что такое реактивный двигатель простым языком
Устройство реактивного двигателя
Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.
2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.
Устройство реактивного двигателя достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.
Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.
Устройство реактивного двигателя
основные детали реактивного двигателя
В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.
Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.
Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.
После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.
Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.
После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.
Отклоняемый вектор тяги
Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток. Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.
Типы реактивных двигателей
Существует несколько основных типом реактивных двигателей.
Классический реактивный двигатель самолета F-15
Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.
Двухлопастной турбовинтовой двигатель
Турбовинтовой двигатель. В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается 600—800 км/ч.
Турбовентиляторный реактивный двигатель.
Турбовентиляторный реактивный двигатель.
Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.
Используется на лайнерах и больших самолетах.
Прямоточный воздушно-реактивный двигатель (Ramjet)
Прямоточный воздушно-реактивный двигатель
Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.
Далее все происходит так же как в обычном реактивном двигателе – воздух смешивается с горючим и выходит в виде реактивной струи из сопла.
Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.
И напоследок – видео работы реактивного двигателя:
Реактивный двигатель самолета
Реактивный двигатель самолета — двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.
Для всех реактивных двигателей общим является то, что в процессе сгорания топлива и с последующим преобразованием потенциальной энергии продуктов сгорания в кинетическую происходит ускорение потока газов, и таким образом возникает тяга. Сила тяги (кг) является основной характеристикой двигателя.
Реактивные двигатели делятся на три группы:
Для работы жидкостных реактивных двигателей не требуется кислород, содержащийся в воздухе. Двигатель может работать в сильно разряженной атмосфере. Для сгорания топлива должен быть предусмотрен запас окислителя. Наиболее известные комбинации — топливо-окислитель: спирт и кислород, водород и кислород, бензин и азотная кислота, водород и фтор, диборан и кислород и т. д.
В воздушно-реактивных двигателях используется кислород, содержащийся в воздухе. В качестве топлива выступает керосин и очень редко — другой вид жидкого топлива.
Воздушно-реактивные двигатели, в свою очередь, классифицируются по двум признакам:
В первом случае сжатие воздуха происходит за счет скоростного напора, во втором — за счет работы компрессора или мотокомпрессора.
В прямоточных воздушно-реактивных двигателях воздух атмосферы попадает во входной патрубок, при этом скорость воздуха уменьшается до 0, давление р повышается, температура t также возрастает. Под большим давлением воздух поступает в камеру сгорания, куда одновременно через форсунки поступает топливо. Горение происходит непрерывно. Продукты сгорания расширяются в реактивном стиле и выталкиваются в атмосферу. Особенностью двигателя, помимо его простоты конструкции, является то, что величина тяги зависит от скорости полета (скоростного напора) — тяга пропорциональна квадрату скорости полета.