что такое размер массива
Массивы в языке Си
При решении задач с большим количеством данных одинакового типа использование переменных с различными именами, не упорядоченных по адресам памяти, затрудняет программирование. В подобных случаях в языке Си используют объекты, называемые массивами.
Массив — это непрерывный участок памяти, содержащий последовательность объектов одинакового типа, обозначаемый одним именем.
Массив характеризуется следующими основными понятиями:
Элемент массива (значение элемента массива) – значение, хранящееся в определенной ячейке памяти, расположенной в пределах массива, а также адрес этой ячейки памяти.
Каждый элемент массива характеризуется тремя величинами:
Адрес массива – адрес начального элемента массива.
Имя массива – идентификатор, используемый для обращения к элементам массива.
Размер массива – количество элементов массива
Размер элемента – количество байт, занимаемых одним элементом массива.
Графически расположение массива в памяти компьютера можно представить в виде непрерывной ленты адресов.
Длина массива – количество байт, отводимое в памяти для хранения всех элементов массива.
ДлинаМассива = РазмерЭлемента * КоличествоЭлементов
Для определения размера элемента массива может использоваться функция
Массивы
Массивы
П усть нам необходимо работать с большим количеством однотипных данных. Например, у нас есть тысяча измерений координаты маятника с каким-то шагом по времени. Создавать 1000 переменных для хранения всех значений очень. обременительно. Вместо этого множество однотипных данных можно объединить под одним именем и обращаться к каждому конкретному элементу по его порядковому номеру.
Массив в си определяется следующим образом
[ ];
Например,
int a[100];
Мы получим массив с именем a, который содержит сто элементов типа int. Как и в случае с переменными, массив содержит мусор.
Для получения доступа до первого элемента, в квадратных скобках пишем его номер (индекс). Например
Начальная инициализация массива.
Н апишем простую программу. Создадим массив, после чего найдём его максимальный элемент.
Разберём пример. Сначала мы создаём массив и инициализируем его при создании. После этого присваиваем максимальному найденному элементу значение первого элемента массива.
После чего проходим по массиву. Так как мы уже просмотрели первый элемент (у него индекс 1), то нет смысла снова его просматривать.
Тот же пример, только теперь пользователь вводит значения
В том случае, если при инициализации указано меньше значений, чем размер массива, остальные элементы заполняются нулями.
Если необходимо заполнить весь массив нулями, тогда пишем
Можно не задавать размер массива явно, например
массив будет иметь размер 3
Размер массива
М ассив в си должен иметь константный размер. Это значит, что невозможно, например, запросить у пользователя размер, а потом задать этот размер массиву.
Создание динамических массивов будет рассмотрено дальше, при работе с указателями и памятью
В некоторых случаях можно узнать размер массива с помощью функции sizeof.
Но это вряд ли будет полезным. При передаче массива в качестве аргумента функции будет передаваться указатель, поэтому размер массива будет невозможно узнать.
Статические массивы удобны, когда заранее известно число элементов. Они предоставляют быстрый, но небезопасный доступ до элементов.
Переполнение массива
П ускай у вас есть такой код
Примеры
Т еперь несколько типичных примеров работы с массивами
1. Переворачиваем массив.
Здесь незнакомая для вас конструкция
макрос. Во всём коде препроцессор автоматически заменит все вхождения SIZE на 10u.
2. Удаление элемента, выбранного пользователем.
Удаление элемента в данном случае, конечно, не происходит. Массив остаётся того же размера, что и раньше. Мы просто затираем удаляемый элемент следующим за ним и выводим SIZE-1 элементов.
3. Пользователь вводит значения в массив. После этого вывести все разные значения, которые он ввёл.
Пусть пользователь вводит конечное число элементов, допустим 10. Тогда заранее известно, что всего различных значений будет не более 10. Каждый раз, когда пользователь вводит число будем проходить по массиву и проверять, было ли такое число введено.
5. Сортировка массива пузырьком
6. Перемешаем массив. Воспользуемся для этого алгоритмом Fisher-Yates:
Для i от N-1 до 1 выбираем случайное число j в пределах от 0 до i и меняем местами i-й и j-й элементы.
Изучаем C++. Часть 7. Массивы и работа с ними
Разбираемся, как пользоваться одним из самых удобных способов хранения данных.
Это седьмая часть из серии статей «Глубокое погружение в C++». В прошлой статье мы узнали, как использовать циклы while, do-while и for и сокращать с их помощью код. Сегодняшняя тема — массивы.
Массив — это определённое число ячеек памяти, расположенных подряд. Они позволяют эффективно хранить однотипные данные: зарплаты сотрудников, координаты персонажей, баллы учеников и так далее.
На картинке выше показано объявление массива из четырёх элементов целочисленного типа. Несмотря на то что значения элементам не присваивались, массив всё равно будет занимать такой объём памяти, который занимали бы четыре переменные. В данном случае — 16 байт.
Массивы очень удобные и быстрые: расположение ячеек друг за другом позволяет увеличить скорость работы с данными в них.
Пишет о программировании, в свободное время создает игры. Мечтает открыть свою студию и выпускать ламповые RPG.
Как объявить массив в C++
Есть несколько способов объявления массивов:
Нумерация в массивах начинается с нуля, а не с единицы. При этом длина остается обычной. То есть в массиве длиной в десять ячеек индекс последней будет 9.
Важно! Массивы — иммутабельные (неизменяемые). Вы можете скорректировать значения отдельных элементов, но не сам массив — нельзя изменить его длину или присвоить одному массиву другой.
Всегда следите, чтобы не обращаться к ячейке данных, которая находится за пределами массива. Если длина равна 5, а вы обратитесь к ячейке под индексом 5, 6, 7 и так далее, то результат может быть непредсказуемым.
Дадим формальное определение:
массив — структурированный тип данных, состоящий из некоторого числа элементов одного типа.
Для того чтобы разобраться в возможностях и особенностях обработки массивов в программах на ассемблере, нужно ответить на следующие вопросы:
· Как описать массивв программе?
· Как инициализировать массив, то есть как задать начальные значения его элементов?
· Как организовать доступк элементам массива?
· Как организовать массивыс размерностью более одной?
· Как организовать выполнениетиповых операций с массивами?
Описание и инициализация массива в программе
Специальных средств описания массивов в программах ассемблера, конечно, нет. При необходимости использовать массив в программе его нужно моделировать одним из следующих способов:
1. Перечислением элементов массива в поле операндов одной из директив описания данных. При перечислении элементы разделяются запятыми. К примеру:
;массив из 5 элементов.Размер каждого элемента 4 байта:
2. Используя оператор повторения dup. К примеру:
;массив из 5 нулевых элементов.
;Размер каждого элемента 2 байта:
Такой способ определения используется для резервирования памяти с целью размещения и инициализации элементов массива.
3. Используя директивы labelиrept. Пара этих директив может облегчить описание больших массивов в памяти и повысить наглядность такого описания. Директиваreptотносится к макросредствам языка ассемблера и вызывает повторение указанное число раз строк, заключенных между директивой и строкой endm. К примеру, определим массив байт в области памяти, обозначенной идентификаторомmas_b. В данном случае директиваlabelопределяет символическое имяmas_b, аналогично тому, как это делают директивы резервирования и инициализации памяти. Достоинство директивыlabelв том, что она не резервирует память, а лишь определяет характеристики объекта. В данном случае объект — это ячейка памяти. Используя несколько директивlabel, записанных одна за другой, можно присвоить одной и той же области памяти разные имена и разный тип, что и сделано в следующем фрагменте:
В результате в памяти будет создана последовательность из четырех слов f1f0. Эту последовательность можно трактовать как массив байт или слов в зависимости от того, какое имя области мы будем использовать в программе —mas_bилиmas_w.
4. Использование цикла для инициализации значениями области памяти, которую можно будет впоследствии трактовать как массив.
5. Посмотрим на примере листинга 2, каким образом это делается.
Листинг 2 Инициализация массива в цикле
mes db 0ah,0dh,’Массив- ‘,’$’
mas db 10 dup (?) ;исходный массив
xor ax,ax ;обнуление ax
mov cx,10 ;значение счетчика цикла в cx
mov si,0 ;индекс начального элемента в cx
go: ;цикл инициализации
mov mas[si],bh ;запись в массив i
inc si ;продвижение к следующему элементу массива
loop go ;повторить цикл
;вывод на экран получившегося массива
mov ah,02h ;функция вывода значения из al на экран
add dl,30h ;преобразование числа в символ
mov ax,4c00h ;стандартный выход
end main ;конец программы
Доступ к элементам массива
При работе с массивами необходимо четко представлять себе, что все элементы массива располагаются в памяти компьютера последовательно.
Само по себе такое расположение ничего не говорит о назначении и порядке использования этих элементов. И только лишь программист с помощью составленного им алгоритма обработки определяет, как нужно трактовать эту последовательность байт, составляющих массив. Так, одну и ту же область памяти можно трактовать как одномерный массив, и одновременно те же самые данные могут трактоваться как двухмерный массив. Все зависит только от алгоритма обработки этих данных в конкретной программе. Сами по себе данные не несут никакой информации о своем “смысловом”, или логическом, типе. Помните об этом принципиальном моменте.
Эти же соображения можно распространить и на индексы элементов массива. Ассемблер не подозревает об их существовании и ему абсолютно все равно, каковы их численные смысловые значения.
Для того чтобы локализовать определенный элемент массива, к его имени нужно добавить индекс. Так как мы моделируем массив, то должны позаботиться и о моделировании индекса. В языке ассемблера индексы массивов — это обычные адреса, но с ними работают особым образом. Другими словами, когда при программировании на ассемблере мы говорим об индексе, то скорее подразумеваем под этим не номер элемента в массиве, а некоторый адрес.
Давайте еще раз обратимся к описанию массива. К примеру, в программе статически определена последовательность данных:
Пусть эта последовательность чисел трактуется как одномерный массив. Размерность каждого элемента определяется директивой dw, то есть она равна2байта. Чтобы получить доступ к третьему элементу, нужно к адресу массива прибавить6. Нумерация элементов массива в ассемблере начинается с нуля.
То есть в нашем случае речь, фактически, идет о 4-м элементе массива — 3, но об этом знает только программист; микропроцессору в данном случае все равно — ему нужен только адрес.
В общем случае для получения адреса элемента в массиве необходимо начальный (базовый) адрес массива сложить с произведением индекса (номер элемента минус единица) этого элемента на размер элемента массива:
база + (индекс*размер элемента)
Архитектура микропроцессора предоставляет достаточно удобные программно-аппаратные средства для работы с массивами. К ним относятся базовые и индексные регистры, позволяющие реализовать несколько режимов адресации данных. Используя данные режимы адресации, можно организовать эффективную работу с массивами в памяти. Вспомним эти режимы:
· индексная адресация со смещением — режим адресации, при котором эффективный адрес формируется из двух компонентов:
o постоянного (базового)— указанием прямого адреса массива в виде имени идентификатора, обозначающего начало массива;
o переменного (индексного)— указанием имени индексного регистра.
;поместить 3-й элемент массива mas в регистр ax:
· базовая индексная адресация со смещением — режим адресации, при котором эффективный адрес формируется максимум из трех компонентов:
o постоянного(необязательный компонент), в качестве которой может выступать прямой адрес массива в виде имени идентификатора, обозначающего начало массива, или непосредственное значение;
o переменного (базового)— указанием имени базового регистра;
o переменного (индексного)— указанием имени индексного регистра.
Этот вид адресации удобно использовать при обработке двухмерных массивов. Пример использования этой адресации мы рассмотрим далее при изучении особенностей работы с двухмерными массивами.
Напомним, что в качестве базового регистра может использоваться любой из восьми регистров общего назначения. В качестве индексного регистра также можно использовать любой регистр общего назначения, за исключением esp/sp.
Микропроцессор позволяет масштабировать индекс. Это означает, что если указать после имени индексного регистра знак умножения “*” с последующей цифрой 2, 4 или 8, то содержимое индексного регистра будет умножаться на 2, 4 или 8, то есть масштабироваться.
Применение масштабирования облегчает работу с массивами, которые имеют размер элементов, равный 2, 4 или 8 байт, так как микропроцессор сам производит коррекцию индекса для получения адреса очередного элемента массива. Нам нужно лишь загрузить в индексный регистр значение требуемого индекса (считая от 0). Кстати сказать, возможность масштабирования появилась в микропроцессорах Intel, начиная с модели i486. По этой причине в рассматриваемом здесь примере программы стоит директива .486. Ее назначение, как и ранее использовавшейся директивы.386, в том, чтобы указать ассемблеру при формировании машинных команд на необходимость учета и использования дополнительных возможностей системы команд новых моделей микропроцессоров.
В качестве примера использования масштабирования рассмотрим листинг 3, в котором просматривается массив, состоящий из слов, и производится сравнение этих элементов с нулем. Выводится соответствующее сообщение.
Листинг 3. Просмотр массива слов с использованием
.data ;начало сегмента данных
mes1 db ‘не равен 0!$’,0ah,0dh
mes2 db ‘равен 0!$’,0ah,0dh
mas dw 2,7,0,0,1,9,3,6,0,8 ;исходный массив
.486 ;это обязательно
mov ds,ax ;связка ds с сегментом данных
xor ax,ax ;обнуление ax
mov cx,10 ;значение счетчика цикла в cx
mov esi,0 ;индекс в esi
mov dx,mas[esi*2] ;первый элемент массива в dx
cmp dx,0 ;сравнение dx c 0
je equal ;переход, если равно
not_equal: ;не равно
mov ah,09h ;вывод сообщения на экран
mov ah,02h ;вывод номера элемента массива на экран
inc esi ;на следующий элемент
dec cx ;условие для выхода из цикла
jcxz exit ;cx=0? Если да — на выход
jmp compare ;нет — повторить цикл
mov ah,09h ;вывод сообщения mes3 на экран
mov ah,09h ;вывод сообщения mes2 на экран
inc esi ;на следующий элемент
dec cx ;все элементы обработаны?
mov ax,4c00h ;стандартный выход
end main ;конец программы
Еще несколько слов о соглашениях:
· Если для описания адреса используется только один регистр, то речь идет о базовой адресациии этот регистр рассматривается какбазовый:
;переслать байт из области данных, адрес
которой находится в регистре ebx:
· Если для задания адреса в команде используется прямая адресация(в виде идентификатора) в сочетании с одним регистром, то речь идет обиндексной адресации. Регистр считаетсяиндексным, и поэтому можно использовать масштабирование для получения адреса нужного элемента массива:
;сложить содержимое eax с двойным словом в памяти
;по адресу mas + (ebx)*4
· Если для описания адреса используются два регистра, то речь идет о базово-индексной адресации. Левый регистр рассматривается как базовый, а правый — как индексный. В общем случае это не принципиально, но если мы используем масштабирование с одним из регистров, то он всегда являетсяиндексным. Но лучше придерживаться определенных соглашений.
· Помните, что применение регистров ebp/bpиesp/spпо умолчанию подразумевает, что сегментная составляющая адреса находится в регистреss.
Заметим, что базово-индексную адресацию не возбраняется сочетать с прямой адресацией или указанием непосредственного значения. Адрес тогда будет формироваться как сумма всех компонентов.
;адрес операнда равен [mas+(ebx)+(ecx)*2]
;адрес операнда равен [(ebx)+8+(ecx)*4]
Но имейте в виду, что масштабирование эффективно лишь тогда, когда размерность элементов массива равна 2, 4 или 8 байт. Если же размерность элементов другая, то организовывать обращение к элементам массива нужно обычным способом, как описано ранее.
Рассмотрим пример работы с массивом из пяти трехбайтовых элементов (листинг 4). Младший байт в каждом из этих элементов представляет собой некий счетчик, а старшие два байта — что-то еще, для нас не имеющее никакого значения. Необходимо последовательно обработать элементы данного массива, увеличив значения счетчиков на единицу.
Листинг 4. Обработка массива элементов с нечетной длиной
MODEL small ;модель памяти
STACK 256 ;размер стека
.data ;начало сегмента данных
N=5 ;количество элементов массива
mas db 5 dup (3 dup (0))
main: ;точка входа в программу
xor ax,ax ;обнуление ax
mov dl,mas[si] ;первый байт поля в dl
inc dl ;увеличение dl на 1 (по условию)
mov mas[si],dl ;заслать обратно в массив
add si,3 ;сдвиг на следующий элемент массива
Урок №74. Массивы
На уроке о структурах мы узнали, что с их помощью можно объединять переменные разных типов под одним идентификатором. Это идеально, когда нужно смоделировать объект, который имеет много разных свойств. Однако удобство работы со структурами при наличии большого количества элементов оставляет желать лучшего.
Что такое массив?
К счастью, структуры не являются единственным агрегированным типом данных в языке C++. Есть еще массив — совокупный тип данных, который позволяет получить доступ ко всем переменным одного и того же типа данных через использование одного идентификатора.
Рассмотрим случай, когда нужно записать результаты тестов 30 студентов в классе. Без использования массива нам придется выделить 30 почти одинаковых переменных!
С использованием массива всё гораздо проще. Следующая строка эквивалентна коду, приведенному выше:
Элементы массива
Каждая из переменных в массиве называется элементом. Элементы не имеют своих собственных уникальных имен. Вместо этого для доступа к ним используется имя массива вместе с оператором индекса [] и параметром, который называется индексом, и который сообщает компилятору, какой элемент мы хотим выбрать. Этот процесс называется индексированием массива.
Важно: В отличие от повседневной жизни, отсчет в программировании и в языке С++ всегда начинается с 0, а не с 1!
Пример программы с использованием массива
Здесь мы можем наблюдать как определение, так и индексирование массива: