что такое реляционная модель данных

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Реляционная модель данных

Впервые принципы реляционной модели были сформулированы в 1969—1970 годах Э. Ф. Коддом (E. F. Codd). Идеи Кодда были впервые публично изложены в статье «A Relational Model of Data for Large Shared Data Banks». Современную трактовку идей реляционной модели данных можно найти в книге К. Дж. Дейта. «C. J. Date. An Introduction to Database Systems»

Содержание

Состав частей реляционной модели данных

Наиболее распространенная трактовка реляционной модели данных, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

Структурная часть

Структурная часть (аспект), отвечает за принцип построения структуры реляционной базы данных на нормализированном наборе n-арных отношений, в форме таблиц. Важно что реляционная база данных, структурно может представляться только в виде отношений.

Манипуляционная часть

Целостная часть

В целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.

Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать).

Структура реляционной модели данных

При табличной организации данных отсутствует иерархия элементов. Строки и столбцы могут быть просмотрены в любом порядке, поэтому высока гибкость выбора любого подмножества элементов в строках и столбцах. Любая таблица в реляционной базе состоит из строк, которые называют записями, и столбцов, которые называют полями. На пересечении строк и столбцов находятся конкретные значения данных. Для каждого поля определяется множество его значений.

В реляционной модели данных применяются разделы реляционной алгебры, откуда и была заимствованна соответствующая терминология.В реляционной алгебре поименованный столбец отношения называется атрибутом, а множество всех возможных значений конкретного атрибута – доменом. Строки таблицы со значениями разных атрибутов называют кортежами. Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом). Так ключевое поле – это такое поле, значения которого в данной таблице не повторяется. В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей. Сложный ключ выбирается в тех случаях, когда ни одно поле таблицы однозначно не определяет запись.

Записи в таблице хранятся упорядоченными по ключу. Ключ может быть простым, состоящим из одного поля, и сложным, состоящим из нескольких полей. Сложный ключ выбирается в тех случаях, когда ни одно поле таблицы однозначно не определяет запись.

Кроме первичного ключа в таблице могут быть вторичные ключи, называемые еще внешними ключами, или индексами. Индекс – это поле или совокупность полей, чьи значения имеются в нескольких таблицах и которое является первичным ключом в одной из них. Значения индекса могут повторяться в некоторой таблице. Индекс обеспечивает логическую последовательность записей в таблице, а также прямой доступ к записи.

По первичному ключу всегда отыскивается только одна строка, а по вторичному – может отыскиваться группа строк с одинаковыми значениями первичного ключа. Ключи нужны для однозначной идентификации и упорядочения записей таблицы, а индексы для упорядочения и ускорения поиска.

Индексы можно создавать и удалять, оставляя неизменным содержание записей реляционной таблицы. Количество индексов, имена индексов, соответствие индексов полям таблицы определяется при создании схемы таблицы.

Индексы позволяют эффективно реализовать поиск и обработку данных, формирую дополнительные индексные файлы. При корректировке данных автоматически упорядочиваются индексы, изменяется местоположение каждого индекса согласно принятому условию (возрастанию или убыванию значений). Сами же записи реляционной таблицы не перемещаются при удалении или включении новых экземпляров записей, изменении значений их ключевых полей.

С помощью индексов и ключей устанавливаются связи между таблицами. Связь устанавливается путем присвоения значений внешнего ключа одной таблицы значениям первичного ключа другой. Группа связанных таблиц называется схемой данных. Информация о таблицах, их полях, ключах и т.п. называется метаданными.

Источник

BestProg

Базовые понятия реляционной модели данных

Содержание

Поиск на других ресурсах:

1. Какие есть базовые понятия реляционной модели данных?

Как известно, реляционная модель данных основывается на сохранении данных в виде взаимосвязанных таблиц. Связь между таблицами может быть реализована по некоторому полю и называется отношением (relation).

Реляционная модель данных использует следующие основные понятия:

2. Что такое тип данных в реляционной модели данных?

Тип данных есть характеристикой объекта в языке программирования. Таким объектом может выступать переменная, константа и т.п. Тип данных определяет допустимое множество значений, которые может принимать переменная величина или объект.

В системах управления базами данных тип данных имеет такое самое значение как и языках программирования.

Пример. Пусть задана таблица Worker, описывающая данные о работнике предприятия.

ПолРазряд2931123455Петров П.П.г. Киев, ул. Мира 2612.06.1897М33425526651Зиновьев А.Ф.г. Москва, ул. Зеленая 33911.03.1998М42765165253Сидоров С.С.г. Харьков, ул. Гагарина 3318.02.1987М23293847890Ахметова М.Б.г. Тула, ул. Лесная 12 А10.08.1937Ж32298489472Ковалев С.С.г. Калуга, ул. Снежная 2812.06.1990Ж43234802998Юрьев М.М.г. Черновцы, ул. Международная 511.02.1993М5

В вышеприведенной таблице целесообразно установить следующий тип данных для каждого поля:

3. Какие типы данных поддерживаются системами управления базами данных?

Современные СУБД поддерживают следующие основные типы данных:

4. Домены в реляционной модели данных

Домен – это множество отдельных допустимых значений данных, которые:

Пример. Пусть дана таблица Worker, описывающая данные о работнике.

ПолРазряд2931123455Петров П.П.г. Киев, ул. Мира 2612.06.1897М33425526651Зиновьев А.Ф.г. Москва, ул. Зеленая 33911.03.1998М42765165253Сидоров С.С.г. Харьков, ул. Гагарина 3318.02.1987М23293847890Ахметова М.Б.г. Тула, ул. Лесная 12 А10.08.1937Ж32298489472Ковалев С.С.г. Калуга, ул. Снежная 2812.06.1990Ж43234802998Юрьев М.М.г. Черновцы, ул. Международная 511.02.1993М5

В домене «Идентификационный код» допустимыми являются строки из цифр, которые имеют строго 10 разрядов. В домене «Пол» возможны только 2 значения. В домене «Разряд» могут быть целочисленные значения от 1 до 6.

5. Атрибуты в реляционной модели данных

Атрибуты – это столбцы таблицы (поля таблицы). Атрибуты имеют имена. По имени атрибута осуществляется обращение к таблице.

Пример. В таблице Worker (см. п. 4) названия атрибутов следующие:

6. Что такое схема отношения? Что такое схема базы данных?

Схема отношения – это список имен атрибутов отношения с указанием имен типов.

Пример. Для таблицы Worker схема отношения будет приблизительно следующей:

Множество именованных схем отношения, называется схемой базы данных.

7. Что такое степень отношения?

Количество атрибутов в таблице называется степенью отношения. Для примера (см. п. 4) таблицы Worker степень отношения равна 6 (таблица имеет 6 полей).

Унарное отношение – это отношение степени один. Бинарное отношение – это отношение степени два. Тернарное отношение – это отношение степени три. n-арное отношение – это отношение степени n.

8. Что такое кортеж в базах данных?

Кортеж рассматривается для конкретной (данной) схемы отношения. В такой схеме кортеж есть множество пар, которые представлены следующим образом:

где имя_атрибута – имя конкретного атрибута.

Например. Пусть задана таблица Worker с такими данными

ПолРазряд2931123455Петров П.П.г. Киев, ул. Мира 2612.06.1897М33425526651Зиновьев А.Ф.г. Москва, ул. Зеленая 33911.03.1998М42765165253Сидоров С.С.г. Харьков, ул. Гагарина 3318.02.1987М23293847890Ахметова М.Б.г. Тула, ул. Лесная 12 А10.08.1937Ж32298489472Ковалев С.С.г. Калуга, ул. Снежная 2812.06.1990Ж43234802998Юрьев М.М.г. Черновцы, ул. Международная 511.02.1993М5

Схема отношения для данной таблицы будет следующая:

Тогда кортеж, который отвечает первой строке таблицы Worker будет иметь вид:

Таким самым образом можно определить кортеж, который соответствует второй строке таблицы Worker а также и следующим строкам таблицы.

9. Что называется кардинальным числом или мощностью отношения?

Кардинальное число – это количество кортежей. В таблице Worker (см. п. 8) кардинальное число равно 7. Кардинальное число еще называют мощностью отношения.

10. Что собою представляет пустое значение (NULL) в базе данных?

Существуют случаи, когда в таблице базы данных некоторые значения еще неизвестны на данный момент времени. Такие значения называются пустыми значениями и могут быть заполнены со временем (позже). Для задавания пустых значений, в базе данных используется слово NULL. Системы управления базами данных допускают использования значения NULL для задавания данных, которые могут быть заполнены позже.

Следует заметить, что значение NULL не является нулем и не является пустой строкой.

Например. В таблице Worker (п. 8) возможна ситуация, когда работник еще не имеет разряда. В этом случае в соответствующей ячейке нужно ввести значение NULL. Как только работнику будет присвоен некоторый разряд, значение NULL будет заменено этим новым значением.

11. Что такое ключи отношения? Что такое первичный ключ?

Важным условием любой базы данных есть то, что в ней не должно быть двух одинаковых записей. Или другими словами, в таблице базы данных не должно быть двух кортежей, которые содержат одинаковые значения. Во избежание этой проблемы, используются первичные ключи.

Первичный ключ – это специальное дополнительное поле (атрибут) таблицы, которое создается для обеспечения уникальности идентификации записей таблицы. Основная цель создания первичного ключа – предотвратить дублирование (повторение) записей таблицы.

Например. Пусть дана таблица Worker (см. п.8). Чтобы не повторялись записи, в этой таблице может быть создано дополнительное поле (атрибут) с именем, например, ID_Worker. Тип этого поля может быть выбран как счетчик (counter), который автоматически увеличивается при добавлении новой записи в таблицу.

12. Что такое простой и составной (сложный) ключи?

Простой ключ – это ключ, который содержит только один атрибут (поле). Сложный или составной ключ– это ключ, который содержит несколько атрибутов, то есть состоит из нескольких полей, значения в которых не могут повторяться.

Пример. Пусть дана таблица Student, содержащая данные о студенте. Таблица содержит следующие поля:

Название поляТипОписание
ID_StudentЦелое число, intУникальный идентификатор поля, счетчик, первичный ключ, простой ключ
Num_bookЦелое число, intНомер зачетной книжки
NameСтрока с 100 символов,

char(100)

Фамилия и имя студента
CourseЦелое число, intКурс, на котором учится студент

В этой таблице поле ID_Student есть первичным ключом, которое обеспечивает уникальность. Это поле есть счетчиком. При добавлении нового студента в таблицу, значение счетчика увеличивается на некоторое число, как правило на 1. Если удалить студента из таблицы, максимальное значение счетчика уже не уменьшается. Таким образом обеспечивается уникальное число, которое соответствует данному студенту.

В таблице Student составным ключом может быть комбинация полей (атрибутов) ID_Student и Num_book (номер зачетной книжки). Однако, в данной таблице такая комбинация не имеет смысла, поскольку поле ID_Student и без того обеспечивает уникальность.

13. Что такое искусственный (суррогатный) ключ?

Искусственный ключ создается самой СУБД или пользователем. Этот ключ не содержит никакой информации. Искусственный ключ используется для создания уникальных идентификаторов строк. Создание идентификатора строки осуществляется таким образом, что сущность строки описывается полностью. Такой метод позволяет однозначно идентифицировать конкретный элемент (значение).

Система управления базами данных поддерживает искусственный ключ так, что он невидим для пользователя.

14. Что такое естественной ключ?

Естественной ключ базируется на атрибутах (полях), которые имеют смысл. Значение в таких атрибутах (полях) не могут повторяться по своей сущности.

Использование естественных ключей позволяет получить более компактную форму таблиц для представления данных.

Пример 1. В таблице Worker (см. п.8) поле «Идентификационный код» есть уникальным, так как не может быть двух людей с одинаковым идентификационным кодом. Это поле и есть естественном ключом.

Пример 2. В таблице Student поле Num_book (№ зачетной книжки) есть уникальным по своей природе. Не может быть двух студентов с одинаковым номером зачетной книжки.

15. Какие преимущества и недостатки использования естественных ключей?

Преимуществом использования естественных ключей есть то, что они несут информацию, и потому не нужно добавлять в таблицу дополнительных полей. Естественные ключи позволяют избегнуть избыточной (неинформативной) информации, которая используется только для связи между таблицами базы данных.

