что такое процесс горения
Горение
Что такое горение
Горение – это совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма. В основе горения лежит взаимодействие горючего вещества с окислителем, преимущественно с кислородом воздуха.
Однако горения может осуществляться без доступа воздуха (кислорода), если в состав горючей массы (среды) входит окислитель в виде примеси или составной части молекулы. В производственных условиях или ракетной технике горения может осуществляться в атмосфере таких окисляющих газов, как фтор, хлор, окислы азота и другие.
Некоторые вещества (порошкообразные титан и цирконий) способны гореть в атмосфере азота, двуокиси углерода, не относящимся к традиционным окислителям.
Виды горения
В зависимости от способа подвода окислителя различают:
При пожаре отмечается смешанный тип горения. В зависимости от скорости горение может быть медленным (тление), нормальным (дефлаграция) и взрывообразным (взрыв), переходящим в детонационное (детонация).
По внешнему проявлению горение может быть пламенным или беспламенным.
Беспламенное горение может возникнуть в результате дефицита окислителя (тление) или при низком давлении насыщенных паров горючего вещества (горение тугоплавких металлов и кокса).
По механизму развития горение может быть тепловым, при котором причиной самоускорения реакций окисления является повышение температуры, и автокаталитическим (цепным), когда ускорение процесса достигается накоплением промежуточных катализирующих продуктов (активных центров). Автокаталитическое горение осуществляется при сравнительно низких температурах. При достижении определенных концентраций промежуточных каталитических продуктов автокаталитическое горение может переходить в тепловое. При этом температура горения резко возрастает.
Горение может возникать и развиваться спонтанно, стихийно (пожар), но может быть специально организованным, целесообразным: энергетическое горение (в целях получения тепловой или электрической энергии) и технологическое горение (доменный процесс, металлотермия, синтез тугоплавких неорганических соединений и т.д.).
Характеристики горения
Горение характеризуется такими величинами, как: температура, скорость, полнота, состав продуктов. Располагая данными о механизме горения и его характерных особенностях, можно увеличивать скорость и температуру горения (промотирование горения) или снижать их вплоть до прекращения горения (ингибирование горения).
Источники: Основные характеристики горения. Мальцев В.М., Мальцев М.И., Кашпоров Л.Я. —М., 1977; Процессы горения в химической технологии и металлургии. Мержанов А.Г. —Черноголовка, 1975; Физика горения и взрыва. Хитрин Л.Н. —М., 1957.
Лекция «Общие понятия о горении и пожаровзрывоопасных свойствах веществ и материалов, пожарной опасности зданий»
СОДЕРЖАНИЕ
ВНИМАНИЕ! При изучение данной темы следует учитывать, что деятельность по обеспечению пожарной безопасности детально регламентируется действующим законодательством, которое в рамках проводимых реформ активно изменяется, поэтому рекомендуется положения нормативных правовых актов и нормативных документов в области пожарной безопасности уточнять в актуальных редакциях.
1. ГОРЕНИЕ ВЕЩЕСТВ И МАТЕРИАЛОВ. ПОЖАР И ЕГО РАЗВИТИЕ
1.1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
ПОЖАР – неконтролируемое горение, приводящее к ущербу.
ГОРЮЧЕСТЬ – способность веществ и материалов к развитию горения.
Все вещества и материалы обладают определенной горючестью, т.е. способностью к развитию горения.
ГОРЕНИЕ – экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: пламенем, свечением, выделением дыма.
Из данного определения вытекает, что горение – это любая реакция окисления вещества, приводящая к выделению тепла. При этом реакция должна сопровождаться пламенем, свечением или дымом.
ПЛАМЕННОЕ ГОРЕНИЕ – горение веществ и материалов, сопровождающееся пламенем.
ТЛЕНИЕ – беспламенное горение материала.
ДЫМ – аэрозоль, образуемый жидкими и (или) твердыми продуктами неполного сгорания материалов.
ВОЗГОРАЕМОСТЬ – способность веществ и материалов к возгоранию.
ВОЗГОРАНИЕ – начало горения под воздействием источника зажигания.
То есть, начало выделения тепла в результате реакции окисления, сопровождающееся свечением, пламенем или дымом.
САМОВОЗГОРАНИЕ – возгорание в результате самоинициируемых экзотермических процессов.
Самовозгорание сопровождается пламенем, свечением или дымом.
ВОСПЛАМЕНЯЕМОСТЬ – способность веществ и материалов к воспламенению.
ВОСПЛАМЕНЕНИЕ – начало пламенного горения под воздействием источника зажигания.
В отличие от возгорания, воспламенение сопровождается только пламенным горением.
САМОВОСПЛАМЕНЕНИЕ – самовозгорание, сопровождающееся пламенем.
Самовоспламенение сопровождается только пламенем, в отличие от самовозгорания.
ОПАСНЫЙ ФАКТОР ПОЖАРА – фактор пожара, воздействие которого на людей и (или) материальные ценности может привести к ущербу.
Опасными факторами, воздействующими на людей и материальные ости, являются:
— повышенная температура окружающей среды;
— токсичные продукты горения и термического разложения;
— пониженная концентрация кислорода.
Предельные значения опасных факторов пожара:
Температура среды – 70 °С
Тепловое излучение – 500 Вт/м 2
Содержание оксида углерода – 0,1% (об.)
Содержание диоксида углерода – 6% (об.)
Снижение видимости менее 20 м
Содержание кислорода менее 17% (об.)
К вторичным проявлениям опасных факторов пожара, воздействуют на людей и материальные ценности, относятся:
— осколки, части разрушающихся аппаратов, агрегатов, установок, конструкций;
— радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных: аппаратов и установок;
— электрический ток, возникший в результате выноса высокого напряжения токопроводящие части конструкций, аппаратов, агрегатов;
— опасные факторы взрыва по ГОСТ 12.1.010, происшедшего вследствие пожара.
1.2 ОБЩИЕ СВЕДЕНИЯ О ГОРЕНИИ
1.2.1 ДИФФУЗИОННОЕ И КИНЕТИЧЕСКОЕ ГОРЕНИЕ
Все горючие (сгораемые) вещества содержат углерод и водород, – основные компоненты газовоздушной смеси, участвующие в реакции горения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.
Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, которые под воздействием высоких температур вступают в химическое воздействие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.
Воспламенение представляет собой процесс распространение пламени по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка.
B зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:
— горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;
— горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.
Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей паровоздушной смеси.
Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.
При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющее в процессе горения тепло, создает давление. Основная реакция горения окисления происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окислителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, предает собой продукты неполного горения (СО, СН4, углерод и пр.).
Диффузионное горение, в свою очередь, бывает ламинарным и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пламени по ней. Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие большой диффузии воздуха в зону горения. Неустойчивость вначале возникает вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии.
Горение веществ и материалов возможно только при определенном качестве кислорода в воздухе. Содержание кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты – при 16% (об.)
Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора должно осуществляться в плотно закрытой таре.
1.2.2 ИСТОЧНИКИ ЗАЖИГАНИЯ
Необходимым условием воспламенения горючей смеси являются источники зажигания. Источники зажигания подразделяются на открытый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электричества и молнии, энергию процессов саморазогревания веществ и материалов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.
Характерные параметры источников зажигания принимаются по:
Температура канала молнии – 30000°С при силе тока 200000 А и времени действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов с минимальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе высокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.
Поливинилхлоридная изоляция электрического кабеля (провода) воспламеняется при кратности тока короткого замыкания более 2,5.
Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуга при сварке и резке достигает 4000°С.
Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятность попадания 6%) м; при расположении провода на высоте 3 м – от 4 (96%) до 8 м (1%); при расположении на высоте 1 м – от 3 (99%) до 6 м (6%).
Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.
Температура пламени (тления) и время горения (тления), «С (мин), некоторых малокалорийных источников тепла: тлеющая папироса – 320-410 (2-2,5); тлеющая сигарета – 420-460 (26-30); горящая спичка – 620-640 (0,33).
Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм – 800°С, диаметром 5 мм – 600°С.
1.2.3 САМОВОЗГОРАНИЕ
Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.
Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.
Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Температура самонагревания вещества или материала является показателем его пожарной опасности. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С: бумага – 100°С; войлок строительный – 80°С; дерматин – 40°С; древесина: сосновая – 80, дубовая – 100, еловая – 120°С; хлопок-сырец — 60°С.
Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Данные процессы обнаруживаются по длительному и устойчивому запаху тлеющего материала.
Микробиологическое самовозгорание связано с выделением тепловой энергии микроорганизмами в процессе жизнедеятельности в питательной для них среде (сено, торф, древесные опилки и т.п.).
На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.
2. ПОКАЗАТЕЛИ ПОЖАРОВЗРЫВООПАСНОСТИ
Изучение пожаровзрывоопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.
В соответствии с ГОСТ 12.1.044 по агрегатному состоянию вещества и материалы подразделяются на:
ГАЗЫ – вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа (1 атм) превышает 101,3 кПа (1 атм).
ЖИДКОСТИ – то же, но давлении меньше 101,3 кПа (1 атм). К жидкостям относят также твердые плавящиеся вещества, температура плавления или ка-плепадения которых меньше 50°С.
ТВЕРДЫЕ – индивидуальные вещества и их смеси с температурой плавления или каплепадения выше 50°С (например, вазилин — 54°С), а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.).
ПЫЛИ – диспергированные (измельченные) твердые вещества и материалы с размером частиц менее 850 мкм (0,85 мм).
Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл.1.
Значения данных показателей должны включаться в стандарты и технические условия на вещества, а также указываться в паспортах изделий.
Характеристика процесса горения
Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.
Горение является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.
Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процесса горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.
Различие между медленной экзотермической окислительно-восстановительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к повышению температуры в зоне реакции на сотни и даже тысячи градусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит образование дыма – аэрозоля полного или неполного сгорания веществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое превращение) также не входят в понятие горения.
Необходимым условием для возникновения горения является наличие горючего вещества, окислителя (при пожаре его роль выполняет кислород воздуха) и источника зажигания. Для непосредственного возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давлению и др. После возникновения горения в качестве источника зажигания выступает уже само пламя или зона реакции.
Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.
Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горючих веществ под воздействием источника зажигания происходит образование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окислителя) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном отношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максимальное количество теплоты.
Рис. 1. Формы диффузионных пламен
а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки
По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые — горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горючего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.
Так, для картона и хлопка самопотухание наступает уже при 14 об. % кислорода, а полиэфирной ваты — при 16 об. %. В процессе горения, как и в других химических процессах, обязательны два этапа: создание молекулярного контакта между реагентами и само взаимодействие молекул горючего с окислителем с образованием продуктов реакции. Если скорость превращения исходных реагентов определяется диффузионными процессами, т.е. скоростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с законами диффузии Фика), то такой режим горения называется диффузионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгорания. Если же скорость горения зависит только от скорости химической реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие скорости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окислителя. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют гомогенным, при нахождении горючего и окислителя в зоне реакции в разных фазах — гетерогенным. Гомогенным является горение не только газов, но и жидкостей, а также большинства твердых веществ и материалов. Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложения. Наличие пламени является отличительным признаком гомогенного горения.
Примерами гетерогенного горения служат горение углерода, углистых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными продуктами горения могут быть не только оксиды, но и фториды, хлориды, нитриды, сульфиды, карбиды и др.
Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламени; температура пламени, его излучательная способность; тепловыделение и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.
Всем известно, что при горении образуется свечение которое сопровождает пламя продукта горения.
Рассмотрим две системы:
В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.
Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.
Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.
Скорость распространения пламени принято разделять на:
Рис. 2. Ламинарное диффузионное пламя
В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинарные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массообмена происходят путем молекулярной диффузии и конвекции. В турбулентных пламенах процессы тепло-, массообмена осуществляются в основном за счет макроскопического вихревого движения. Пламя свечи — пример ламинарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической неустойчивостью, которая проявляется видимыми завихрениями дыма и пламени.
Рис. 3. Переход ламинарного потока в турбулентный
Очень наглядным примером перехода ламинарного потока в турбулентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.
При пожарах пламена имеют диффузионный турбулентный характер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулентном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.
Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде
В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.