что такое предел выносливости
Предел выносливости
Из Википедии — свободной энциклопедии
Преде́л выно́сливости (также преде́л уста́лости) — в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, то есть способность воспринимать нагрузки, вызывающие цикличные напряжения в материале.
Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.
Для железистых и титановых сплавов можно установить предельную величину максимальных напряжений цикла, при которых материал не разрушится при произвольно большом числе нагружений. Однако другие металлы, такие как медь или алюминий, подвержены усталостному разрушению под действием сколь угодно малых нагрузок. В таких случаях принято говорить об ограниченном пределе выносливости σ RN <\displaystyle \sigma _<\text, где коэффициент N соответствует заданному числу циклов нагружения, и обычно принимается за 10 7 <\displaystyle 10^<7>>
или 10 8 <\displaystyle 10^<8>>
циклов.
Пределы выносливости
Предел выносливости не является постоянной, присущей данному материалу характеристикой, и подвержен гораздо большим колебаниям, чем механические характеристики при статическом нагружении. Он зависит от условий нагружения, типа цикла, в частности, от степени его асимметрии, формы и размеров детали, технологии ее изготовления, состояния поверхности и других факторов.
Таким образом, при испытании на усталость стандартных образцов определяется собственно не предел выносливости материала, а предел выносливости образца, изготовленного из данного материала. При переходе от образца к реальной детали следует вводить ряд поправок, учитывающих форму и размеры детали, состояние ее поверхности и т. д. В связи с этим возникло понятие сопротивление усталости деталей. В этом понимании предел выносливости далеко отходит от первоначального понятия как характеристики материала, хотя предел выносливости, определенный на стандартных образцах, по-прежнему приводят в числе основных прочностных показателей материала.
Пределы выносливости на изгиб имеют минимальное значение при симметричном знакопеременном цикле, повышаются с увеличением степени его асимметрии, возрастают в области пульсирующих нагрузок, а с уменьшением амплитуды пульсаций приближаются к показателям статической прочности материала. Пределы выносливости при растяжении примерно е 1,1—1,5 раза больше, а при кручении в 1,5—2 раза меньше, чем в случае симметричного знакопеременного изгиба.
Между характеристиками сопротивления усталости и статической прочности нет определенной зависимости. Наиболее устойчивые соотношения существуют между σ–1 (пределом выносливости на изгиб с симметричным циклом) и σв (пределом прочности), а также σ0,2 (условным пределом текучести) при статическом растяжении.
По опытным данным, эти соотношения следующие:
— для стальных отливок, высокопрочного чугуна и медных сплавов
— для алюминиевых и магниевых сплавов
На основании обработки результатов испытаний на усталость улучшенных конструкционных сталей Шимек получил следующие зависимости (рис. 163) пределов выносливости от предела прочности:
— на растяжение-сжатие при симметричном цикле
— на растяжение-сжатие при пульсирующем цикле
— на изгиб при симметричном цикле
— на кручение при симметричном цикле
— на кручение при пульсирующем цикле
Пределы выносливости при симметричном цикле связаны между собой следующими ориентировочными зависимостями:
Пределы выносливости при пульсирующем и знакопеременном симметричном циклах связаны следующими приближенными зависимостями:
Пределы выносливости при асимметричных циклах можно приближенно определить по эмпирическим зависимостям между наибольшим напряжением цикла σmax, средним напряжением цикла σm, и предельной амплитудой цикла σa. Например,
где σв — предел прочности при статическом растяжении.
Приведенные соотношения дают представление лишь об общих закономерностях. Для расчетов необходимо пользоваться справочными данными, приводимыми в литературе по циклической долговечности.
Предел выносливости
Преде́л выно́сливости (также преде́л уста́лости) — в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.
Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.
Предел выносливости обозначают как , где коэффициент R принимается равным коэффициенту асимметрии цикла. Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как
, а в случае пульсационных как
.
Для железистых и титановых сплавов можно установить предельную величину максимальных напряжений цикла, при которых материал не разрушится при произвольно большом числе нагружений. Однако другие металлы, такие как медь или алюминий, подвержены усталостному разрушению под действием сколь угодно малых нагрузок. В таких случаях принято говорить об ограниченном пределе выносливости , где коэффициент N соответствует заданному числу циклов нагружения, и обычно принимается за
или
циклов.
Содержание
Определение предела выносливости
Предел выносливости материала определяют с помощью испытаний серий одинаковых образцов (не менее 10 шт.): на изгиб, кручение, растяжение-сжатие или в условиях комбинированного нагружения (последние два режима для имитации работы материала при асимметричных циклах нагружения или в условиях сложного нагружения).
Испытание начинают проводить при высоких напряжениях (0,7 — 0,5 от предела прочности), при которых образец выдерживает наименьшее число циклов. Постепенно уменьшая напряжения можно обнаружить, что стальные образцы не проявляют склонности к разрушению независимо от длительности испытания. Опыт их испытания показывает, что если образец не разрушился до циклов, то и при более длительном испытании он не разрушится. Поэтому это число циклов обычно принимают за базу испытаний и устанавливают то наибольшее значение максимального напряжения цикла, при котором образец не разрушается до базы испытаний. Это значение и принимают за предел выносливости.
Результаты испытаний можно представить в виде кривой усталости (также кривая Веллера, S-N диаграмма), которая строится для симметричных циклов нагружения. По оси абсцисс на логарифмической шкале откладывают количество циклов, по оси ординат напряжения:
Кривая усталости (выносливости) показывает, что с увеличением числа циклов уменьшается максимальное напряжение, при котором происходит разрушение материала.
Связь предела выносливости с другими прочностными характеристиками материала
Испытания на усталость очень трудоёмки, связаны с получением и обработкой значительного массива данных, полученных экспериментальным путём и для которых характерен большой разброс значений. Поэтому были предприняты попытки связать эмпирическими формулами предел выносливости с известными прочностными характеристиками материала. Более всего для этой цели подходит такая характеристика материала как предел прочности.
Установлено, что, как правило, для сталей предел выносливости при изгибе составляет половину от предела прочности:
Для углепластиков можно принять:
Аналогично можно провести испытания на кручение в условиях циклически изменяющихся напряжений. Для обычных сталей в этом случае можно принять:
Для хрупких материалов (высоколегированная сталь, чугун) в этом случае можно принять:
Данными соотношениями следует пользоваться с осторожностью, так как они получены при определенных режимах нагружения (изгибе и кручении). При испытаниях на растяжение-сжатие предел выносливости оказывается приблизительно на 10-20 % ниже, чем при изгибе, а при кручении полых образцов он оказывается отличным от полученного при кручении образцов сплошных.
В случае несимметричных циклов образцы испытывают не на изгиб, а на растяжение-сжатие или на кручение с использованием гидропульсаторов. Для несимметричных циклов строят так называемую диаграмму предельных амплитуд. Для этого находят пределы выносливости для выбранного значения постоянного напряжения при соответствующей амплитуде
. Точка А при этом очевидно будет являться пределом выносливости при симметричном цикле, а точка В, которая не имеет амплитудной составляющей и по сути является постоянно действующим напряжением, будет являть собой фактически предел прочности
:
Практическое применение диаграммы предельных амплитуд заключается в том, что после построения диаграммы, проводятся испытания на только конкретные значения и
. Если рабочая точка располагается под кривой, то образец способен выдержать неограниченное количество циклов, если над кривой — ограниченное.
См. также
Литература
Полезное
Смотреть что такое «Предел выносливости» в других словарях:
предел выносливости — предел выносливости: Максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение при базе испытания. Примечание Пределы выносливости выражают в номинальных напряжениях. [ГОСТ 23207 78, статья 47]… … Словарь-справочник терминов нормативно-технической документации
предел выносливости — Наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN endurance limitfatigue strength DE… … Справочник технического переводчика
Предел выносливости — Fatigue limit Предел выносливости. Максимальное напряжение, которое может привести к образованию усталостной трещины при точно установленном числе циклов напряжения. Должно быть установлено значение максимального напряжения и коэффициента роста… … Словарь металлургических терминов
ПРЕДЕЛ ВЫНОСЛИВОСТИ — предел уста л о с т и. мехинич. хар ка материалов; наибольшее напряжение цикла, к рое материал может выдержать повторно N раз без разрушения, где N заданное технич. условиями большое число (напр., 106, 107, 108). Обозначается бr, где r коэфф.… … Большой энциклопедический политехнический словарь
предел выносливости — [endurance limit, ultimate fatigue strength] максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостного разрушения до базы испытания (предварительно задаваемое наибольшая длительность испытаний на усталость … Энциклопедический словарь по металлургии
ПРЕДЕЛ ВЫНОСЛИВОСТИ — наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения (Болгарский язык; Български) граница на издръжливост (Чешский язык; Čeština) mez únavy (Немецкий язык; Deutsch) Dauerfestigkeitsgrenze… … Строительный словарь
ПРЕДЕЛ ВЫНОСЛИВОСТИ — [endurance limit, ultimate fatigue strength] максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение до базы испытания (предварительно задаваемая наибольшая длительность испытаний на усталость,… … Металлургический словарь
Предел выносливости
Предел выносливости
Предельный предел выносливости представляет собой максимальное напряжение в абсолютной величине и не вызывает усталостного разрушения при бесконечном числе циклов.
Техническая спецификация определяет конечное число циклов / V (например, 106, Людмила Фирмаль
107 10e). Это то, что материал должен воспринимать, не нарушая. В этом случае, если материал не разрушился при этом количестве циклов, считается, что любое число не разрушается. В симметричных циклах пределы выносливости минимальны по сравнению с другими типами циклов, и в этом смысле симметричные циклы являются
наиболее опасными. Существует несколько стандартных тестов для определения долговечности. * Кривые выносливости создаются по представленным тестам. Самым популярным испытанием был чистый изгиб при вращении образца. цель Тест 233 — это конкретное определение цикла выносливости. Механическая схема такого теста
циклов образец разрушается, и точки, соответствующие отказу первого образца, наносятся на график (рисунок 11.4). Они наносятся на график, и полученные точки соединяются плавной кривой, называемой кривой выносливости (см. Рис. 11.4). Если эта кривая продолжается влево, отрежьте отрезок, равный пределу прочности на оси напряжений. Для большинства материалов кривая выносливости асимптотически приближается к горизонтальной линии, параллельной оси / V
. Ордината этой асимптоты является пределом выносливости. Вместо асимптоты горизонтальная касательная Людмила Фирмаль
обычно рисуется параллельно оси V (пунктирная линия на рисунке 11.4). Существует также концепция ограниченных пределов выносливости. Это максимальное напряжение, которое материал может выдержать без усталостного разрушения при определенном количестве циклов N, соответствующих сроку службы детали (V ‘ордината на рисунке 11.4). Экспериментально доказано, что образцы черных металлов, которые не разрушались после миллионов циклов, выдерживают неограниченные циклы. Это количество циклов называется базовым и используется для определения предела
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Что такое предел выносливости
Способность материала воспринимать многократное действие переменных напряжений называют выносливостью, а проверку прочности элементов конструкции при действии таких напряжений — расчетом на выносливость (или расчетом на усталостную прочность).
Для получения механических характеристик материала, необходимых для расчетов на прочность при переменных напряжениях, проводят специальные испытания на выносливость (на усталость). Для этих испытаний изготовляют серию совершенно одинаковых образцов (не менее 10 штук).
Наиболее распространены испытания на чистый изгиб при симметричном цикле изменения напряжений; их проводят в следующем порядке.