Основные недостатки естественных ключей:

Источник

Что такое реляционная модель данных

Разработчик: доц. Бородина А.И.

План лекции

3. Реляционная модель данных

3. Реляционная модель данных

3.1. Базовые понятия реляционной модели

Концепция реляционной модели данных была предложена в 1969 году Эдгаром Коддом, известным специалистом в области баз данных, а в 1970 году она была им опубликованы. Реляционная модель представляет собой совокупность данных, состоящую из набора двумерных таблиц. В теории множеств таблице соответствует термин отношение ( relation ), физическим представлением которого является таблица, отсюда и название модели – реляционная. Реляционная модель является удобной и наиболее привычной формой представления данных.

При табличной организации данных отсутствует иерархия элементов. Строки и столбцы могут быть просмотрены в любом порядке, поэтому высока гибкость выбора любого подмножества элементов в строках и столбцах.

Любая таблица в реляционной базе состоит из строк, которые называют записями, и столбцов, которые называют полями. На пересечении строк и столбцов находятся конкретные значения данных. Для каждого поля определяется множество его значений, например, поле «Месяц» может иметь двенадцать значений.

Структура таблицы в реляционной базе характеризуется следующим:

· она состоит из совокупности столбцов;

· каждый столбец имеет уникальное, то есть не повторяющееся в других столбцах, имя;

· последовательность столбцов в таблице не существенна;

· все строки таблицы организованы по одинаковой структуре, то есть имеют одно и то же количество реквизитов и имеют одинаковую длину;

· в таблице нет одинаковых строк;

· количество строк в таблице практически не ограничено;

· последовательность строк в таблице не существенна;

· при выполнении манипуляций с таблицей все строки и столбцы могут просматриваться в произвольном порядке безотносительно к их содержанию и смыслу.

Для этого типа модели имеется развитый математический аппарат – реляционная алгебра. В реляционной алгебре поименованный столбец отношения называется атрибутом, а множество всех возможных значений конкретного атрибута – доменом. Строки таблицы со значениями разных атрибутов называют кортежами. Например, в таблице, приведенной на рис. 7, кортежи – это di 1, di 2,…, din ( i =1,2,… m ); а домены d 1к, d ,…, dmk ( k =1,2,… n ). Количество атрибутов, содержащихся в отношении, определяет его степень, а количество кортежей – кардинальность отношения.

Рис. 7. Домены и кортежи отношения

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

Рис. 8. Базовые понятия реляционной модели данных

Записи в таблице хранятся упорядоченными по ключу. Ключ может быть простым, состоящим из одного поля, и сложным, состоящим из нескольких полей. Сложный ключ выбирается в тех случаях, когда ни одно поле таблицы однозначно не определяет запись.

Кроме первичного ключа в таблице могут быть вторичные ключи, называемые еще внешними ключами, или индексами. Индекс – это поле или совокупность полей, чьи значения имеются в нескольких таблицах и которое является первичным ключом в одной из них. Значения индекса могут повторяться в некоторой таблице. Индекс обеспечивает логическую последовательность записей в таблице, а также прямой доступ к записи.

По первичному ключу всегда отыскивается только одна строка, а по вторичному – может отыскиваться группа строк с одинаковыми значениями первичного ключа. Ключи нужны для однозначной идентификации и упорядочения записей таблицы, а индексы для упорядочения и ускорения поиска.

Индексы можно создавать и удалять, оставляя неизменным содержание записей реляционной таблицы. Количество индексов, имена индексов, соответствие индексов полям таблицы определяется при создании схемы таблицы.

Индексы позволяют эффективно реализовать поиск и обработку данных, формирую дополнительные индексные файлы. При корректировке данных автоматически упорядочиваются индексы, изменяется местоположение каждого индекса согласно принятому условию (возрастанию или убыванию значений). Сами же записи реляционной таблицы не перемещаются при удалении или включении новых экземпляров записей, изменении значений их ключевых полей.

С помощью индексов и ключей устанавливаются связи между таблицами. Связь устанавливается путем присвоения значений внешнего ключа одной таблицы значениям первичного ключа другой. Группа связанных таблиц называется схемой данных (рис. 9). Информация о таблицах, их полях, ключах и т.п. называется метаданными.

