что такое проводник и изолятор
Проводники и изоляторы
Изучите проводники и изоляторы – умение материала проводить ток. Узнайте, чем отличаются проводники от изоляторов, удельное сопротивление, электрический заряд.
По умению проводить ток, материалы делят на проводники и изоляторы.
Задача обучения
Основные пункты
Термины
Обзор
Все материалы делятся на изоляторы и проводники. Эта классификация основывается на удельном сопротивлении.
Изолятор – материал, где электрические заряды лишены свободного передвижения. А в проводнике этот поток возможен и движется в одном или нескольких направлениях.
Проводники
Все проводники располагают электрическими зарядами, которые при влиянии разности в потенциалах движутся в сторону одного из полюсов. Положительные заряды устремлены к отрицательному концу, а отрицательные к положительному. Этот поток – электрический ток.
Ионные вещества и растворы способны проводить электричество, но максимальную проводимость предоставляют металлы. В проводах часто используют медь, так как она обеспечивает отличную проводимость и дешево стоит. Но для высокой проводимости иногда используют позолоченные провода.
У каждого проводника есть предел мощности (объем тока, который может переносить).
Изоляторы
Это материалы, где внутренний заряд лишен возможности свободного передвижения, а значит, не может проводить электрический ток. Мы не располагаем идеальным изолятором с бесконечным удельным сопротивлением. Зато можно использовать стекло, бумагу и тефлон.
У изоляторов также есть физические пределы. Если на них воздействовать огромным количеством напряжения, то случится электрический пробой (электричество пробивается сквозь материал).
Этот провод представлен сердечником из меди (проводник) и полиэтиленовым покрытием (изолятор). Медь пропускает ток, а полиэтилен гарантирует, что ток не выйдет за пределы кабеля
Проводники, изоляторы и полупроводники
Электроны атомов, как правило, расположены на внешних или внутренних орбитах. Те электроны, что расположены на внутренних орбитах, относительно прочно связываются с ядром атома. Валентные электроны, т.е. те, которые находятся на внешних орбитах, могут отрываться от атома и находиться в «свободном» состоянии до тех пор, пока не присоединятся к новому атому. Атом, у которого отсутствует какое-либо количество электронов называется ионом с положительным зарядом. А вот атом, к которому присоединились электроны, называется ионом с отрицательным зарядом.
Процесс формирования ионов называется — ионизацией.
Количество «свободных» ионов или электронов, т.е. частиц, переносящих заряд, в единице объема вещества называют концентрацией носителей заряда.
Электрический ток — это упорядоченное движение положительно и отрицательно заряженных частиц.
Электропроводность — это способность вещества, под действием электрического поля, проводить через себя электрический ток.
Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.
Проводники электрического тока
Проводники — это вещества с высокой электропроводностью. Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.
Высокий уровень электропроводности металлов обусловлен тем, что в них много «свободных» электронов, находящихся в состоянии беспорядочного движения и заполняющие объём проводника словно газ. При таком активном движении электроны сталкиваются с ионами неподвижной кристаллической решётки, состоящей из атомов вещества. В следствии чего электроны изменяют направление движения, скорость и свою кинетическую энергию.
Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).
Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых не завися от прохождения тока наблюдается электролитическая диссоциация.
Электролитическая диссоциация — это процесс распада нейтральных молекул на отрицательные и положительные ионы.
Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.
Данные растворы или расплавы состоящие из ионов, частично или полностью, называются электролитами. Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.
При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.
Полупроводники
Полупроводники — это вещества, электропроводность которых зависит от температуры, освещенности, электрических полей и примесей. К таким материалам относят: кремний, теллур, германий, селен, соединения металлов с серой и окислы металлов. Полупроводники отличаются еще и тем, что кроме электронной проводимости имеют и дырочную электропроводность. Дырочная электропроводность вызывается движением «дырок» из-за влияния электрического поля. «Дырки» — это свободные места в атомах, которые не заняты валентными электронами. Это подобно тому, что положительно заряженные частицы перемещаются так же, как и заряды, равные зарядам электронов. На сегодняшний день, использование полупроводников широко распространено в разных устройствах и приборах, например, в фоторезисторах и полупроводниковых диодах.