В первом образце с помощью специальной машины создают циклы напряжений, характеризуемые значениями напряжение
принимают достаточно большим (немного меньшим предела прочности материала
), для того, чтобы разрушение образца происходило после сравнительно небольшого числа циклов
Результат испытания образца наносят на график в виде точки
абсцисса которой равна (в принятом масштабе) числу циклов
вызвавших разрушение образца, а ордината — значению напряжения
(рис. 5.15).
Затем другой образец испытывают до разрушения при напряжениях результат испытания этого образца изображается на графике точкой
Испытывая остальные образцы из той же серии, аналогично получают точки
IV, V и т. д. Соединяя полученные по данным опытов точки плавной кривой, получают так называемую кривую усталости, или кривую Вёлера (рис. 5.15), соответствующую симметричным циклам
Аналогично могут быть получены кривые усталости, соответствующие циклам с другими значениями коэффициента асимметрии
Разрушение материала при однократном нагружении происходит в тот момент, когда возникающие в нем напряжения равны пределу прочности Следовательно, кривые усталости при
имеют ординаты атах, равные
Кривая выносливости (рис. 5.15) показывает, что с увеличением числа циклов уменьшается максимальное напряжение, при котором происходит разрушение материала. Кривая усталости для мало или среднеуглеродистой, а также для некоторых марок легированной стали имеет горизонтальную асимптоту. Следовательно, при данном значении коэффициента асимметрии R и максимальном напряжении, меньшем некоторой величины, материал не разрушается, как бы велико ни было число циклов.
Наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца из данного материала после произвольно большого числа циклов, называют пределом выносливости. Таким образом, предел выносливости равен ординате асимптоты кривой усталости. Его обозначают ад; при симметричном цикле коэффициент асимметрии и предел выносливости при этом цикле обозначают
(см. рис. 5.15).
Совершенно очевидно, что при испытании образца невозможно бесконечно большое число раз повторить один и тот же цикл напряжений, но в этом и нет необходимости. Ординаты атах кривой усталости для некоторых материалов (мало- и среднеуглеродистой стали и др.) после некоторого числа циклов (равного нескольким миллионам) почти не изменяются; поэтому числу циклов, даже в несколько раз большему, на кривой усталости соответствуют такие же максимальные напряжения. В связи с этим число циклов (при испытании материала на выносливость) ограничивают некоторым пределом, который называют базовым числом циклов. Если образец выдерживает базовое число циклов, то считается, что напряжение в нем не выше предела выносливости. Для стали и чугуна базовое число циклов принимают равным 107.
Предел выносливости для стали при симметричном цикле в несколько раз меньше предела прочности (в частности, для углеродистой стали 00,430).
Кривые усталости для цветных металлов и сплавов и некоторых легированных сталей не имеют горизонтальной асимптоты, и, следовательно, такие материалы могут разрушиться при достаточно большом числе циклов, даже при сравнительно малых напряжениях.
Поэтому понятие предела выносливости для указанных материалов условно. Точнее, для этих материалов можно пользоваться лишь понятием предел ограниченной выносливости, называя так наибольшее значение максимального (по абсолютной величине) напряжения цикла, при котором образец еще не разрушается при определенном (базовом) числе циклов. Базовое число циклов в рассматриваемых случаях принимают очень большим — до .
В случаях, когда срок службы элемента конструкции, в котором возникают переменные напряжения, ограничен, максимальные напряжения могут превышать предел выносливости; они, однако, не должны быть больше предела ограниченной выносливости, соответствующего числу циклов за время работы рассчитываемого элемента.
Следует заметить, что предел выносливости при центральном растяжении-сжатии образца составляет примерно 0,7-0,9 предела выносливости при симметричном цикле изгиба. Это объясняется тем, что при изгибе внутренние точки поперечного сечения напряжены слабее, чем наружные, а при центральном растяжении-сжатии напряженное состояние однородно. Поэтому при изгибе развитие усталостных трещин происходит менее интенсивно
Предел выносливости при симметричном цикле кручения для стали составляет в среднем 0,58 (58% предела выносливости при симметричном цикле изгиба).