что такое радиосигнал и как он передается
Как работает AM / FM радио
Когда вы включаете радио, вы слышите музыку и голос, который транслируется за несколько километров.
Что такое радиоволны?
Радиопередачи AM и FM передаются по воздуху через радиоволны, которые являются частью широкого спектра электромагнитных волн, которые включают в себя видимый свет, рентгеновские лучи, гамма-лучи и другие.
Электромагнитные волны вокруг нас на разных частотах. Радиоволны похожи на световые волны, но частоты наши глаза не воспринимают.
Электромагнитные волны генерируются переменным током (AC), электрической мощностью, используемой для запуска каждого устройства в наших домах от стиральных машин до телевизоров. Переменный ток составляет 220 вольт при частоте 50 Гц, что означает, что ток чередуется или меняет направление в проводе 50 раз в секунду. Например, США используют 60 Гц в качестве стандарта. Как 50, так и 60 Гц являются относительно низкими частотами, но даже 60 Гц переменного тока генерирует некоторый уровень электромагнитного излучения, а это означает, что часть электричества выходит из провода и передается в воздух. Чем выше частота, тем больше электричества выходит из провода.
Чтобы превратиться в полезные сигналы, передающие информацию (музыку или голос), должна произойти модуляция, она является основой для радиосигналов AM и FM. Фактически, AM означает амплитудную модуляцию, а FM означает частотную модуляцию.
Другим словом для модуляции является изменение. Электромагнитное излучение должно быть модулировано или изменено для использования в качестве радиопередачи. Без модуляции никакая информация не передается в радиосигнале.
Радиопередачи AM
Радио AM использует амплитудную модуляцию и является самой простой формой радиовещания. Чтобы понять амплитудную модуляцию, рассмотрите стационарный сигнал, передающий на частоте 1000 кГц в диапазоне AM. Амплитуда постоянного сигнала не изменяются или не модулируются, поэтому нет полезной информации. Устойчивый сигнал генерирует только шум, пока он не будет модулирован голосом или музыкой.
Радио AM страдает от большого количества шума и помех, чем FM, особенно во время грозы. Электричество, генерируемое молнией, создает шумовые пики, полученные тюнером AM. Радио AM также имеет очень ограниченный диапазон аудио, от 200 Гц до 5 кГц, что ограничивает его полезность в радио.
FM-радиовещание
FM-радио использует частотную модуляцию, которая изменяет или модулирует частоту сигнала, сохраняя постоянную амплитуду. Когда частота модулируется, музыка или разговор передаются через несущую частоту.
FM-радио работает в диапазоне от 87,5 МГц до 108,0 МГц, гораздо более высокий диапазон частот, чем AM-радио.
Диапазон расстояний для передач FM более ограничен, чем AM, обычно менее 160 километров, но лучше подходит для музыки, поскольку диапазон частот FM составляет от 30 Гц до 15 кГц. FM-трансляции также обычно находятся в стереофоническом режиме, хотя несколько станций AM также транслируют стереосигналы.
Хотя FM-сигналы могут подвергаться шуму от молнии, то они используют функцию ограничителя, которая отсекает шумовые пики для получения относительно бесшумного сигнала.
Понятие сигнала в радиосвязи — типы и параметры сигналов
В этой статье Вы узнаете что такое информация и сигнал, какие бывают сигналы, их виды, параметры. Увидите реальную спектральную плотность мощности. Что происходит с сигналом в канале связи. Познакомимся с эффектом Доплера. Узнаем больше о шумах и помехах.
Что такое информация
Под информацией понимают совокупность сведений о каких-либо событиях, явлениях или предметах, предназначенных для передачи, приёма, обработки, преобразования, хранения.
К.Э. Шеннон, как один из основателей теории информации образно её определил так: «Информация – послание, которое уменьшает неопределённость».
Если я Вам скажу что-то, что для Вас известно, то это не будет для Вас информацией. Я если скажу, то что Вы не знали, уменьшу вашу неопределенность, то это уже будет для Вас информацией.
Что такое сигнал
Сигнал – это некоторый физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением. Пример – электрический сигнал, радиосигнал, как частный случай электромагнитного сигнала, акустический сигнал, оптический и т.д. В зависимости от того, в какой среде идет распространение сигнала. Сигнал – это материальный носитель информации.
Обычно сигнал, независимо от его физической природы, представляют, как некоторую функцию времени x(t). Такое представление есть общепринятая математическая абстракция физического сигнала.
Типы сигналов
Такой сигнал передает информацию? Информация уменьшает неопределенность. В детерминированном сигнале мы знаем все, мы знаем какой он будет через минуту, через год. Детерминированный сигнал информацию в себе никакую не несет. Например, сигнал с гетеродина, мы сами его сформировали, задали частоту, амплитуду, фазу.
Пример: x(t)=Asin(wt+j), где амплитуда А и j — случайная величина.
Например, мы знаем его частоту, но не знаем амплитуду и фазу — это квазидетерминированный сигнал, “квази”-почти, почти определенный сигнал. Информация вносит некоторую случайность. Если мы знаем амплитуду, частоту и фазу, значит информации там нет. Квазидетерминированный сигнал передает информацию, передача информации идет в тех параметрах, которые случайны, в нашем примере амплитуда и фаза случайные величины. Именно в этих величинах передается информация. Информация всегда несет в себе хаос, случайность. Все модулированные сигналы, ЧМ, ФМ это квазидетерминированные сигналы.
Кроме этого все сигналы могут быть непрерывными (аналоговыми) и дискретными (цифровыми или импульсными).
О случайном сигнале мы можем судить о его вероятностных характеристиках. Мы можем знать его плотность вероятности, но какое значение примет сигнал через секунду, минуту мы не знаем. Когда мы работаем со случайным сигналом, мы всегда работаем с вероятностью.
Параметры сигналов
Какие параметры мы будем использовать? Это энергия за некоторый интервал времени T. X(t) это сам сигнал, чтобы определить энергию мы должны взять по модулю, возвести в квадрат, проинтегрировать на некотором промежутке времени и получим энергию.
Средняя мощность за некоторое время t. Это энергия деленная на время.
Мгновенная мощность, если средняя мощность измеряется на некотором участке времени, то мгновенная измеряется в один, конкретный момент времени.
Средняя мощность измеряется на промежутке времени, а мгновенная в точке.
Спектральная плотность энергии и мощности
Спектральная плотность сигнала характеризует распределение энергии или мощности сигнала по диапазону частот. Спектральная плотность энергии, это как у нас энергия распределяется по частотному диапазону. Вычисляется через преобразование Фурье.
И соответственно, СПМ это, как у нас распределяется мощность по частотному диапазону.
В формуле, модуль в квадрате это спектральная плотность энергии, поделили ее на время T и по определению, время T должно стремиться к бесконечности. Но на практике, никто не ждет бесконечности, все оценивают СПМ на некотором интервале времени.
СПМ это некоторая функция зависящая от частоты. По шкале СПМ возьмем 10 Вт/Гц, и окрестности в 1 Гц по частоте. То в полосе 1 Гц будет заключено 10 Вт мощности.
Есть два сигнала и представлены их спектральные плотности мощности. ВОПРОС. Мощность какого сигнала больше?
Мы должны определить площадь под кривой, проинтегрировать. S1=2*10=20 Вт, S2=1*30=30 Вт. В первом случае S1 имеет мощность 20 Вт, а во втором 30 Вт.
СПМ реального сигнала, отображаемая на спектральном анализаторе.
Современные анализаторы спектра могут считать автоматически площадь, вы включаете определение мощности, задаете частотный интервал в котором он должен измерить эту мощность и он сам вычисляет канальную мощность сигнала.
Что происходит с сигналом в канале связи
С ним происходят ослабления, задержка, доплеровский сдвиг, шумы и тому подобное.
Ослабление
Сигнал ослабевает за счет рассеивания в пространстве. Например, у нас есть источник радиосигнала, всенаправленный и изотропный, т.е. он во все стороны излучает одинаково. Получается сферический фронт волны. На одном расстоянии r1 и на другом r2.
Пусть излучаемая мощность 100 Вт, все эти 100 ватт распределяются по всей сфере. Приемные антенны не большие, они охватывают только небольшой участок пространства. И количество мощности, проходящее через небольшой участок пространства, будет разный на расстоянии r1 и r2. Потому что плотность мощности на расстоянии r1 будет выше, чем на расстоянии r2.
Площадь сферы равна S=4pi*R^2. И эта формула фигурирует во всех формулах оценки дальности радиосвязи. Потому что радиоволна равномерно рассеивается в пространстве. И помимо того, что сигнал сам ослабевает по мере распространения в пространстве, электромагнитная волна проходит через некую среду, которую пытается нагреть и за счет этого теряет свою энергию.
Задержка распространения сигнала
Не смотря на то, что электромагнитная волна, это самое быстрое, что есть у нас во вселенной, тем не менее скорость распространения этой волны конечна. И поддается измерениям. Например, на 1 км задержка распространения
На что влияет задержка распространения? Обычно, мы точно не знаем расстояние между передатчиком и приемником с точность до микрон. И задержка распространения, которая нам неизвестна, мы не знаем расстояние и не знаем за какое время примем этот сигнал. И соответственно мы не знаем начальную фазу сигнала.
Доплеровский сдвиг частоты
Приняли сигнал с частотой, который отличается от той, которую мы передали. Это дало информацию о скорости объекта. Доплеровский сдвиг частоты появляется, когда у нас либо приемник, или передатчик, двигаются относительно друг друга. Либо двигается отражающая среда, передатчик излучил, радиосигнал отразился от какого-то объекта, если этот объект тоже двигается, то возникает доплеровский сдвиг частоты. Более подробно читайте полную статью “ Доплеровский сдвиг частоты ”.
Воздействие помех и шумов
И в эфире есть шумы и собственные шумы приемника. Про шумы подробнее в отдельной статье.
Замирания сигнала
Замирания сигнала это процесс, когда у сигнала, случайным образом скачет амплитуда и фаза. То больше амплитуда, то меньше. Выделяют:
Когда есть источник, есть приемник, есть множество путей распространения радиоволны, одна волна может прийти прямой, другая переотраженной.
Например, одна волна прошла 100 км, другая 101 км, к чему это приводит? Если две электромагнитные волны проделали разный путь, то фазы у этих сигналов тоже будут разные. Соответственно, если сигналы сложились в противофазе, то сигналы друг друга подавили, если сложились в фазе, то друг друга усилили.
Из-за многолучевого распространения, каждый луч проделывает разное расстояние, это приводит к тому, что начальная фаза каждого луча отличается. И когда в приемнике эти сигналы складываются, они могут друг друга усиливать либо ослаблять. Это приводит к тому, что амплитуда результирующего сигнала постоянно изменяется, это и есть быстрые замирания.
На рисунке ниже представлен характер изменения амплитуды сигнала от времени. Сплошной линией показаны быстрые замирания, пунктирной медленные. Медленные замирания происходят из за затенения, быстрые из-за многолучевого распространения. Получается, что амплитуда постоянно скачет на десятки дБ.
Межсимвольная интерференция
Возникает из-за многолучевого распространения.
Линейные искажения
Канал связи всегда имеет АЧХ и ФЧХ. Какие-то частоты он усиливает, какие-то ослабляет, фаза где-то поворачивается в одну сторону, где-то в другую это и есть линейные искажения.
Если мы хотим сделать модель канала связи, то чем больше этих параметров мы учтем, тем точнее будет эта модель.
Распространение радиоволн в среде и передача данных
Радиоволна – это взаимосвязанные колебания электрического и магнитного полей, которые способны распространяться в пространстве со скоростью света. Они обладают такими свойствами как отражение, затухание, преломление. Радиодиапазон составляют волны с длинами от 0,1 мм до 100 км. Волны короче 0,1 мм относят к оптическим, длиннее 100 км используют исключительно в научных целях.
Радиоволна и ее особенности
Радиоволна создается при изменении электрического либо магнитного поля. Для ее создания используются специальные электромагнитные генераторы. Каждая волна изначально обладает запасом энергии, которую переносит через пространство. Она может терять энергию – такой процесс называется затуханием.
Электромагнитные волны характеризуются следующими параметрами:
В зависимости от скорости изменения направления электрического (либо магнитного) поля можно определить частоту волны, которая измеряется в Герцах (Гц). Чтобы определить длину волны, необходимо знать расстояние между точками, где поле находится в одной фазе. Частота и длина волны – взаимно обратные величины. Знание длины волны очень важно для правильного выбора размера передающей антенны.
Важным свойством электромагнитных волн является то, что они не встречая сопротивления проходят через воздух и могут свободно распространяться в пространстве. Однако, если волна встречает на пути металлические объекты, а также любой другой проводящий электричество материал, то она теряет часть своей энергии, ее мощность падает, а в проводнике генерирует переменный ток. Также часть энергии волны отражается от проводника – данный принцип лег в основу радиолокации.
Дальность связи зависит от мощности передатчика генерирующего электромагнитную волну. Именно это устройство передает волне запас энергии, которую та будет расходовать при распространении. Запас будет уменьшаться при контакте с поверхностью планеты, а также при взаимодействии с различными объектами. Однако, дальность распространения будет зависеть не только от запаса энергии, но и от других свойств – в первую очередь, от длины волны.
Распространение радиоволн, расстояние и длина волны
Радиоволны распространяются в пространстве различным образом. Способ их движения в первую очередь зависит от их длины. Так, например, волны от 10 км и выше (сверхдлинные – СДВ) без труда огибают наземные препятствия как искусственного, так и естественного происхождения. Они теряют мало энергии в процессе своего распространения и затухают гораздо медленнее, чем волны других длин. По этой причине они могут перемещаться в пространстве на тысячи километров. Также они обладают высокой степенью проникновения в среду, поэтому их широко используют для исследований земной коры для нужд археологии, геологии, инженерного дела. Их применяют для исследования атмосферы планеты. Также с их помощью осуществляют связь с подводными объектами.
Километровые волны также называют «длинные» (ДВ), они составляют 1-10 км и тратят больше энергии при распространении, способны покрывать расстояния до 2000 км. Близкий к ним тип – средние (СВ) от 100 м до 1 км. Они сильнее поглощаются земной поверхностью, поэтому имеют еще меньший диапазон распространения – порядка 1000 км.
Короткие волны (КВ – 10-100 м) распространяются не далее чем на 250 км, однако обладают интересным свойством. Часть их, уходящая под большим углом к горизонту, соприкасаясь с верхними слоями атмосферы (ионосферой) отражается и направляется обратно к поверхности. Затем они снова отражаются, теперь уже от земли и снова направляются вверх. Распространяясь таким образом короткие волны могут несколько раз обойти вокруг планеты. Ионосфера теряет свою отражательную способность в ночное время, поэтому связь на коротких волнах в это время суток будет хуже.
Длина ультракоротких волн (УКВ) составляет от 1 см до 10 м, к ним относятся метровые (МВ), дециметровые (ДМВ), сантиметровые (СМВ). Они успешно преодолевают ионосферу не отражаясь от нее. Они уходят выше и применяются для исследования свойств облаков, наблюдения за птицами, определения координат самолетов. Но так как отсутствует эффект отражения, они не могут огибать планету и радиосвязь с их помощью ограничена расстоянием в 200-300 км. С помощью специальных антенн УКВ собирают в «пучок», усиливают и отправляют в указанном направлении, что широко используется при обеспечении спутниковой связи, а также в радиолокации.
