требования для мониторинга и оповещения о производительности на борту, называется спецификацией RNP. Те спецификации, которые не имеют таких требований называется спецификацией RNAV. Поэтому, если радиолокационный контроль не предусмотрен УВД, пилот должен самостоятельно проконтролировать безопасность навигации по местности и вместо RNAV должен использоваться RNP.
RNP также относится к уровню производительности, необходимому для конкретной процедуры или конкретного блока воздушного пространства. Значение RNP, равное 10, означает, что навигационная система должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 10 морских миль. Значение RNP, равное 0,3, означает, что навигационная система воздушного судна должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 3/10 морской мили. Различия в этих системах обычно являются следствием избыточности бортовой навигационной системы.
Некоторое океаническое воздушное пространство имеет значение RNP, равное 4 или 10. Уровень RNP, на который способен летательный аппарат, определяет необходимое разницу между воздушными судами в отношении расстояния. Повышенная точность бортовых систем RNP представляет собой значительное преимущество для традиционных нерадиолокационных сред, поскольку число воздушных судов, которые могут вписаться в объем воздушного пространства на любой заданной высоте, представляет собой квадрат числа требуемого эшелонирования; то есть, чем ниже значение RNP, тем ниже требуемые стандарты эшелонирования по расстоянию и, в целом, больше воздушных судов может вписаться в объем воздушного пространства без потери требуемого эшелонирования. Это не только главное преимущество для операций воздушного движения, но и предоставляет большую возможность экономии средств для авиакомпаний, летающих над океанами, благодаря менее строгой маршрутизации.
История
RNP были введены в PANS-OPS (документ ICAO Doc 8168), который стал применяться в 1998 году.
В 1996 году авиакомпания Alaska Airlines стала первой авиакомпанией в мире, применившей RNP с заходом на посадку вниз по каналу Гастино в Джуно, Аляска. Капитан авиакомпании Аляски Стив Фултон и капитан Хэл Андерсон разработали более 30 подходов RNP для операций авиакомпании на Аляске. В 2005 году Alaska Airlines стала первой авиакомпанией, которая использовала RNP в Национальном аэропорту Рейгана, чтобы избежать заторов. В апреле 2009 года Alaska Airlines стала первой авиакомпанией, получившей одобрение от FAA для проверки RNP.
С 2009 года регулирующие органы в Перу, Чили и Эквадоре внедрили более 25 процедур захода на посадку по RNP AR, разработанных совместно с LAN Airlines. Преимущества включали сокращение выбросов парниковых газов и улучшенный доступ к аэропортам, расположенным в гористой местности. Использование подходов RNP AR в Куско, недалеко от Мачу-Пикчу, сократило отмены из-за плохой погоды на 60 процентов на рейсах, выполняемых по локальной сети.
В октябре 2011 года Boeing, Lion Air и Индонезийский генеральный директорат гражданской авиации выполнили проверочные полеты для проверки индивидуальных процедур RNP AR в двух аэропортах с вызовами на местности, в Амбоне и Манадо, Индонезия. Они выступили в качестве пионеров использования точной навигационной технологии RNP в Юго-Восточной Азии.
Описание и предназначение
Текущие конкретные требования системы RNP включают в себя:
Способность следовать желаемому наземному маршруту с надежностью, повторяемостью и предсказуемостью, включая кривые пути;
В местах, где для вертикального наведения включены вертикальные профили, используются вертикальные углы или ограничения высоты для определения желаемой вертикальной траектории.
Возможности мониторинга производительности и оповещения могут предоставляться в различных формах в зависимости от установки системы, архитектуры и конфигураций, включая:
отображение и индикацию как требуемой, так и расчетной производительности навигационной системы;
мониторинг работы системы и оповещение экипажа о несоблюдении требований RNP;
дисплеи отклонения между полосами, масштабированные до RNP, в сочетании с отдельным мониторингом и оповещением о целостности навигации.
Система RNP использует свои навигационные датчики, архитектуры и режимы работы для удовлетворения требований спецификации навигации RNP. Требования RNP могут ограничивать режимы эксплуатации воздушного судна, например, для низкой RNP, где техническая ошибка полета (FTE) является существенным фактором, и ручной полет может быть запрещен. Установка двойной системы/датчика также может потребоваться в зависимости от предполагаемой операции или необходимости.
Мониторинг производительности и требования к оповещению
Требования к мониторингу производительности и предупреждению для RNP 4, Basic-RNP 1 и RNP APCH имеют общую терминологию и применение. Каждая из этих спецификаций включает требования к следующим характеристикам:
Точность: Требование к точности определяет 95% суммарную погрешность системы (TSE) для тех величин, где задано требование к точности. Требование к точности соответствует навигационным спецификациям RNAV и всегда равно значению точности. Уникальным аспектом навигационных спецификаций RNP является то, что точность является одной из характеристик производительности, которая отслеживается на 100%;
Неисправности самолета: Неисправность бортового оборудования учитывается в правилах летной годности. Неисправности классифицируются по степени влияния уровня самолета, и система проектируется таким образом, чтобы снизить вероятность сбоя или смягчить его последствия. Требования к характеристикам неисправностей воздушных судов не являются уникальными для навигационных спецификаций RNP;
Сбои сигналов в пространстве: Характеристики сигнала в пространстве навигационных сигналов являются обязанностью Национального агентства разведки.
Применение мониторинга производительности
Хотя TSE (оборудование для безопасности на транспорте) может значительно меняться со временем по ряду причин, навигационные спецификации RNP обеспечивают гарантию того, что распределение TSE остается подходящим для конкретной операции.
По этой причине важны оперативные процедуры для мониторинга FTE.
Области деятельности
Океаническое и удаленное континентальное воздушное пространство
Океаническое и удаленное континентальное воздушное пространство в настоящее время обслуживается двумя навигационными приложениями, RNAV 10 и RNP 4. Оба в основном используют GNSS для поддержки навигационного элемента воздушного пространства. В случае RNAV 10 никакой формы наблюдения ОВД не требуется. В случае RNP 4 используется контракт ADS (ADS-C);
Терминальное воздушное пространство: прилет и вылет
Существующие концепции воздушного пространства терминала, которые включают в себя прилет и вылет, они поддерживаются приложениями RNAV. В настоящее время они используются в Европейском регионе и США. Европейское приложение RNAV воздушного пространства терминала известно как P-RNAV (Precision RNAV). Хотя спецификация RNAV 1 разделяет общую точность навигации с P-RNAV, эта региональная спецификация навигации не удовлетворяет всем требованиям спецификации RNAV 1.
Начиная с 2008 года, приложение воздушного пространства терминала Соединенных Штатов, ранее известное как US RNAV Type B, было приведено в соответствие с концепцией PBN и теперь называется RNAV 1. Базовый RNP 1 был разработан главным образом для применения в нерадиолокационном воздушном пространстве терминала с низкой плотностью. Ожидается, что в будущем будет разработано больше приложений RNP как для полетов на маршруте, так и для воздушного пространства терминала.
Типы RNP
Типы RNP подразделяются на маршрутные, аэроузловые и аэродромные. ИКАО определила в качестве основных (стандартных) типы RNP, которые представлены в табл. 1.2, приведенной в [1].
Тип RNP1 предусматривается для обеспечения наиболее эффективных полетов по маршрутам ОВД и в аэроузловой зоне при использовании наиболее точной информации о месте ВС, а также для применения методов зональной навигации, позволяющих получить наибольшую гибкость при организации и изменении маршрутов осуществлении в режиме реального времени необходимых корректировок в со-
ответствии с потребностями структуры воздушного пространства. Этот тип RNP предусматривает наиболее эффективное обеспечение полетов, использование Правил полетов и организации воздушного пространства при переходе от полета в районе аэродрома к полету по маршруту ОВД и в обратном порядке, т. е. при выполнении SID и STAR.
Маршрутные типы RNP
Тип RNP4 предназначается для маршрутов ОВД, основанных на ограниченном расстоянии между навигационными средствами. Этот тип RNP обычно используется в воздушном пространстве, расположенном над континентом. Устанавливая им точность аэронавигации соответствует требуемой точности на обычных маршрутах, задаваемых VOR, которая использовалась и до введения концепции RNP.
Тип PNP10 предусматривается для сокращения минимумов бокового и продольного эшелонирования. Он повышает эксплуатационную эффективность в океаническом воздушном пространстве и районах, где возможности использования наземных навигационных средств ограничены.
Тип RNP12.6 обеспечивает ограниченную оптимизацию маршрутов в районах с пониженным уровнем обеспечения навигационными средствами. Численное значение величины удерживания соответствует удвоенной средней квадратической погрешности определения места ВС, являющейся одним из параметров MNPS в Северной Атлантике.
Тип RNP20 характеризует минимальные возможности по точности определения МВС, которые считаются приемлемыми для обеспечения полетов по маршрутам ОВД любым ВС в любом контролируемом воздушном пространстве в любое время. Он как бы соответствует такой плохой точности, что еще меньшую требуемую точность нет смысла устанавливать.
Широко используются и нестандартные типы, то есть не перечисленные в [1].
В районах выполнения полетов воздушными судами, точность навигации которых превышает требования RNP4 и в которых для контроля воздушного движения
используются средства независимого радиолокационного наблюдения, может использоваться ширина коридора ±5 км (±2.7 м. миль), т. е. значение типа RNP 2.7. Следует отметить, что в СССР данное значение ширины коридора ± 5 км в Московской воздушной зоне и некоторых других аэродромных зонах было установлено еще до введения концепции RNP. В США для полетов по трассам также применяется нестандартный тип RNP 2.
Типы RNP, применяемые для захода на посадку, будут рассмотрены в п. 1.9.
Тип RNP1 должен вводится поэтапно в связи с тем, что некоторым эксплуатантам придется вложить средства в новое оборудование. Такое положение явилось основой для введения P-RNAv в Европе как промежуточного шага на пути к RNP 1.
Зональная навигация вводится в том или ином регионе одновременно с установлением определенного типа RNP. Если этот тип является нестандартным либо
функциональные требования к RNAV чем-то отличаются от приведенных в [1], то такая зональная навигация может получить собственное название, например, B-RNAV, B-RNAV+, B-RNAV++, P-RNAV и т. п.
RNP определяют характеристики навигации в определенном воздушном пространстве и влияют как на организацию самого воздушного пространства, так и на воздушное судно.
Типы RNP, методы и оборудование RNAV в разных регионах мира внедряются единообразно и согласовано. Для этого в региональных отделениях ИКАО и государствах созданы соответствующие группы экспертов и уполномоченных специалистов. Эксплуатанты взаимодействуют с ними по вопросам оборудования ВС, подготовки экипажей и освоения эксплуатационных процедур RNAV.
Типы RNP для определенных районов, объемов воздушного пространства в определенном диапазоне высот, для маршрутов или процедур в районе аэродрома устанавливаются либо соответствующим государством, либо региональным аэронавигационным соглашением. Конкретный тип RNP вводится в зависимости от ряда факторов: инфраструктуры средств связи, наличия наземных радиомаяков и радиолокационного наблюдения, насыщенности воздушного пространства, характера местности, расположения препятствий, особых зон и др.
RNP могут применяться с момента взлета и до посадки. При этом на различных этапах попета могут применяться различные типы RNP. Как правило, для захода на посадку и ухода на второй круг применяются «строгие» RNP, для вылета и прибытия — более «мягкие», а на маршруте — совсем «мягкие» RNP с минимальным набором функциональных требований.
В АИП государств описываются характеристики и требования к воздушному пространству при применении RNP на маршрутах или в определенных районах и публикуются фиксированные, резервные маршруты и районы применения RNP.
Фиксированный маршрут RNP — постоянный опубпикованный маршрут RNP с возможными ограничениями по времени использования и высотам пролета. Маршрут начинается и заканчивается пунктами донесения. Вдоль маршрута устанавливаются точки пути.
Резервный маршрут RNP — опубликованный маршрут ограниченного по времени применения (часы, дни, сезоны).
Район RNP — некоторый район, объем воздушного пространства или любое воздушное пространство установленных размеров, где применяется RNP. В таких районах может планироваться и выполняться полет по произвольным линиям пути в течение установленных периодов времени и/или в пределах указанных диапазонов эшелонов полета.
Для увеличения пропускной способности воздушного пространства органы ОВД могут давать указание о выполнении полета со смещением относительно фиксированного маршрута и таким образом использовать RNAV как инструмент ОВД. В свою очередь летный экипаж должен уведомлять орган ОВД об аварийной ситуации (отказ оборудования, неблагоприятные метеоусловия), которая влияет на возможность обеспечения точности навигации, а также сообщить о своих намерениях, согласовать план действий и получить измененное диспетчерское разрешение.
otto_pilot
otto_pilot
Утряс для себя некоторые понятия, решил поделиться с читателями.
Средства VOR, DME, GNSS и IRS это сенсоры(датчики) RNAV системы. «Гарминки», например GNS430 или G1000, которые стоят на маленьких самолётах это RNAV системы, основанные на GPS. На транспортных самолётах зональную навигацию обеспечивает FMS, помимо GPS использует и VOR/DME и IRS(если оборудованы ей). Несмотря на комплексное использование сенсоров, наиболее важную роль играет GNSS(GPS) из-за глобальной зоны покрытия и очень высокой точности. Зональная навигация без GNSS возможна, но нменно GNSS сделала зональную навигацию такой какова она есть сейчас.
Если полёт по трассе это полёт от одной точки, заданной координатами к другой, то полет по маршруту прибытия или схеме выхода или может содержать некоторые условные процедуры. Простой пример: набор по прямой 600 метров, далее левой разворот на точку.
Такую траекторию нет смысла определять геоточками, потому что в зависимости от характеристик ВС и погодных условий высота 600 метров может быть достигнута в разных местах.
Или: взлететь, захватить радиал, выполнить разворот и лететь на привод с определенными путевым углом.
Это тоже проблематично закодировать геоточками. Для этого база FMS, хранящаяся в формате ARINC 424 поддерживает 23 вида «траекторий и указателей их окончания» (path and terminators). Например: Направление до абсолютной высоты (VA), Направление до пересечения (VI). Поставщик электронной информации для FMS перерабатывает текстовую и графическую аэронавигационную информацию в электронную и присылает в виде обновления. В FMS такие траектории выглядят так:
Статус PBN в РФ
Ждать ошеломляющих успехов от государства, яростно противящегося новшествам и даже RVSM внедрившего позже всех в мире, не приходится. Де-юре, количество трасс зональной навигации очень мало, но фактически, по большинству трасс без GPS-ки не пролететь, потому что многие привода выведены их эксплуатации. Маршруты прибытия основанные на зональной навигации также используются в очень ограниченном количестве аэропортов. Кстати, буквально на днях к ним добавился Петербург. Так что, не сказать, что работа кипит, но вроде, и не стоит не месте.
Немного о заходах и VNAV
Навигационная система знает место относительно ВПП, высотомер показывает высоту, схема опубликована, можно выполнять RNAV заход. Это неточный заход. Его можно выполнять без дополнительного оборудования.
Если улучшить точность GNSS, развернув Систему Дифференциальной Коррекции(GNSS augmentation), то основываясь на спутниковой навигации, можно выполнять точные заходы c наведением не хуже ILS. У нас это называется «заход СНС» и достигается посредством самолётного оборудования в сочетании с наземными Локальными контрольно-корректирующими станциями ЛККС(Ground-Based Augmentation System GBAS). В РФ есть небольшое количество таких заходов. В США таких заходов уже более тысячи.
Приведу цитату представителя американских авиационных властей FAA: «Спутниковая навигация это второе по важности изобретение для авиации после реактивного двигателя»
СОДЕРЖАНИЕ
Точность навигации
Некоторое океаническое воздушное пространство имеет значение возможности RNP 4 или 10. Уровень RNP, который может обеспечить воздушное судно, определяет требуемое эшелонирование между воздушными судами по отношению к расстоянию. Повышенная точность бортовых систем RNP представляет собой значительное преимущество перед традиционными нерадиолокационными средами, поскольку количество воздушных судов, которые могут поместиться в объем воздушного пространства на любой заданной высоте, является квадратом количества требуемого эшелонирования; иными словами, чем ниже значение RNP, тем ниже требуемые стандарты эшелонирования и, в целом, тем больше воздушных судов может поместиться в объем воздушного пространства без потери требуемого эшелонирования. Это не только серьезное преимущество для операций воздушного движения, но и возможность значительной экономии средств для авиакомпаний, летающих над океанами, благодаря менее жестким маршрутам и лучшим доступным высотам.
Заходы на посадку с RNP со значениями RNP, которые в настоящее время ниже 0,1, позволяют воздушным судам следовать точным трехмерным криволинейным траекториям полета через загруженное воздушное пространство, вокруг чувствительных к шуму районов или по сложной местности.
История
Процедуры RNP были введены в PANS-OPS (ICAO Doc 8168), который стал применяться в 1998 году. Эти правила RNP были предшественниками нынешней концепции PBN, в соответствии с которой характеристики для полетов на маршруте определяются (вместо таких элементов полета, как как схемы пролета, изменчивость траекторий полета и дополнительный буфер воздушного пространства), но они не привели к значительным конструктивным преимуществам. В результате не было преимуществ для сообщества пользователей и практически отсутствовала реализация.
В 1996 году Alaska Airlines стала первой авиакомпанией в мире, которая применила подход RNP при заходе на посадку по проливу Гастино в Джуно, Аляска. Капитан авиакомпании Alaska Airlines Стив Фултон и капитан Хэл Андерсон разработали более 30 заходов на посадку по RNP для операций авиакомпании на Аляске. В 2005 году Alaska Airlines стала первой авиакомпанией, которая применила подходы RNP к национальному аэропорту Рейган, чтобы избежать заторов. В апреле 2009 года Alaska Airlines стала первой авиакомпанией, получившей одобрение FAA на проверку собственных заходов на посадку по RNP. 6 апреля 2010 года Southwest Airlines перешла на RNP.
Установлено на заходах на посадку по RNP
Описание
Текущие особые требования к системе RNP включают:
RNP APCH поддерживает все типы участков и терминаторы пути, используемые в стандартной RNAV, включая TF и RF. Процедуры RNP AR поддерживают только два типа участков:
Возможности мониторинга производительности и оповещения могут предоставляться в различных формах в зависимости от установки, архитектуры и конфигурации системы, включая:
Система RNP использует свои навигационные датчики, архитектуру системы и режимы работы для удовлетворения требований навигационной спецификации RNP. Он должен выполнять проверки целостности и разумности датчиков и данных, а также может предоставлять средства для отмены выбора определенных типов навигационных средств для предотвращения перехода на неадекватный датчик. Требования RNP могут ограничивать режимы работы воздушного судна, например, для низкого RNP, когда летно-техническая ошибка (FTE) является существенным фактором, а полет экипажа в ручном режиме может быть запрещен. Также может потребоваться установка двойной системы / датчика в зависимости от предполагаемой операции или потребности.
Система RNAV, способная обеспечить выполнение требований к характеристикам спецификации RNP, называется системой RNP. Поскольку для каждой навигационной спецификации определены конкретные требования к характеристикам, воздушное судно, утвержденное для спецификации RNP, не будет автоматически утверждено для всех спецификаций RNAV. Аналогичным образом, воздушное судно, утвержденное для спецификации RNP или RNAV, имеющей строгие требования к точности, не автоматически утверждается для навигационной спецификации, имеющей менее строгие требования к точности.
Обозначение
Для океанических, удаленных, маршрутов и конечных операций спецификация RNP обозначается как RNP X, например RNP 4.
Требования к мониторингу производительности и предупреждению
Требования к мониторингу характеристик и предупреждению для RNP 4, Basic-RNP 1 и RNP APCH имеют общую терминологию и применение. Каждая из этих спецификаций включает требования к следующим характеристикам:
Применение мониторинга характеристик и оповещения о воздушном судне
Хотя TSE может значительно измениться со временем по ряду причин, в том числе по указанным выше, навигационные спецификации RNP обеспечивают уверенность в том, что распределение TSE остается подходящим для данной операции. Это вытекает из двух требований, связанных с распределением TSE, а именно:
Обычно требование 10 −5 TSE обеспечивает большее ограничение производительности. Например, для любой системы, которая имеет TSE с нормальным распределением поперечной ошибки, требование мониторинга 10 −5 ограничивает стандартное отклонение 2 × (значение точности) /4,45 = значение точности / 2,23, тогда как требование 95% позволил бы стандартному отклонению быть таким большим, как значение точности / 1,96.
Важно понимать, что, хотя эти характеристики определяют минимальные требования, которые должны быть выполнены, они не определяют фактическое распределение TSE. Можно ожидать, что фактическое распределение TSE, как правило, будет лучше, чем требование, но должно быть свидетельство фактической производительности, если должно использоваться более низкое значение TSE.
При применении требования к мониторингу характеристик к воздушному судну могут быть значительные различия в том, как управлять отдельными ошибками:
Области деятельности
Океанические и отдаленные континентальные
Океаническое и удаленное континентальное воздушное пространство в настоящее время обслуживается двумя навигационными приложениями, RNAV 10 и RNP 4. Оба в основном используют GNSS для поддержки навигационного элемента воздушного пространства. В случае RNAV 10 никакого наблюдения ОВД не требуется. В случае RNP 4 используется контракт ADS (ADS-C).
Континентальный по маршруту
Воздушное пространство терминала: прилет и вылет
Существующие концепции воздушного пространства аэродрома, включая прибытие и вылет, поддерживаются приложениями RNAV. В настоящее время они используются в Европейском (EUR) регионе и США. Приложение RNAV в европейском аэродроме известно как P-RNAV (Precision RNAV). Хотя спецификация RNAV 1 имеет общую навигационную точность с P-RNAV, эта региональная навигационная спецификация не удовлетворяет в полной мере требованиям спецификации RNAV 1. С 2008 года приложение воздушного пространства в аэровокзале Соединенных Штатов, ранее известное как RNAV типа B США, было согласовано с концепцией PBN и теперь называется RNAV 1. Базовая RNP 1 была разработана в основном для применения в нерадиолокационном воздушном пространстве аэродрома с низкой плотностью движения. Ожидается, что в будущем будет разработано больше приложений RNP как для воздушного пространства на маршруте, так и для аэродрома.
Подход
Заходы на посадку по RNP на 0,3 и 0,1 мили в аэропорту Квинстауна в Новой Зеландии являются основными подходами, используемыми Qantas и Air New Zealand как для международных, так и для внутренних рейсов. Из-за ограничений местности заходы на посадку по ILS невозможны, а обычные заходы на посадку по VOR / DME имеют ограничения на снижение более чем на 2000 футов над уровнем аэропорта. Подходы и вылеты RNP следуют изогнутым траекториям ниже уровня местности.
Подход, требующий специального разрешения от самолетов и экипажей
Процедуры захода на посадку по приборам с использованием RNP с обязательной авторизацией или RNP AR (ранее известными как процедуры захода на посадку с особыми требованиями к самолетам и экипажам или SAAAR) основаны на концепции NAS, основанной на характеристиках. Определяются требования к характеристикам для выполнения захода на посадку, и воздушные суда квалифицируются в соответствии с этими требованиями к характеристикам. Обычные зоны оценки препятствий для наземных навигационных средств основаны на заранее определенных характеристиках воздушного судна и навигационной системе. Критерии RNP AR для оценки препятствий являются гибкими и предназначены для адаптации к уникальным условиям эксплуатации. Это позволяет подходить к конкретным требованиям к характеристикам, необходимым для схемы захода на посадку. Эксплуатационные требования могут включать избегание местности и препятствий, разрешение конфликтов в воздушном пространстве или устранение экологических ограничений.
RNP AR APCH определяется как схема захода на посадку по RNP, для которой требуется боковой TSE ниже стандартных значений RNP на любом участке схемы захода на посадку. Подходы RNP включают возможности, требующие специальных разрешений на воздушные суда и летные экипажи, аналогичные полетам ILS категории II / III. Все заходы на посадку с использованием RNP AR имеют уменьшенные площади оценки боковых препятствий и поверхности пролета вертикальных препятствий в соответствии с требованиями к характеристикам воздушного судна и летным экипажам. Следующие характеристики отличаются от РНП АПЧ:
При выполнении захода на посадку по RNP AR с использованием линии минимумов менее RNP 0,3 ни одна точка отказа не может вызвать потерю наведения в соответствии со значением RNP, связанным с заходом на посадку. Как правило, самолет должен иметь по крайней мере два датчика GNSS, двойные системы управления полетом, двойные системы данных о воздухе, двойные автопилоты и один инерциальный эталонный блок.
При выполнении захода на посадку по RNP AR с уходом на второй круг менее RNP 1.0 ни одна точка отказа не может привести к потере наведения, соответствующей значению RNP, связанного с схемой ухода на второй круг. Как правило, самолет должен иметь по крайней мере два датчика GNSS, двойные системы управления полетом, двойные системы данных о воздухе, двойные автопилоты и один инерциальный эталонный блок.
Планирование полета
Ручное или автоматическое уведомление о квалификации воздушного судна для выполнения полетов по маршруту обслуживания воздушного движения (ОВД), по схеме или в воздушном пространстве предоставляется УВД через план полета.