что такое рациональные неравенства определение
Рациональные неравенства (ЕГЭ 2022)
Хочешь без труда решать ЛЮБЫЕ неравенства?
Тогда начни с рациональных! Они станут твоей крепкой опорой в решении других неравенств.
Читай эту статью и ты во всём разберешься!
Рациональные неравенства — коротко о главном
Определение рационального неравенства
Рациональное неравенство — неравенство, левая и правая части которого являются дробно-рациональными функциями, то есть функциями, представимыми в виде отношения многочленов \(\displaystyle f\left(x\right)\) и \(\displaystyle g\left(x\right)\).
Стандартный вид рационального неравенства
Строгие рациональные неравенства
Рациональные неравенства — подробнее
Рациональные неравенства – это неравенства, обе части которых являются рациональными выражениями.
Что такое рациональное выражение? Напомню:
Рациональное выражение — это алгебраическое выражение, составленное из чисел и переменной \(\displaystyle x\) с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.
Например, такое рациональное неравенство: \(\displaystyle \frac
Решение всех рациональных неравенств сводится к двум основным шагам:
Шаг 1. Перенос. Общий знаменатель. Разложение на множители
Переносим все в одну сторону, приводим к общему знаменателю и раскладываем числитель и знаменатель на множители.
Все множители должны быть «линейными», то есть переменная в каждом из них – только в первой степени.
Если какой-то из множителей нелинейный, и его невозможно разложить на линейные, от него надо избавиться.
Если забыл, как раскладывать выражение на множители, прочти тему «Разложение многочленов на множители».
Шаг 2. Метод интервалов
Если не знаешь, что это такое, прочти тему «Метод интервалов».
Первый шаг у нас уже раньше встречался. Где? В рациональных уравнениях!
Но в отличие от уравнений, в неравенствах мы никогда не разделяем числитель и знаменатель!
Более того, если в числителе и знаменателе есть одинаковые нечисловые множители, мы их не сокращаем!
Это правило у нас уже было в теме «Метод интервалов». И вообще, в этой теме мы уже учились решать рациональные неравенства. Поэтому здесь ограничимся отдельными примерами.
Рациональные неравенства и их системы с примерами решения
Содержание:
Простые рациональные неравенства и их системы
Рациональные неравенства одной переменной и методы их решения
Пример:
Решите неравенство: 2(2х-5)(Зх-8)(5-4х) 0, то мы можем возвести обе части заданного неравенства в квадрат: При
заданное неравенства обязательно выполняется:
Замена переменной
Этот метод аналогичен соответствующему методу замены переменной, использованному при решении иррациональных уравнений.
Пример:
Решите неравенство:
Решение:
Выпишем неравенство в виде:
Введем новую переменную: В этом случае
Значит:
Пример:
Решите неравенство:
Решение:
Введем новую переменную:
Отсюда, и получим рациональное неравенство от переменной t:
Из последнего неравенства найдем х:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Решение целых и дробно рациональных неравенств
Продолжаем углубляться в тему «решение неравенств с одной переменной». Нам уже знакомы линейные неравенства и квадратные неравенства. Они являются частными случаями рациональных неравенств, изучением которых мы сейчас и займемся. Начнем с того, что выясним, неравенства какого вида называются рациональными. Дальше разберемся с их подразделением на целые рациональные и дробные рациональные неравенства. А уже после этого будем изучать, как проводится решение рациональных неравенств с одной переменной, запишем соответствующие алгоритмы и рассмотрим решения характерных примеров с детальными пояснениями.
Навигация по странице.
Что такое рациональные неравенства?
В школе на уроках алгебры, как только заходит разговор про решение неравенств, так сразу же и происходит встреча с рациональными неравенствами. Однако сначала их не называют своим именем, так как на этом этапе виды неравенств представляют мало интереса, а основная цель состоит в получении начальных навыков работы с неравенствами. Сам термин «рациональное неравенство» вводится позже в 9 классе, когда начинается детальное изучение неравенств именно этого вида.
Давайте узнаем, что такое рациональные неравенства. Вот определение:
Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения.
В озвученном определении ничего не сказано о числе переменных, значит, допускается любое их количество. В зависимости от этого различают рациональные неравенства с одной, двумя и т.д. переменными. Кстати, в учебнике [1, c.12] дается подобное определение, но для рациональных неравенств с одной переменной. Это и понятно, так как в школе основное внимание уделяется решению неравенств с одной переменной (ниже мы тоже будем говорить лишь о решении рациональных неравенств с одной переменной). Неравенства с двумя переменными рассматривают мало, а неравенствам с тремя и большим числом переменных практически вообще не уделяют внимания.
Для удобства дальнейшего описания введем подразделение рациональных неравенств на целые и дробные.
Рациональное неравенство будем называть целым, если обе его части – целые рациональные выражения.
Дробно рациональное неравенство – это рациональное неравенство, хотя бы одна часть которого – дробное выражение.
Теперь мы имеем четкое понимание, что представляют собой рациональные неравенства, и можно смело начинать разбираться с принципами решения целых и дробно рациональных неравенств с одной переменной.
Решение целых неравенств
Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
Получили квадратное неравенство, которое равносильно исходному неравенству. Решаем его любым известным нам методом. Проведем решение квадратного неравенства графическим способом.
Находим корни квадратного трехчлена −2·x 2 +11·x+6 :
Делаем схематический чертеж, на котором отмечаем найденные нули, и учитываем, что ветви параболы направлены вниз, так как старший коэффициент отрицательный:
Следует отметить, что иногда нецелесообразно от неравенства r(x)−s(x) (≤, >, ≥) переходить к неравенству h(x) (≤, >, ≥), где h(x) – многочлен степени выше второй. Это касается тех случаев, когда сложнее разложить многочлен h(x) на множители, чем представить выражение r(x)−s(x) в виде произведения линейных двучленов и квадратных трехчленов, например, путем вынесения за скобки общего множителя. Поясним это на примере.
Проделанное преобразование является равносильным, поэтому решение полученного неравенства будет решением и исходного неравенства.
По чертежу записываем ответ .
.
Решение дробно рациональных неравенств
Теперь займемся решением такой задачи: пусть требуется решить дробно рациональное неравенство с одной переменной x вида r(x) (≤, >, ≥), где r(x) и s(x) – некоторые рациональные выражения, причем хотя бы одно из них – дробное. Давайте сразу приведем алгоритм ее решения, после чего внесем необходимые пояснения.
Алгоритм решения дробно рационального неравенства с одной переменной r(x) (≤, >, ≥):
Так будет получено искомое решение дробно рационального неравенства.
Пояснений требует второй шаг алгоритма. Перенос выражения из правой части неравенства в левую дает неравенство r(x)−s(x) (≤, >, ≥), которое равносильно исходному. Здесь все понятно. А вот вопросы вызывает дальнейшее его преобразование к виду p(x)/q(x) (≤, >, ≥).
Первый вопрос: «Всегда ли его возможно провести»? Теоретически, да. Мы знаем, что можно любое рациональное выражение преобразовать в рациональную дробь. В числителе и знаменателе рациональной дроби находятся многочлены. А из основной теоремы алгебры и теоремы Безу следует, что любой многочлен степени n с одной переменной можно представить в виде произведения линейных двучленов. Это и объясняет возможность проведения указанного преобразования.
На практике же довольно сложно раскладывать многочлены на множители, а если их степень выше четвертой, то и не всегда возможно. Если разложение на множители невозможно, то не будет и возможности найти решение исходного неравенства, но в школе такие случаи обычно не встречаются.
Решите рациональное неравенство .
Воспользуемся алгоритмом решения рациональных неравенств.
Теперь добиваемся того, чтобы в правой части неравенства был нуль, для этого переносим выражение из правой части в левую, не забыв изменить знак этого выражения. В результате приходим к равносильному неравенству .
Дальше нужно преобразовать выражение в левой части к виду, удобному для применения метода интервалов. Сначала выполним приведение алгебраических дробей к наименьшему общему знаменателю, который очевидно есть (x−3) 2 ·(x+1) :
Еще выражение в числителе можно свернуть по формуле квадрат суммы:
Найдите решение неравенства .
Соберем все в левой части неравенства: .
Теперь преобразуем выражение в левой части неравенства. Начнем с первой дроби:
С учетом этого результата имеем
Заканчивая тему, покажем пример, в котором вывод о решении рационального неравенства делается на основе ОДЗ.
Каково решение рационального неравенства ?
Начинаем как всегда с ОДЗ, ей отвечает система . Эта система не имеет решений, так как
Таким образом, рациональное неравенство не имеет решений, так как оно не имеет смысла ни при каких значениях переменной.
Решение целых и дробно рациональных неравенств
Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.
Понятие рациональных равенств
Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:
Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.
Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:
А вот неравенство вида 5 + x + 1 x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.
Все рациональные неравенства делятся на целые и дробные.
Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).
Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.
Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.
Как решать целые неравенства
Начнем с перенесения выражения из правой части в левую. Получим следующее:
Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.
Решение
Начнем с переноса выражения из правой части в левую с противоположным знаком.
x · ( x + 3 ) + 2 · x − ( x + 1 ) 2 − 1 ≤ 0
Решение
Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.
( x 2 + 1 ) 2 − 3 · x 2 − ( x 2 − x ) · ( x 2 + x ) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0
Ответ: любое действительно число.
Решение
Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.
Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :
Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.
Решение
Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.
( x 2 + 2 ) · ( x + 4 ) − 14 + 9 · x 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x 0 x 3 + 4 · x 2 + 11 · x − 6 0
В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.
Решение
Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:
Как решать дробно рациональные неравенства
Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.
Решение
После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю ( x − 3 ) 2 · ( x + 1 ) :
Сворачиваем выражение в числителе, применяя формулу квадрата суммы:
Используем метод интервалов:
Решение
Переносим выражения из правой части в левую:
Далее выполняем преобразование левой части. Сначала преобразуем первую дробь:
Учитывая получившийся результат, запишем:
В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.
Решение
Решений у этой системы нет, поскольку
Алгебра. Урок 8. Неравенства, системы неравенств.
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
Смысл выколотой точки в том, что сама точка в ответ не входит.
Смысл жирной точки в том, что сама точка входит в ответ.
Таблица числовых промежутков
Неравенство | Графическое решение | Форма записи ответа |
---|---|---|
x c |