Миллиметровые волны (ММВ) во многом схожи с УКВ, однако для них серьезной помехой служат атмосферные явления, такие как дождь, снег, туман, облака. За счет ММВ обеспечивается работа высокоскоростной радиорелейной связи. Они нашли свое применение в быту, их используют в медицине, они пригодились в радиоастрономии.
Оборудование применяемое для передачи радиоволн, способы увеличения дальности
Радиосвязь – быстрый и относительно надежный способ передачи данных на большие расстояния. При этом нет необходимости в использовании физического носителя, например проводов.
Свойства волн разной длины напрямую влияют на их применение для обеспечения радиосвязи. Кроме того, на качество передачи информации с их помощью влияют следующие факторы:
Процесс приема-передачи информации с помощью радиоволн состоит из следующих основных этапов:
Чтобы реализовать обмен информации необходимо чтобы у принимающей и передающей стороны в наличии было следующее оборудование:
Две простейшие радиостанции, как правило, могут обмениваться информацией на очень небольших расстояниях. Чтобы значительно увеличить зону покрытия, необходимо использовать один из следующих методов:
Применяется несколько способов радиосвязи, для каждого из которых используется специфическое оборудование. Три наиболее распространенных вида:
Сотовая связь
При ее использовании сигнал идет от передатчика к приемникам, расположенным на одинаковом расстоянии друг от друга. Они образуют гексагональную фигуру, которую называют «сота». Такое построение сети позволяет обеспечить в области покрытия высокое качество сигнала, которое будет определяться количеством приемников расположенных рядом с местом приема или передачи. В настоящее время этот вид связи является наиболее популярным и чаще всего используемым. Роль приемника и передатчика здесь играет персональный телефонный аппарат. Основное преимущество сотовой связи – обеспечение высокой мобильности абонента.
Радиорелейная связь
Вид радиосвязи, осуществляемой с помощью цепочки передающих станций, находящихся в прямой видимости их антенн. Работают в дециметровом и сантиметровом диапазонах. Возможна одновременное функционирование большого количества передатчиков. Уровень индустриальных и атмосферных помех радиоприему в ДМ и СМ диапазонах низкий. Главный недостаток – ограниченное расстояние передачи и высокая степень зависимости от коммуникационной инфраструктуры – сети ретрансляторов.
Как правило на передающих станциях размещается большой комплекс передающих устройств, находящихся в едином техническом здании. Они применяют общие источники электроэнергии, антенны и их опоры. На каждом объекте создается несколько стволов связи, что позволяет значительно повысить пропускную способность станции, что позволяет реализовать многоканальную связь.
Спутниковая связь
Данный вид – это следующий этап развития радиорелейной связи. Вместо наземной коммуникационной сети используются спутники, расположенные на околоземных орбитах. Радиосигнал сигнал передается со специализированной станции, находящейся на поверхности планеты на космический аппарат. Здесь он обрабатывается, усиливается и отправляется либо на принимающую наземную станцию, либо на другой спутник, находящийся в радиусе действия. Главным достоинством данного вида связи является возможность передавать информацию в любую точку планеты – независимо от ее местоположения: на суше, в полярных льдах, посреди океана.
Сферы применения
Возможность практически мгновенной передачи информации на любые расстояния создает широкие возможности использования во всех сферах деятельности человека. Радиосвязь успешно применяется в следующих отраслях:
Также широкие возможности коммуникации являются неотъемлемым инструментом практически любого современного бизнеса. При помощи беспроводной связи можно успешно решать вопросы управления удаленными объектами.
Алгоритмы кодирования и декодирования, методики защиты информации
При передаче сообщений посредством радиоволн, необходимо преобразование обычной звуковой информации. Изначальный сигнал подвергается нескольким последовательным трансформациям, в том числе кодируется. Затем передается. А на принимающем устройстве осуществляется его декодирование и преобразование в аналоговую форму.
Кодирование сигнала при радиопередаче используется для нескольких целей. Одна из них – повышение помехоустойчивости. Это необходимо, так как на радиосигнал во время его перемещения воздействуют различные физические явления. Они могут изменять данные, вносить в них ошибки. Поэтому к каждому сообщению добавляют определенное количество битов, между значениями которых имеется заданная алгебраическая взаимосвязь. Анализ этих данных с помощью встроенного декодера дает возможность системе обнаружить и исправить ошибки, возникшие при передаче радиосигнала.
У силовых ведомств, частных служб охраны и безопасности, а также других организаций возникает необходимость защитить данные от несанкционированного доступа. Применяется два основных метода: дискретизация с шифрованием, а также аналоговое скремблирование.
Дискретизация с шифрованием объединяет наиболее прогрессивные методы закрытия речи связанные с переводом сигнала в цифровой вид. Используются различные криптографические алгоритмы. Чаще всего применяются вокодеры с линейным предсказанием речи (ЛПР). Кусочно линейная аппроксимация процесса является основой используемого алгоритма. Каждый кодируемый фрагмент представляет собой линейную функцию от фрагментов предыдущих. Речевая информация задается тремя параметрами: периодом основного тона, амплитудой, решением «тон/шум».
В целом же существует два основных подхода к шифрованию речи, передаваемой в цифровом виде:
В средствах аналогово связи защита данных достигается за счет использования аналоговых скремблеров. Они трансформируют первоначальный звуковой сигнал в неразборчивую смесь звуков, что не позволяет злоумышленникам понять смысл передаваемых данных. Применяются следующие виды преобразования:
Одним из критериев оценки эффективности работы скремблера является остаточная разборчивость – это параметр характеризует возможность дешифрации данных техническими средствами и оценивается в процентах восстановленной информации. При простых и недорогих методах защиты может составлять от 10 до 50%. Другой критерий – качество сигнала восстановленного в принимающем устройстве. Достаточным качеством является сигнал, который позволяет без труда выделить голос и понять смысл сообщения.
Частоты и каналы
Классификация радиоволн подразумевает разделение на 8 типов по длине и частоте:
Для переговоров в РФ разрешены следующие диапазоны частот:
Остальные диапазоны законодательно запрещены к использованию. Они выделяются для служебных нужд различных ведомств и их использование может повлечь за собой административное или уголовное наказание – в зависимости от тяжести последствий несанкционированного вмешательства.
Для удобства общения, чтобы максимально упростить использование радиосвязи, были выделены определенные частоты. Они были пронумерованы так, что их стало не сложно запомнить и настроить. Эти номера и называют – каналы радиосвязи. Во многих простейших моделях раций нет ни клавиатуры, ни ручек настройки для установки произвольной частоты – только кнопки позволяющие переключать каналы. Таким образом рацией может пользоваться любой человек и ему не нужно знать что такое частоты, LPD или PMR, достаточно перещелкнуть рацию на заданный канал и успешно ею пользоваться.
Субтоны являются дополнительным средством, позволяющим разделить разговоры различных абонентов в рамках одного канала. Настройка данного параметра позволит аппарату отфильтровывать сообщения и выдавать в эфир только те, которые совпадают с заданным субтоном. Существует два вида таких сигналов: QT/DQT и CTCSS.
Связь с помощью радиоволн – один из основных способов обмена информацией в современном мире. Существует большое разнообразие различных методов их применения. Они широко используются для радио и телевещания, для исследования, обеспечения дальней связи, повседневной коммуникации, а также для организации деятельности различных специальных служб: охранных подразделений, полиции, пожарных, медицинской службы. Все типы радиоволн находят себе применение в деятельности человека.