Электрические диэлектрики
Диэлектрики — это те вещества, в которых при нормальных условиях очень малое количество свободных электрически заряженных частниц. В следствии чего они обладают низкой электропроводностью. К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.
В чём отличие проводников от диэлектриков, их свойства и сфера применения
Проводники и диэлектрики — физические вещества, имеющие различную степень электропроводимости и по-разному реагирующие на воздействие электрического поля. Противоположные свойства материалов широко используются во всех сферах электротехники.
Что такое проводники и диэлектрики
Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:
Главное свойство материалов : свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.
Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.
В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.
Характеристики и физические свойства материалов
Параметры проводников определяют область их применения. Основные физические характеристики:
При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.
Свойства, характеризующие проводник:
Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:
Изоляционные материалы характеризуются по следующим параметрам:
Виды и классификация диэлектрических материалов
Изоляторы подразделяются на группы по нескольким критериям.
Классификация по агрегатному состоянию вещества:
Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.
К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.
К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.
Почему диэлектрики не проводят электрический ток
Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.
В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:
Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.
Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.
Где применяются диэлектрики и проводники
Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.
Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.
Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.
Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.
Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.
Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.
Какая проводка лучше — сравнение медной и алюминиевой электропроводки
Что такое конденсатор, виды конденсаторов и их применение
Какие существуют виды источников электрического тока?
Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле
Что такое нихромовая проволока, её свойства и область применения
Тема № 1. Электрический ток. Проводники, изоляторы. Электрические цепи.
Лекционный материал для подготовки учащихся по специальности «Водитель трамвая»).
Лекционный материал подготовили:
· Преподаватель Учебно-курсового комбината В.Н. Минина.
· Мастер производственного обучения УКК А.Д. Антонов.
Тема № 1. Электрический ток. Проводники, изоляторы. Электрические цепи.
Электрическим током называют упорядоченное (направленное) движение заряженных частиц по замкнутому контуру.
Электрический ток бывает постоянным, пульсирующим и переменным. Постоянным током называется ток, который не изменяет своего направления. Пульсирующим током называется ток, который периодически изменяется только по величине. Переменным током называется ток, который изменяется по величине и направлению. Его характеристиками являются период и частота.
Период – это полное колебание тока. Частота – это количество колебаний в секунду.
Промышленная частота переменного тока – 50 герц.
Постоянный ток не меняет своего направления в течение времени.
За направление постоянного тока условно принято считать движение заряженных частиц от «+» плюса источника тока к его «-» минусу по внешнему контуру.
Сопротивление может быть вычислено по формуле: сопротивление «R » равно произведению величины удельного сопротивления данного вещества «РО» и частного от деления длины проводника «L », выраженной в метрах и площади поперечного сечения проводника «S », выраженного в квадратных миллиметрах.
Закон Ома.
« Сила тока для данной цепи прямо пропорциональна напряжению на концах данного участка цепи и обратно пропорциональна сопротивлению этого участка».
Проводники и изоляторы.
По способности проводить электрический ток все материалы подразделяются на «проводники» и «непроводники».
Непроводники называют «изоляторами» или «диэлектриками».
Проводники разделяют на: проводники 1-го рода, 2-го рода и полупроводники.
Электрическая цепь.
Электрической цепью называется замкнутый контур, по которому протекает электрический ток.
В простейшую электрическую цепь должны входить:
2. – потребитель тока;
4. – соединительные провода.
Источниками тока на вагоне являются – контактная сеть; аккумуляторная батарея; генератор; ТЗУ или БПН.
Потребителями тока на вагоне являются – электродвигатели; сопротивления; катушки контакторов, реле и электропневматических вентилей; лампочки; нагревательные приборы, электрические звонки, светосигнальная арматура и т.д.
Выключателями в электрических цепях являются все подвижные и неподвижные контакты кнопок, педалей безопасности и песочницы, кулачковых элементов реверсора, контроллера водителя, группового реостатного контроллера, автоматических выключателей, реле и контакторов.
Условные обозначения в электрической схеме:
| Токоприёмник | | Катушка реле, контактора, вентиля или БРТ |
| Радиореакторы | | Катушка реле времени |
| Электрическое соединение поводов | | Главные контакты контактора (замыкающие) с устройством дугогашения |
| Пересечение проводов без их соединения | | Главные контакты контактора (размыкающие) с устройством дугогашения |
| Конденсатор | | Контакт замыкающий (нормально разомкнутый) |
| Аккумуляторная батарея | | Контакт размыкающий (нормально замкнутый) |
| Плавкий предохранитель | | Контакт замыкающий с выдержкой времени при замыкании |
| Резистор | | Контакт замыкающий с выдержкой времени при размыкании |
| Регулируемый резистор | | Контакт размыкающий с выдержкой времени при замыкании |
| Якорь электромашины постоянного тока | | Контакт размыкающий с выдержкой времени при размыкании |
| Обмотки последовательного возбуждения | | Автоматический выключатель |
| Обмотки параллельного возбуждения | | Кнопка с самовозвратом с замыкающим контактам |
| Разрядник | | Кнопка с самовозвратом С размыкающим контактом |
| Лампа освещения и сигнализации | | Электрический звонок |
| Соединение с корпусом аппарата | | Штепсельная розетка |
| Контакты регулятора давления | | Микрофон |
| Диод | | Репродуктор |
Последовательное и параллельное соединение потребителей.
Последовательным соединением приемников электрического тока, или, иными словами, потребителей электрического тока называется такое соединение, при котором концевая клемма первого потребителя соединяется с начальной клеммой второго потребителя и так далее.
Параллельным соединением потребителей называется такое соединение, при котором к одному полюсу источника напряжения подключены все входные клеммы потребителей, а ко второму полюсу – все выходные клеммы.
| |
При последовательном соединении потребителей конец первого потребителя соединяются с началом второго и т. д. 1. При этом сила тока I во всех потребителях одинакова. I общ. = I 1 = I 2 = … 2. Напряжение всей цепи равно сумме напряжений на отдельных участках. U общ. = U 1 + U 2 + … 3. Общее сопротивление последовательного соединения равно сумме сопротивлений его отдельных участков. R общ. = R 1 + R 2 + … Вывод: 1. Дополнительный проводник, последовательно включенный в цепь, уменьшает в ней силу тока, т. к при последовательном соединении проводников общее сопротивление цепи увеличивается, а сила тока уменьшается – это свойство используется для уменьшения силы тока в цепи. 2. Так как все элементы цепи взаимосвязаны, то они либо все одновременно работают, либо не работают. 3. Для включения цепи необходим только один выключатель. 4. При возникновении неисправности в цепи, необходимо поочередно проверить все элементы, что затрудняет её поиск. 5. Для защиты эл. цепи необходим только один аппарат защиты. Последовательное соединение используется для одновременной работы аппаратов. | При параллельном соединении потребителей их начала, и концы имеют общую точку подключения к источнику тока. 1. При этом сила всей цепи равна сумме сил токов во всех параллельно включённых потребителей. I общ. = I 1 + I 2 + … 2. Напряжение на каждом из потребителей равно напряжению на всем соединении. U общ. = U 1 = U 2 = … 3. Величина, обратная общему сопротивлению параллельного соединения, равна сумме величин, обратных сопротивлениям его отдельных участков. Вывод: 1. Общее сопротивление цепи уменьшается, т. к. с увеличением площади поперечного сечения проводников сопротивление уменьшается и становится меньше наименьшего, составляющего цепи при этом общий ток увеличивается. 2. Цепи независимы друг от друга, и для их включения можно по желанию использовать как общий выключатель, так и индивидуальный выключатель на каждую цепь. 3. Каждая цепь может иметь свой аппарат защиты. 4. При возникновении неисправности в параллельно соединённых цепях, их легко можно выделить. Параллельные соединения используются для независимой работы аппаратов. |
Если в электрической схеме есть участки с последовательным и параллельным соединениями, то такое соединение принято считать «смешанным».