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

Рис. 9. Схема данных в СУБД Access

Первичный ключ любой таблицы должен содержать уникальные (не повторяющиеся) непустые значения для данной таблицы. Система управления базой данных должна контролировать уникальность первичных ключей. При попытке присвоить первичному ключу значение, уже имеющееся в другой записи таблицы, выдается сообщение об ошибке первичного ключа.

С появлением ПЭВМ реляционные системы стали доминировать среди систем баз данных. Быстрому распространению реляционных моделей способствовало три фактора.

Во-первых, в реляционной системе данные представляются в виде таблиц (отношений), встречающихся в повседневной практике. Поиск и обработка данных в этих таблицах не зависит от их организации и хранения в памяти машины.

Во-вторых, с математической точки зрения реляционная база – это конечный набор отношений. Таким образом, теория реляционных баз данных становится областью математической логики и реляционной алгебры.

В-третьих, множество объектов реляционной модели данных однородно – структура данных определяется только в терминах отношений. Основная единица обработки в операциях реляционной модели данных не запись (как в сетевых и иерархических моделях данных), а множество записей, то есть отношение.

В нереляционных базах данных сложно передать все имеющиеся зависимости, то есть связать друг с другом данные из различных таблиц. Реляционная база данных выполняет все эти действия достаточно просто. Благодаря имеющимся связям в реляционных базах удается избежать дублирования информации, что облегчает работу и позволяет избежать ошибок. В реляционных базах данных также удается легко избежать установления ошибочных связей между различными таблицами данных.

В реляционных базах данных легко производить изменения. Например, если в таблице клиентов изменить адрес конкретного клиента, то соответствующая информация автоматически поступит в другие таблицы, связанные с таблицей клиентов.

Таким образом, достоинства реляционных баз данных можно сформулировать так.

· Упрощенная схема представления данных – в виде таблицы.

· Простота инструментальных средств поддержки реляционной модели.

· Оптимизация доступа к базе данных, поскольку системы сами выбирают наиболее эффективную последовательность действий.

· Улучшение целостности и защиты, поскольку реляционная модель позволяет улучшить выражение требований целостности путем использования языка высокого уровня.

· Возможности различных применений, в том числе и рассчитанных на не специалистов в области программирования.

· Обеспечение пользователя языками высокого уровня при работе с базой данных.

· Обеспечение методологического подхода, поскольку главной целью модели базы данных является возможность описания реального мира, что проще всего осуществляется в реляционной модели.

Недостаток реляционной модели – в жесткости структуры данных, например, невозможно задать строку таблицы произвольной длины, а также сложность описания иерархических и сетевых связей.

3.2. Связи между данными

Данные об объектах в базе связаны между собой. Эти связи принято изображать следующим образом:

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

где А и В – объекты;

F ( x ) – вид связи объекта А с объектом В;

G ( x ) – вид связи объекта В с объектом А.

Функции F ( x ) и G ( x ) могут принимать значения U – единичная и N – множественная связь. Обычно рассматривают четыре вида отношений.

Связь один к одному (1:1):

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

означает, что каждому элементу объекта А может соответствовать только один элемент объекта В и наоборот, например:

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

Связь один ко многим (1: N ):

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

означает, что могут существовать экземпляры объекта А, которым соответствует более одного экземпляра объекта В. Но при этом каждому экземпляру объекта В может соответствовать только один экземпляр объекта А, например:

Университет что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхФакультеты; Группа что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхСтуденты.

Связь многие к одному ( N :1)

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

означает, что каждому экземпляру объекта А может соответствовать только один экземпляр объекта В, но среди экземпляров объекта В могут быть такие, которым соответствует несколько экземпляров объекта А, например:

Университет что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхФакультеты; Покупатели что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхПродавец.

Очевидно, что если 1: N – тип связи между А и В, то N :1 – тип связи между В и А.

что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данных

означает, что может существовать экземпляр объекта А, которому соответствует несколько экземпляров объекта В и наоборот. Например:

Преподаватели что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхПредметы; Покупатели что такое реляционная модель данных. Смотреть фото что такое реляционная модель данных. Смотреть картинку что такое реляционная модель данных. Картинка про что такое реляционная модель данных. Фото что такое реляционная модель данныхПродавцы.

3.3. Операции в реляционных базах данных

Каждая база данных имеет свой набор операций. Эти операции переводят базы данных из одного состояния в другое. Каждая операции включает выделение данных (селекцию) и те действия, которые будут выполняться над выделенными данными. Теоретической основой реляционной базы данных является реляционная алгебра, основанная на теории множеств и рассматривающая специальные операции над отношениями, и реляционное исчисление, базирующееся на математической логике. Для манипулирования данными реляционной базы используются операции теории отношений. Основными операциями в реляционной базе являются операции обновления базы данных и операции обработки отношений.

К операциям обновления базы данных относятся те операции, которые выполняют вставку новых кортежей, удаление ненужных, корректировку значений атрибутов существующих кортежей, а именно: это операции Включить, Удалить, Обновить.

Операция Включить требует задания имени отношения и предварительного формирования значений атрибутов нового кортежа. Обязательно должен быть задан ключ кортежа.

Операция Удалить требует наименования отношения, а также идентификации кортежа или группы кортежей, подлежащих удалению.

Операция Обновить выполняется для названного отношения и может корректировать как один, так и несколько кортежей. Например, если руководство фирмы приняло решение увеличить на одинаковую сумму все оклады сотрудников, то одной операцией Обновить будет откорректировано сразу несколько кортежей.

Что касается операций обработки, то они позаимствованы из реляционной алгебры. Существует несколько подходов к определению реляционной алгебры. Они отличаются набором операций и их интерпретацией. Рассмотрим набор операций, который предложил Э. Кодд. Согласно его подходу реляционная алгебра включает восемь операций, пять из которых являются базовыми: Выборка, Проекция, Умножение, Объединение, Вычитание.

Операция Выборка позволяет выбрать из отношения только те кортежи, которые удовлетворяют заданному условию.

При Проекции отношения на заданный набор его атрибутов получается новое отношение, создаваемое посредством извлечения из исходного отношения кортежей, содержащих указанные атрибуты.

При Умножении (декартовом произведении) двух отношений получается новое отношение, кортежи которого являются сцеплением (конкатенацией) кортежей первого и второго отношений.

В результате Объединения двух отношений получается третье, включающее кортежи, входящие хотя бы в одно отношение, то есть содержащее все элементы исходных отношений.

При Вычитании выдаются лишь те кортежи первого отношения, которые остались от вычитания второго отношения, то есть из первого отношения выбрасываются все кортежи второго.

Остальные три операции являются производными, они могут быть получены из основных операций, их называют дополнительными: Соединение, Пересечение, Деление.

Операция Соединение применяется к двум отношениям, имеющим общий атрибут. Результат этой операции для двух отношений по некоторому условию есть отношение, состоящее из кортежей, которые являются сочетанием первого и второго отношений, удовлетворяющих указанному условию. Результатом операции

Пересечение двух отношений является отношение, включающее все кортежи, входящие в оба отношения.

Операция Деления предполагает, что имеется два отношения: одно – бинарное (содержащее два атрибута), другое – унарное (содержащее один атрибут). В результате получается отношение, состоящее из кортежей, включающих значения первого атрибута кортежей первого отношения, но только таких, для которых множество значений второго атрибута первого отношения совпадает с множеством значений атрибутов второго отношения.

Отличительная особенность операций обработки отношений заключается в том, что единицей обработки в них являются не кортежи, а отношения: на входе каждой операции используется одно или два отношения, а результат выполнения операций – новое отношение. Смысл любой обработки реляционной базы данных состоит либо в обновлении существующих отношений, либо в создании новых, и результат всякого запроса к базе данных есть построение нового отношения, удовлетворяющего условиям выборки.

Рассмотрим некоторые, наиболее часто используемые операции реляционной алгебры, подробнее.

Операция Объединение ( C1 = A И B) предполагает, что на входе задано два совместимых отношения, одинаковой размерности: А и В. Результат объединения есть отношение С1, той же структуры, содержащее все кортежи отношения А и все кортежи отношения В (рис. 10).

А (Сберегательные банки Центрального района):

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *