что такое поля нарезов
Полигональная нарезка ствола, бланк ствола, прямые и винтовые нарезы
Так что же такое бланк нарезного ствола?
Первые винтовые нарезы
Остроугольная нарезка ствола
Нарезы под пулю с пояском
Традиционные винтовые нарезы
Нарезка системы Натхолла, патент 1859 года
Прямые нарезы
Полигональные нарезы
Гексагональная нарезка Бучера со скругленными углами
Считается, что полигональная нарезка обеспечивает лучшую обтюрацию газов (меньший прорыв через каналы нарезки), большую начальную скорость пули (из-за меньшего сопротивления её движению), более точное направление полета пули, меньшее загрязнение (освинцовывание) канала ствола.
А изначально, в середине 19 века англичанином Уитвортом был предложен вариант, где полигональная нарезка выглядела в сечении, как правильный многоугольник (обычно шестиугольник). Канал ствола, таким образом, представлял из себя скрученную призму. Пули к такому стволу тоже предлагалось делать в форме скрученной призмы. Но, из-за дороговизны в производстве, такая нарезка распространения не получила.
Так что же такое бланк нарезного ствола?
Бланк ствола, говоря доступным языком, это круглый прут, выполненный из оружейной стали или сплавов, в котором на сверхточном прецизионном оборудовании высверлено отверстие по всей длине, проточены нарезы и сняты внутренние напряжения металла. Точность производства бланков некоторых производителей составляет 0.05 мм!
Первые винтовые нарезы
Небольшим был и срок службы штуцера. Обычно он выдерживал всего 100–200 выстрелов. Нарезы повреждались шомполом. Кроме того, несмотря на применение пластыря, они быстро засвинцовывались и заполнялись окалиной, а затем стирались при чистке ствола. Для сохранности наиболее ценных образцов шомпол делали из латуни, а в дуло при прочистке вставляли защищающую нарезы трубку.
Еще одна причина, по которой нарезные винтовки столь долгое время не получали распространения в Европе,– их относительно низкая мощность. «Тугой» ход пули в первый момент движения в стволе и опасность срыва с нарезов ближе к дульному срезу не позволяли использовать большой заряд пороха, что негативно сказывалось на настильности траектории и убойной силе снаряда. В результате дальность эффективной стрельбы из гладкоствольного ружья была выше (200–240 против 80–150 м).
Преимущества гладкого ствола проявлялись только в случае залпового огня по групповым целям – сомкнутому строю пехоты или лавине атакующей конницы. Но именно так в Европе и воевали.
Остроугольная нарезка
Первые попытки радикально усовершенствовать нарезы были предприняты в XVI веке. Для того чтобы улучшить «сцепление», внутреннюю поверхность стволов первых штуцеров покрывали нарезами полностью. Число борозд достигало 32, а ход нарезки был очень пологим – только треть или половина оборота от казны до дульного среза.
В 1604 году оружейник Балтазар Дрехслер рискнул заменить ставшую уже традиционной округлую, волнистую нарезку новой, остроугольной. Предполагалось, что вонзающиеся в свинец мелкие треугольные зубья будут крепче держать пулю и сорваться с них она не сможет. Отчасти это было так, но острые ребра прорезали пластырь, предохраняющий нарезы от засвинцовывания, и быстрее стирались.
Нарезы под пулю с пояском
Нарекания вызывала лишь точность стрельбы. Как правило, «люттихи» били наравне с лучшими карабинами обычной нарезки. Но часты были «дикие» отклонения: пуля приобретала слишком сложное вращение, одновременно закручиваясь нарезами вдоль оси ствола и катясь по ним, как по желобам. Позже этот изъян был устранен введением еще двух нарезов (и пули сдвумя перекрещивающимися поясками) и заменой круглой пули на цилиндроконическую.
Проблема была решена в 1857 году английским оружейником Витвортом, причем весьма оригинальным путем: он увеличил число граней до шести. Пуля с «готовыми нарезами» (то есть шестигранного сечения) получила острый наконечник. Винтовки Витворта остались слишком дорогими для массового производства, но довольно широко использовались снайперами во время войны между северными и южными штатами, став одними из первых ружей, комплектовавшихся оптическим прицелом.
Полигональные нарезы зарекомендовали себя наилучшим образом, и уже в XIX веке для стрельбы из них начали применяться обычные пули круглого сечения. Перегрузки заставляли свинец заполнить канал ствола.
Казачья винтовка-тройца тульского мастера Цыглея (1788 год) с треугольным каналом ствола
Ствол ружья с пулей квадратного сечения (Германия, 1791 год)
Поперечный разрез ствола нарезного оружия
Традиционные винтовые нарезы
Традиционные винтообразные нарезы на сегодняшний день доминируют в нарезном оружии. Полигональная нарезка распространена гораздо меньше, не говоря уже о различных экзотических разновидностях.
Нарезка системы Натхолла, патент 1859 года
Существовала в варианте с пятью и четырьмя нарезами. Использовалась преимущественно фирмой Томаса Тернера (Бирмингем) и компанией Reilly &Co для короткоствольных ружей.
Прямые нарезы
Полигональные нарезы
Полигональная нарезка – основная альтернатива традиционной. В разное время количество граней-полигонов варьировалось от трех до нескольких десятков, но оптимальной схемой все-таки считается шестигранник. Сегодня полигональная нарезка используется в конструкции американо-израильского пистолета Desert Eagle.
Гексагональная нарезка Бучера со скругленными углами
Полигонал и пуля после ствола полигонала
Простая нарезка и пуля после вылета из ствола
Как нарезать ствол
В чем причина повышенного разброса попаданий из нарезного ствола? Причин достаточно. Это и излишне затянутые ложевые винты, ослабление монтажных колец прицела, нестандартный график давления в стволе, неправильная комбинация порохового заряда и пули. Но есть факторы, которые кардинально влияют на величину разброса.
Для оптимальной кучности патронник должен быть изготовлен очень тщательно. Выполненный с минимальными допусками патронник обеспечивает лучшую кучность, так как гильзу при этом меньше раздувает. Недопустимы радиальные и угловые отклонения патронника от оси ствола. Причина таких отклонений — технологичность (дешевизна) производства.
Больше всего на износ ствола влияют температура и трение пули. Максимальных значений температура и трение достигают в районе перехода из патронника в нарезную часть ствола. Патроны «магнум» за счет большой скорости пули, большего трения и более высокой температуры пороховых газов ускоряют износ ствола.
Следствием всех вышеописанных дефектов — несоосность канала ствола и патронника, разгар переходного конуса, растертость дульной части ствола, а также дефекты затвора — является возникновение при выстреле высокочастотных колебаний ствола, негативно влияющих на рассеивание.
СПОСОБ ИЗГОТОВЛЕНИЯ СТВОЛА И ЕГО КАЧЕСТВО
«Нарезка» — наиболее старый способ изготовления нарезных стволов, который заключается в многократном проходе резца по каналу ствола, при этом за один проход обрабатывается только один нарез. Нарезы изготавливаются при помощи специального инструмента, режущая кромка которого двигается по одному нарезу и проходит его за один оборот заготовки. За один проход нарезы углубляются на 5 микрон. Когда процесс завершен, резец отжимается, возвращается в патронник, и затем операция повторяется. Так как для достижения нужной глубины одного нареза требуется примерно 25−30 проходов, этот процесс продолжается довольно долго. Хотя изготовление нарезов резанием трудоемкий и, кроме того, дорогой метод, на его применение идут, чтобы обеспечить точный выстрел.
«Дорнирование» наиболее простой и дешевый способ создания нарезного ствола. После порезки и нормализации заготовки сверлят, затем развертывают и хонингуют. Хонингование (англ. honing от to hone — точить) — отделочная обработка внутренних поверхностей мелкозернистыми абразивными брусками, смонтированными на головке (хоне) хонинговального станка. Хон вращается и одновременно совершает возвратно-поступательные движения. И только после этого приступают непосредственно к «дорнированию».
Дорн представляет собой очень твердый стержень, сделанный из карбида вольфрама, с выемками для полей и выступами для нарезов. Его продавливают сквозь канал ствола с силой около 80 000 ньютонов. В результате образуются нарезы с необходимыми параметрами (число, глубина, шаг). Так как обработке подвергается лишь внутренняя поверхность заготовки, то возникающие в процессе дорнирования напряжения относительно невелики. Для их устранения заготовки еще раз нормализуют в вакуумной печи в азотной среде.
При ковке на оправке молекулярная структура уплотняется, в результате чего канал ствола имеет тенденцию к сужению у дула. Считается, что это сужение уменьшает деформацию пули, дает более высокие начальную скорость и точность, но уменьшает срок жизни ствола. Преимущество, которое дает метод изготовления с помощью пуансона и холодной ротационной ковки на оправке, это то, что канал ствола более ровный и гладкий, чем при нарезании. Последующая термобработка имеет целью снять внутренние напряжения в стволе, негативно влияющие на отклонение СТП (средняя точка попадания) при его нагреве. В отсутствии напряжений в стволе и состоит фактическая основа рекламы о преимуществах тех или иных технологий.
ДУЛЬНЫЙ СРЕЗ СТВОЛА
ПОДГОНКА ЗАТВОРНОЙ ГРУППЫ И ЗАТЯЖКА ЛОЖЕВЫХ ВИНТОВ
Затворная группа, расположенная со смещением относительно оси ствола, может частично ухудшить кучность винтовки, все же качество изготовления ствола в гораздо большей степени влияет на кучность. Вообще покупка даже высокоточного ствола в специализированной фирме — это всегда лотерея. Для осмотра канала ствола требуется эндоскоп, а такой дефект, как дегрессивный шаг нарезки — переход к более длинному шагу, особенно в ближней к дульному срезу части ствола, — вообще не различим.
В целом можно сказать, что изготовление высококачественной винтовки процесс весьма трудоемкий, который в большей степени основывается на опытном подборе всех комплектующих и патрона.
Но в то же время этот вопрос мало изучен, так как существует масса серийных моделей винтовок, которые отличаются отменным кучным боем, несмотря на невысокое качество
деталей, из которых они собраны.
Что такое поля нарезов
РАЗДЕЛ 9. ТЕОРИЯ НАРЕЗНОГО СТВОЛА
Ствол представляет собой трубу, внутренняя полость которой называется каналом ствола. Канал ствола (схема 130) по своему устройству делится на следующие части: патронник, соединительный конус (пулъный вход) и нарезная часть. Каналы стволов в образцах по устройству примерно одинаковы и различаются лишь очертанием патронника, числом и формой нарезов.
Схема 130. Устройство канала ствола
Патронник служит для помещения патрона. Формы и размеры патронника определяются формой и размерами гильзы. Между стенками гильзы и стенками патронника делают зазор от 0,05 до 0,12 см. Зазор обеспечивает свободное вкладывание патрона даже при наличии в патроннике пыли или слоя смазки. Зазор необходим, ибо, если нет зазора, нет и движения. Но слишком большая величина зазора может привести к раздутию или продольному разрыву гильзы.
Схема 131. Патронник пулемета ШКАС
Нарезная часть ствола служит для придания пуле вращательного движения. Пуля, двигаясь по нарезам, вращается вокруг своей оси и, подобно гироволчку, летит головной частью постоянно вперед. Иначе длинная пуля, вылетев из ствола, начала бы беспорядочно кувыркаться в полете.
Схема 132. Канал нарезного ствола со стороны патронника
Схема 133. Устройство нарезной части канала ствола (поперечный разрез):
Нарезы прямоугольной формы
Врезание оболочки пули будет тем легче, чем уже поля (выступающие части) нарезов. Однако при слишком узких полях ширина их может оказаться настолько малой, что они не будут удовлетворять пределам прочности и будут разрушаться. Практически берут ширину поля, равной примерно половине ширины нареза (см. схему 133). Например, для винтовок и карабинов Мосина ширина нареза 3,81 мм, ширина поля 2,17 мм.
Чем больше количество нарезов, тем кучнее бой ствола. В трехлинейных винтовках дореволюционного выпуска было три нареза, позже их увеличили до четырех. В оружии нормальных калибров их иногда делают 5-6, но не более, исходя из вышеописанных технических особенностей проектирования.
Схема 136. Нарезы трапецеидальной формы
Стараясь ликвидировать этот недостаток, на некоторых оружейных системах до сих пор применяются так называемые нарезы сегментной формы. Сегментной называется такая форма нарезов, у которой нарезы в сечении, перпендикулярном оси ствола, представляют фигуру сегмента (схема 137). Такие нарезы в начале XX столетия были приняты на очень неплохой винтовке точного боя японского оружейника Арисака (схема 138). При такой форме нарезов, не имеющей углов, пуля заполняет просвет канала ствола полностью. Но стволы с такими нарезами очень трудоемки и дороги в производстве, к тому же при отсутствии боевых граней, на которые обычно опирается пуля при движении, пуля действует на опорную часть сегмента, как на клин, вызывая увеличенную поперечную деформацию ствола и снижая его живучесть. Поэтому сегментарные нарезы широкого распространения не получили.
Схема 137. Нарезы сегментной формы
Схема 138. Нарезы 6,5-мм винтовки системы Арисака
Схема 139. Скругленная форма нарезов
Схема 140. Нарезы 7,5-мм винтовки системы «Шмидт-Рубина» обр. 1889-1896 гг.
Если развернуть внутреннюю поверхность канала ствола вдоль оси с нанесенным на ней нарезом, то очертание нареза представится в виде линии, которая может быть прямой или кривой (схема 141).
Схема 141. Виды нарезов (развертка):
Нарез, получающийся при развертке в виде прямой линии, называется нарезом постоянной крутизны (а на схеме 141). Угол на схеме, характеризующий наклон или крутизну нарезов, называется углом наклона или крутизны нарезов.
Нарез, при развертке представляющийся в виде кривой линии с возрастающей крутизной от начала нарезов к дульной части, называется нарезом прогрессивной крутизны (б на схеме 141).
При нарезах прогрессивной крутизны при наибольшем давлении угол наименьший, следовательно, давление на боевую грань тоже будет сравнительно небольшим. При падении давления, ближе к дульному срезу при возросшей крутизне нарезов их боевые грани будут испытывать гораздо меньшие разрушающие усилия при прохождении по ним пули.
Длина участка канала ствола, на котором нарезы постоянной крутизны делают один полный оборот, называется шагом нарезов.
Зная длину шага нарезов и дульную скорость пули, можно подсчитать число оборотов пули вокруг ее оси в момент вылета из канала ствола по формуле:
число оборотов =(V дульная)/шаг нарезов.
Пример. Определить число оборотов пули винтовки Мосина образца 1891-1930 гг. Дульная скорость 860 м/с, длина шага нарезов 0,24 м.
Решение. 860/0,24 = 3583 оборота в секунду.
В наше время (очень редко) встречаются трехлинейные снайперские винтовки довоенного выпуска с изумительно кучным боем. У таких винтовок канал ствола выполнялся па так называемый «легкий конус» с разницей в диаметрах у казенной и дульной частей в 2-3%. При этом сводится на нет истирание оболочки пули о стенки канала ствола и пуля все время «обжимается», что не позволяет ей «гулять» по стволу.
Точность изготовления ствола и чистота обработки его канала оказывают на точность и кучность боя непосредственное и существенное влияние. Шероховатость, грубость обработки канала ствола, нарушение его соосности, неровности дна нарезов увеличивают рассеяние при стрельбе из винтовок до 20%.
Схема 142. Формы дульного среза ствола
Неперпендикулярность плоскости дульного среза к оси канала ствола на 1% при стрельбе из винтовки на дальность 100 м дает отклонение пули больше 10-ти см. При этом контрольный радиус круга, вмещающего лучшую половину пробоин, увеличивается на 10%.
ВЫБОР НОРМАЛЬНОГО КАЛИБРА
Схема 143. фазы колебания дульной части ствола
ПОНЯТИЕ ОБ УПРУГОМ СОПРОТИВЛЕНИИ СТВОЛА
Схема 144. Кривая упругого сопротивления ствола винтовки образца 1891-1930 гг и кривая давления газов в стволе
Зависимость предела упругого сопротивления ствола от толщины стенок ствола
ПРИНЦИП АВТОМАТИЧЕСКОЙ ПЕРЕЗАРЯДКИ ОРУЖИЯ
Затворная рама с затвором по инерции продолжает движение назад и зацепом выбрасывателя вытаскивает гильзу из патронника. Удерживаясь выбрасывателем в чашечке затвора, гильза наталкивается на отражательный выступ ствольной коробки и выбрасывается наружу через выводное окно ствольной коробки.
На некоторых системах, например на бесшумной винтовке ВСС (винторез), поворачивающегося курка нет. Его функции выполняет ударник, смонтированный в затворе. При отходе подвижных частей назад взводится пружина ударника, при движении подвижных частей и затвора вперед ударник, удерживаемый шепталом, остается на месте во взведенном положении.
Схема 145. Запирание ствола
Схема 146. Чашечка Затвора
РАБОТА ГИЛЬЗЫ ПРИ ВЫСТРЕЛЕ
Перед выстрелом между стенками гильзы и стенками патронника, а также между дном гильзы (шляпкой) и дном чашечки (зеркалом) затвора обычно имеются зазоры, необходимые для обеспечения подачи патрона в патронник и надежного запирания затвора. Разница в диаметре патрона и патронника называется диаметральным зазором. У систем, работающих на трехлинейных патронах, нормальный диаметральный рабочий зазор тоже равен 0,1 мм.
Прижатая к стенкам патронника гильза обеспечивает обтюрацию пороховых газов. При дальнейшем нарастании давления газов прижатая к стенкам патронника гильза давит на патронник изнутри и вызывает его упругую деформацию. Происходит совместная упругая деформация стенок гильзы и патронника. Наибольшего значения эта деформация достигает в момент максимального давления пороховых газов (схема 147).
Схема 147. Схема сил, действующих на бутылочную гильзу при выстреле
При спаде давления пороховых газов получается обратная картина. Стенки патронника, получившие упругую деформацию, этой же упругой деформацией возвращаются назад к первоначальному диаметру. Стенки гильзы возвращаются только на величину упругой деформации и не доходят до своего первоначального диаметра на величину остаточной деформации металла, из которого она сделана. Поэтому стреляные гильзы всегда будут немного раздуты.
Так работает винтовочная гильза на расширение. Но существует еще и сила отдачи. Вследствие давления пороховых газов на дно гильзы последняя смещается к затвору и выбирает начальный зеркальный зазор. Гильза смещается сначала свободно, затем с нарастающими тормозящими силами трения о стенки патронника, сначала в передней (возле ската), затем в задней части.
Для легкости извлечения стреляной гильзы из патронника гильзы сильных винтовочных боеприпасов делают конической бутылочной формы. Соответственно, такой же конической формы делают и патронник. Причем внутренние стенки патронника выполняются для уменьшения трения с очень большой чистотой и обрабатываются почти до зеркального состояния.
Формы гильз непрерывно пытались совершенствовать. Оружейникам и стрелкам неоднократно приходилось видеть гильзы с кольцевой накаткой (гофром) посредине. Этот гофр, а иногда и несколько гофров, делается для того, чтобы гильза могла растянуться по оси, не разорвавшись.
Сами гильзы выполняются с очень большой точностью. Случается, что гильзы (особенно военного времени выпуска) имеют меньший диаметр, чем положено. Такие гильзы при выстреле или раздуваются, или, чаще всего, разрываются (дают трещину) в продольном направлении. Такое явление происходит и при сильно раздутом патроннике.
Материал, из которого изготовлены гильзы, должен соответствовать специфическим нагрузкам выстрела. Гильзы, изготовленные из слишком упругого материала, начинают рваться при расширении и растяжении.
Гильзы из чрезмерно пластичного металла, который практически не имеет упругости обратной деформации, после падения давления в стволе остаются в раздутом состоянии, «зажимаются» патронником и не выходят после выстрела. Кроме того, материал гильзы должен обеспечивать возможно меньший коэффициент трения.
Идеальным материалом, отвечающим почти всем предъявляемым требованиям для изготовления гильз винтовочных патронов, является латунь. Но латунь дорога и, кроме того, при длительном хранении она становится хрупкой. Поэтому наиболее применяемьм материалом для изготовления гильз является мягкая сталь, плакированная (биметаллизированная) томпаком. Слой томпака берется толщиной, составляющей 4-6% толщины стенки гильзы. Томпак предохраняет гильзу от коррозии и резко снижает коэффициент трения, способствуя улучшению экстракции гильзы после выстрела.
Гильзы изготавливаются методом глубокой вытяжки. Технологически этот процесс довольно сложный и ответственный.
ЖИВУЧЕСТЬ ВИНТОВОЧНЫХ СТВОЛОВ
Снайперские стволы бракуются в тех случаях, если они имеют трещины или раздутия.
Основной причиной механического износа канала ствола является истирание его внутренних поверхностей в результате:
— давления между выступами оболочки пули и полями нарезов, возникающего вследствие вращательного движения пули;
— трения при движении пули;
— усилия, возникающего при врезании полей нарезов в оболочку пули;
— неправильной чистки канала ствола.
Схема 148. Раздутие ствола
Незначительные раздутия, имеющие при просмотре канала ствола на свет форму темных колец (или полуколец), называются кольцевыми. Они очень мало влияют на кучность и силу боя или даже совсем не влияют. Но в процессе эксплуатации кольцевое раздутие увеличивается все больше и больше. Рано или поздно кольцевое раздутие превращается в продольное. При этом происходит значительный прорыв газов в районе раздутия, сход пули с нарезов, падение мощности выстрела до 20%, и естественно, повышается разброс.
Наиболее агрессивно действуют продукты сгорания капсюльного состава. Например, раскаленные частицы хлористого калия соединяются с металлом поверхности канала ствола, в результате чего сталь в таких местах становится легкоплавкой. Расплавленные частицы этой стали пороховые газы выносят наружу, на их месте канал ствола сначала теряет блеск и делается шершавым, со временем покрывается сыпью, а затем и мелкими раковинами. Это явление называется разгаром ствола. Разгар ствола наблюдается сразу же после пульного входа. Но это еще не все. Хлористый калий, оставшийся на поверхности канала ствола, гигроскопично «натягивает» на себя атмосферную влагу из окружающего воздуха. В результате чего происходит электрохимический процесс разъедания стали, то есть интенсивного ржавления стенок ствола. К этим крайне нежелательным явлениям присоединяется еще и действие ртути капсюльного состава, которая углубляется в толщину металла, ослабляет связи между его частицами и вызывает появление микроскопических трещинок, усиливая этим разгар ствола.
Механическое растирание является главной причиной износа оружейных не хромированных стволов. Хромированные стволы с повышенной износостойкостью выходят из строя главным образом по причине сильного разгара ствола с казенной части.
Нагар, оставшийся в канале ствола после выстрела, имеет кислотную реакцию. Наиболее полноценно он нейтрализуется веществами, имеющими щелочную реакцию. Щелочь и кислота, как известно из курса химии, взаимно нейтрализуются.
РЧС приготавливается в следующем составе:
Чистку канала ствола производят ершиком, смоченным в растворе, затем канал ствола протирают паклей. Чистку раствором следуют продолжать до полного удаления нагара, то есть до тех пор, пока смоченный раствором ершик или пакля не будет выходить из канала ствола без признаков нагара. После чего протереть канал ствола сухой паклей, а затем чистой ветошью. На следующий день проверить качество произведенной чистки и, если при протирании канала ствола чистой ветошью на ней будет обнаружен нагар, произвести повторную чистку в том же порядке.
По окончании чистки нарезной части канала ствола таким же порядком вычистить патронник со стороны ствольной коробки и тем же порядком вычистить газовую камеру, газовый поршень, газовый регулятор и прочие детали газоотводного узла (у автоматического оружия).
Обращайте особое внимание на чистку чашечки затвора. Капсюльные газы, которые агрессивнее пороховых, прорвавшись между капсюлем и гильзой, разъедают «кружочек» вокруг выхода ударника. Если нагар в этом месте не удалять и не бороться с коррозией, возникает уже не кружочек, а углубление.
Тщательно вычищайте все рабочие поверхности деталей газоотводного узла автоматических винтовок. Это место очень подвержено ржавлению от действия пороховых газов.
«Никто не считал, но по полцинка ежегодно расстреливаем». (Один цинк вмещает 440 патронов.)
Ложа является одной из составных частей снайперской винтовки. У магазинных (трехлинейных) винтовок ложа служит для соединения всех частей и для удобства действия винтовкой при стрельбе. В соответствии с этим назначением к ложе предъявляется ряд требований, главнейшие из которых следующие:
— Ложа должна иметь форму и размеры, обеспечивающие удобство обращения с винтовкой во всех случаях ее применения, и быть достаточно прочной при минимально возможном весе.
— Материал ложи должен обладать хорошей устойчивостью против влаги. Это требование чрезвычайно важно, так как ложа оказывает влияние на меткость стрельбы и стабильность боя винтовки.
— Устройство ложи должно обеспечивать однообразное положение ствола и ствольной коробки, не изменяемое при эксплуатации, а также при сборке и разборке.
— Ложа должна изготавливаться из материала, не изменяющего своих свойств при длительной эксплуатации и при хранении. Материал этот должен хорошо прирабатываться к металлу ствольной коробки.
Для влагостойкости наружная поверхность ложи чисто обрабатывается, пропитывается сосновой смолой или 5-10%-ным раствором нефтебитума в минеральном масле (что придает поверхности коричневый цвет) и лакируется. Такая обработка древесины ложи делает ее негигроскопичной, чем ложа предохраняется от разбухания и последующей усушки. Кроме того, пропитанная смолой древесина ложи предохраняется от загнивания и от поражения насекомыми. Ложи, изготовленные из березовой древесины, в некоторых случаях (на заказ) покрываются морилкой и горячим раствором, состоящим из равных частей воска, канифоли и скипидара.
В ложе магазинной винтовки различают три части: цевье, шейку и приклад (7, 2, 3 на фото 200). В ложах боевых винтовок имеется еще и ствольная накладка (4 на фото 200). Передняя часть ложи, называемая цевьем, служит для помещения ствола со ствольной коробкой, для предохранения ствола от погибов при случайных ударах, для предохранения рук стрелка от ожогов при сильно нагретом стволе.
Фото 200. Ложа магазинной винтовки:
На автоматических винтовках СВД следует следить за плотностью соединения приклада со ствольной коробкой. Ослабленный винт крепления вызывает шатание приклада и непредсказуемый разброс.
Внимание! Смазывать ложу оружейными минеральными маслами нельзя. Дерево от этого становится хрупким. Для того чтобы предохранить ложу от действия влаги, ее в сухом виде смазывают тонким слоем льняной олифы (или любой растительной олифы).
Некачественная (см. ранее) посадка в ложу ствола магазинной винтовки ощутимо влияет на кучность боя. Покоробленная Ложа увеличивает разброс пуль еще больше.
Растертость ствола вследствие неправильной чистки аналогична влиянию естественного износа.
При погибах ствола вследствие даже незначительных ударов сбоку наблюдается отклонение пуль в сторону погиба.
Влияние на меткость неисправных, изношенных и плохо закрепленных прицельных приспособлений общеизвестно. Шатания мушки, целика, прицельной планки, кронштейна оптического прицела сразу сводят меткость стрельбы на нет.
Кучность боя малокалиберных стволов колеблется в широких пределах в зависимости от системы. У охотничьих моделей он может быть от 10х12 до 3х3 см. У винтовок «Биатлон», различных моделей разброс обычно от 3х2 до 2х1,5 см. Поэтому в операциях по обезвреживанию террористов (особенно при необходимости взять противника живым) желательно использование винтовок «Биатлон-4», «Биатлон-6», «Биатлон-7», обладающих более кучным, стабильным и сильным боем по сравнению с обычными охотничьими образцами.
ДЕФЕКТЫ КАНАЛА СТВОЛА, ОПРЕДЕЛЯЕМЫЕ ВИЗУАЛЬНЫМ ОСМОТРОМ
Канал ствола можно просматривать с казенной части и с дульной части, направив противоположный канал ствола на источник света. При осмотре ствола с дульной части в ствольную коробку вкладывается белая бумажка, стволу придают такое положение, чтобы свет отражался от бумаги и освещал канал ствола. Патронник осматривается с казенной части.
В канале ствола можно наблюдать следующие ненормальные явления.
В нехромированных стволах наблюдается мельхиоризация в виде наслоений или бугорков на поверхности канала. Это происходит при стрельбе пулей с мельхиоровой оболочкой. В таких же стволах наблюдается омеднение, появляющееся при стрельбе пулями, плакированными томпаком. Омеднение проявляется в виде налета желто-красного цвета. Мельхиоризация и омеднение наблюдаются при стрельбе из новых неприработанных стволов и исчезают после чистки латунным ершиком, смоченным маслом. Дефектом ствола не считаются.
Матовая поверхность канала ствола характеризуется местным потемнением канала, но это не является ржавчиной и дефектом не считается.
Кольцевое потемнение может быть по всей окружности канала ствола или части ее, но это в хромированных стволах не является раздутием и не считается недостатком.
Спиральные полоски на хромированной поверхности являются результатом механической обработки канала ствола (следы инструмента). До хромирования следы инструмента незаметны; после хромирования следы инструмента выступают более рельефно в виде спиральных полосок.
Сероватый оттенок, черные точки, перерезы полей, кольца вызваны особенностями технологического процесса хромирования; недостатками не считаются.
Сетка разгара наблюдается в виде пересекающихся полосок или тонких линий на поверхности хромированных стволов, как правило с казенной части. Эти полоски и линии появляются в процессе стрельбы. С увеличением количества выстрелов в полосках образуются трещины и начинается выкрашивание хрома сначала в виде точек, затем выкрошенность увеличивается и переходит в сколы хрома.
Овальная растертость патронника иногда видна в виде темной полоски в нижней части патронника со стороны магазина. Образуется от растирания шомполом и при стрельбе загрязненными патронами. Может вызвать раздутие и продольный разрыв гильзы. При контрольном отстреле, если на гильзе заметно продольное раздутие, винтовка бракуется. На малокалиберных винтовках этот дефект сразу виден при наружном осмотре и часто является причиной невыброса гильзы.
Наружным осмотром ствола можно выявить следующие дефекты:
— pабоины на казенном срезе (устье) патронника, препятствующие досылке патрона в патронник, обнаруживаются осмотром патронника и по наличию царапин на стреляных гильзах. Довольно редкое явление. В практике автора был такой случай, явившийся следствием вредительства одного снайпера другому перед соревнованиями. Такие забоины и заусенцы аккуратно снимаются надфилем заподлицо с поверхностью металла.
При наружном осмотре обращается внимание на прочное закрепление на стволе основания мушки, газовой камеры, прицельной колодки, упорного кольца цевья ложи. Все эти детали должны быть прочно закреплены на стволе и не иметь качки. Предохранитель мушки не должен перемещаться в основании от усилия руки. Мушка не должна иметь изгиба и сорванной резьбы. Она должна быть перпендикулярна к оси канала ствола и туго ввинчиваться в отверстие предохранителя (только ключом).
ОБНАРУЖЕНИЕ ИЗГИБА СТВОЛА
Изгиб ствола определяется осмотром очертаний теней в канале ствола с казенной и дульной частей.
Схема 149. Осмотр канала ствола
Схема 150. Теневые треугольники в канале ствола:
А-в прямом стволе; Б-в изогнутом стволе
Расположение тени в непогнутом гладком стволе
Расположение тени в непогнутом нарезном стволе
Стрела изгиба направлена вниз
Стрела изгиба направлена вверх
Стрела изгиба направлена влево
Стрела изгиба направлена вправо
Расположение тени в канале ствола с пологим изгибом на одной четверти его длины от дульного среза
Стрела изгиба направлена вниз
Стрела изгиба направлена вверх
Расположение тени в канале ствола при пологом изгибе ствола посередине
ПРИМЕЧАНИЕ. При определении изгиба ствола по теням кольцевое темное пятно в канале ствола под основанием мушки трехлинейной винтовки получается в результате протяжки на заводах основного производства и во внимание не принимается.
ПРАВКА ИЗОГНУТЫХ СТВОЛОВ
Для правки изогнутого ствола:
— прочистить и насухо протереть канал ствола;
— определить характер и место изгиба по форме тени в канале ствола;
Схема 152. Наковальня для правки ствола:
РАССВЕРЛОВКА ДУЛЬНОЙ ЧАСТИ СТВОЛА ВИНТОВКИ ИЛИ КАРАБИНА
Этой операцией восстанавливается кучность боя ствола. Суть заключается в том, что сверлом выбирается раструб или раздутие и восстанавливается четкий дульный перепад. Для рассверловки необходимо:
— определить длину раздутия или износа (растертости) дульной части канала ствола;
— рассверлить канал ствола со стороны дульного среза на диаметр 8,8+0.2 мм на длину раздутия или износа, но не более чем на 46,5 мм у винтовочных стволов и не более чем 30±1 мм у карабинов. (Почему так? Потому что при этом практически сохраняется расчетная траектория пули); (Допускается рассверловка канала ствола непосредственно сразу на длину 45±1,5 мм у винтовок и на длину 30±1 мм у карабинов.)
— развернуть рассверленную часть канала ствола на той длине разверткой диаметром 9 мм (схема 153);
— зачистить плоским личным напильником и наждачным полотном следы раздутия заподлицо с наружной поверхностью дульной части ствола и заусенцы на дульном срезе;
— проверить бой ствола в собранном оружии.
Схема 153. Обработка дульной части канала ствола:
Обычно рассверловка дульной части канала ствола снайперской винтовки не производится. Но в подавляющем большинстве случаев рассверловка восстанавливает кучность боя ствола. Снайперскую винтовку после такой операции следует, разумеется, заново пристрелять. На фронте мужики обнаружили одну полезную особенность рассверловки: если по бокам той части, откуда рассверлен раструб, насверлить 30-40 отверстий диаметром 2-3 мм, то такая рассверленная часть начинает работать как эффективный пламегаситель. При этом уменьшается газовый выхлоп вперед и меньше поднимается пыли, снега и т. д. перед стрелком и этим меньше демаскируется позиция.
ИЗНОС КАНАЛА СТВОЛА ПО ПОЛЯМ, ОКРУГЛЕНИЕ ИЛИ СКРОШЕННОСТЬ УГЛОВ ПОЛЕЙ НАРЕЗОВ
Для выявления этих неисправностей необходимо тщательно протереть канал ствола, осмотреть его и обмерить войсковым калибром К-2.
(I) Скругление или скрошенность углов полей нарезов, а также износ канала ствола по полям (калибр К-2 входит в канал ствола с дульной части) допускаются, если винтовка удовлетворяет требованиям нормального боя.
При вхождении калибра К-2 в канал ствола (как с рассверленной, так и нерассверленной дульной частью) с дульной части на длину более 45 мм от дульного среза винтовку, не удовлетворяющую вследствие этого требованиям нормальною боя, браковать.
При вхождении калибра К-2 в нерассверленный канал ствола с дульной части на длину до 45 мм винтовку, не удовлетворяющую вследствие этого требованиям нормального боя, отправить в вышестоящий ремонтный орган.
(II) Скругление или скрошенность углов полей нарезов, а также износ канала ствола по полям (калибр К-2 входит в канал ствола с дульной части на длину не более 10 мм, а в канал ствола с рассверленной дульной частью на длину не более 51 мм от дульного среза) допускаются, если винтовка при этом удовлетворяет требованиям нормального боя.
При вхождении калибра К-2 в канал ствола с дульной части на длину от 10 до 45 мм у винтовки, удовлетворяющей требованиям нормального боя, а также при вхождении калибра К-2 в канал ствола до 45 мм у винтовки, не удовлетворяющей вследствие этого требованиям нормального боя, рассверлить дульную часть канала ствола (см. ранее).
Оксидирование английским «ржавым» лаком
Деталь опускают в насыщенный раствор медного купороса, предварительно добавив в него по каплям 5-6 капель серной кислоты. Деталь выдерживается до цвета красной меди. Затем ее прополаскивают в горячей воде и опускают на 20-30 секунд в профильтрованный насыщенный раствор гипосульфита. После чего деталь выдерживается в растворе калийных квасцов 1:10 на протяжении 10-12 часов, затем ее промывают, сушат и смазывают олифой. Покрытие получается цвета черной пластмассы и держится очень долго.
Деталь кипятят при температуре 125-130° на протяжении 40-90 минут в растворе 700 г каустической соды, 100 г нитрата натрия, 100 г буры и 1 л воды, затем промывают и покрывают олифой.
Воронение (огневое оксидирование) второстепенных деталей
Воронение (огневое оксидирование) второстепенных деталей (кроме стволов, затворов и ствольных коробок) производится нагревом деталей на огне до цветов побежалости (но не передержать!) с последующим опусканием их в любое минеральное масло. Или в металлическом ящике засыпают деталь древесным толченым углем и нагревают на огне.
ВНИМАНИЕ: перед любым видом оксидирования детали обезжирить в 10%-ном растворе соды или поташа.
Стволы при жидкостном оксидировании плотно закрывать пробками со стороны патронника и дульного среза.
Общеармейская инструкция по оксидированию деталей винтовки и карабина
Для предохранения металлических деталей винтовки и карабина от ржавления поверхность деталей оксидируется.
Для получения качественного оксидного покрытия рекомендуется выполнять операции в такой последовательности:
1. Подготовка поверхности.
3. Последующая отделка.
I. Подготовка поверхности
1. Детали обезжиривать в ванне, содержащей раствор следующего состава:
Кальцинированная или каустическая сода. 100 г
2. Детали обезжиривать при бурном кипении раствора в течение 20-30 минут.
3. Освежать (корректировать) раствор нужно по мере его израсходования путем добавления составных частей до первоначальной концентрации. Плавающие на поверхности обезжиривающего раствора жировые загрязнения должны время от времени удаляться.
После обезжиривания детали промыть в водопроводной проточной воде (при комнатной температуре) 3-4-кратным погружением.
Хорошо обезжиренная деталь должна полностью смачиваться водой. Если вода при промывке покрывает поверхность детали не полностью, а собирается каплями, это указывает на недостаточное обезжиривание.
При наличии ржавчины на поверхности деталей, а также при повторном оксидировании их с целью удаления первоначальной оксидной пленки травление деталей производить по инструкции (приложение 5).
После травления детали промыть в холодной проточной воде 3-4-кратным погружением.
ПРИМЕЧАНИЕ. После травления и промывки во избежание ржавления не разрешается, чтобы детали находились на воздухе свыше 10 секунд. При вынужденной задержке детали необходимо опускать на 5 минут в мыльный раствор, после чего вынуть и высушить; образовавшаяся мыльная пленка предохраняет детали от ржавления.
Общие замечания по операциям подготовки поверхности
1. При наличии на поверхности деталей толстого слоя смазки или жира перед обезжириванием полностью удалить их, протирая сухими тряпками; после чего детали отправить для обезжиривания.
2. Пружины винтовки и карабина травлению не подвергать, а чистить наждачным полотном или крацевальной щеткой.
1. Детали оксидировать в ванне, содержащей раствор следующего состава:
Каустическая сода. …. 700 г
Нитрат натрия. …. 100 г
Нитрит натрия. …. 100 г
ПРИМЕЧАНИЕ. В качестве окислителей одинаково применимы нитрат и нитрит натрия или калия в сумме, не превышающей 200 г как в указанной смеси, так и в отдельности.
2. Приготовлять раствор нужно в специальном подогреваемом баке, предварительно хорошо очищенном от грязи и тщательно промытом водой.
Предварительно раздробленную на мелкие куски (размером 40-50 мм в поперечнике) каустическую соду загружают в бак, заливают водой и кипятят до растворения Затем вводят нитрат и нитрит натрия. После растворения компонентов оксидирующего состава раствор оставляется в полном покое на 2-4 часа. Этим приготовление раствора для оксидирования заканчивается.
Перед оксидированием деталей раствор подогревается до бурного кипения.
3. Детали, подготовленные к оксидированию, погружать в бурно кипящий раствор в сетчатых железных корзинах.
5. Детали выдерживать в растворе в процессе оксидирования 1,5 часа.
Во время оксидирования детали через каждые 25-30 минут вынимать из оксидирующего раствора и ополаскивать в водопроводной воде при комнатной температуре, опуская их в воду 2-3 раза.
ПРИМЕЧАНИЕ. Вода после ополаскивания может быть использована для пополнения оксидировочной ванны.
После оксидирования детали промыть водопроводной водой (желательно под давлением из брандспойта) до полного удаления остатков оксидирующего раствора с поверхности деталей.
Общие замечания по операциям оксидирования
1. При погружении деталей в оксидирующий раствор вся поверхность их должна полностью омываться раствором
2. Появление на поверхности оксидируемых деталей налета зеленого или желтого цвета указывает на повышенную температуру оксидирующего раствора (или повышенную концентрацию каустической соды), для понижения которой в ванну необходимо добавить воды.
3. По мере пользования раствором в ванне для оксидирования происходит накапливание осадка гидрата окиси железа. Осадок периодически удалять специальными скребками при температуре раствора несколько ниже точки кипения.
III. Последующая отделка
а) Выдержка в мыльном растворе
1. После оксидирования детали погружать в кипящий мыльный раствор следующего состава:
ПРИМЕЧАНИЯ: 1. Во избежание свертывания мыла мыльный раствор следует готовить на предварительно прокипяченной воде. 2. При свертывании мыла раствор выливают и заменяют свежим. 3. Время выдержки деталей в горячем мыльном растворе 3- 5 минут.
Вынутые из мыльного раствора детали просушивать на воздухе до полного удаления влаш с поверхностей.
1. Просушенные детали помещают в ванну, содержащую веретенное масло или ружейную смазку.
2. Температура смазки в ванне 105-115°С; выдержка в ванне 2-3 минуты.
ПРИМЕЧАНИЕ. Применять холодную смазку не рекомендуется. Горячие смазанные детали помещать на специальные столы для отекания излишка масла и по охлаждении их нужно протирать от избытка масла и от красноватого налета. После этого детали направить на контроль качества оксидного покрытия.
Контроль качества оксидного покрытия
Качество оксидного покрытия устанавливается внешним осмотром поверхности оксидированных деталей. Поверхность деталей после оксидирования должна иметь ровную окраску черного цвета.
Для деталей с грубо обработанной поверхностью, а также для участков, подвергнутых местной сварке или штамповке, допускается слабая разница в оттенках цвета.
На поверхности оксидированных деталей не должно быть красноватого осадка и незаоксидированных участков. Детали с красным налетом возвращать на протирку, а детали с незаоксидированными участками подвергать повторному оксидированию, для чего после обезжиривания и промывки водой обработать при комнатной температуре в ингибированной соляной кислоте по инструкции (приложение 5) до растворения оксидной пленки. Затем детали снова тщательно промыть водой и дальше обработать, как детали, вновь поступившие на оксидирование.
В случае ржавления деталей в самой ванне необходимо очистить ванну и обновить раствор.
Брызги щелочного раствора разъедают ткань одежды и при попадании на тело вызывают ожоги, поэтому лица, занятые щелочным оксидированием, должны во время работы надевать брезентовую спецодежду, резиновые сапоги и резиновые перчатки.
По окончании работы полы в помещении для оксидировки должны быть тщательно промыты водой, а все ванны во избежание загрязнения должны быть накрыты крышками.
Приложение 5. Инструкция по очистке деталей от ржавчины химическим способом А. Общие сведения
1. Очистка стальных деталей от ржавчины должна производиться в ингибированной соляной кислоте, представляющей смесь соляной кислоты (уд. вес 1,18) с ингибитором марки ПБ-5 (0,8-1% по отношению к объему соляной кислоты). Неингибированную кислоту применять запрещается.
Ингибированная соляная кислота хорошо очищает стальные детали от ржавчины, практически не растворяет металл.
2. Ингибированная соляная кислота отгружается потребителям с заводов Министерства химической промышленности в обычных железнодорожных цистернах или в бутылях.
3. Очистка стальных деталей от ржавчины состоит из следующих основных операций: подготовки деталей к очистке, травления в кислоте, промывки с пассивированием, протирки, сушки и смазки.
Б. Подготовка деталей к очистке
4. Обезжирить детали в ванне, содержащей раствор следующего состава:
Кальцинированная или каустическая сода. 100 г
Обезжиривание ведется при кипении раствора.
5. Промыть детали в холодной проточной воде и охладить до комнатной температуры (18-20°С). Хорошо обезжиренная деталь должна полностью смачиваться водой. Если вода при промывке покрывает поверхность детали не полностью, а собирается каплями, то это указывает на недостаточное обезжиривание.
ПРИМЕЧАНИЕ. При наличии на поверхности деталей толстого слоя смазки перед обезжириванием, необходимо ее удалить сухой ветошью.
6. Вытравить детали в эмалированных, деревянных или в сварных железных ваннах, содержащих раствор следующего состава:
7. Для приготовления раствора в отмеренное количество воды влить ингибированную соляную кислоту; воду в кислоту лить нельзя, так как это может привести к разбрызгиванию кислоты и к сильным ожогам.
8. Температура травильного раствора и погруженных в него деталей должна быть в пределах 10-30°С.
Время выдержки деталей в травильной ванне устанавливается опытным путем; в зависимости от состава ванны, степени поражения ржавчиной поверхности очищаемых деталей и состава металла время выдержки может колебаться от 20 минут до 3 часов.
По истечении установленного времени травления вынуть детали из травильного раствора и тщательно промыть в ванне с холодной проточной водой, после чего отправить детали на промывку в растворе пассиваторов или на ремонт и оксидирование.
9. При травлении сильно поржавевших деталей следует растворять только часть ржавчины, так как оставшаяся ржавчина от действия кислоты сильно разрыхляется и может быть снята щеткой и смыта водой.
11. Травильный раствор действует (приблизительно) в течение 20 закладок деталей при средней продолжительности очистки, после чего раствор сильно загрязняется и его необходимо заменить.
12. Персонал, обслуживающий травильные ванны, должен иметь резиновые перчатки, фартук и очки.
Внимание! При травлении стволов с хромированными каналами необходимо предохранить канал ствола от попадания в него ингибированной соляной кислоты, так как она разъедает хром. Для этого канал ствола до обезжиривания слегка смазывать пушечной смазкой и прочно закупоривать с обоих концов резиновыми или деревянными пробками.
Г. Промывка в растворе пассиваторов
13. Неоксидируемые детали с целью образования на их поверхности пленки, отчасти предохраняющей от ржавления, после травления и промывки погрузить в железную ванну, содержащую раствор следующего состава:
Двухромовокислый калий (хромпик калиевый). 20 г
14. Промывать детали в кипящем растворе. Время выдержки деталей в ванне 10-15 минут.
Д. Протирка и смазка
15. После промывки в растворе пассиваторов тщательно протереть детали насухо или просушить, а затем (если они не идут непосредственно на ремонт) погрузить на 2-3 минуты в ванну с ружейной смазкой, нагретой до температуры 105-115°С.
Отремонтированная вышеописанным способом часть ложи получается крепче, чем она была до поломки.
Если в ложе образовались выбитые, выщербленные, отколотые или выжженные места, то такие дефекты заполняются постановкой вклеек. Как это делается, представлено на схемах 154-156. Эти схемы и пояснения к ним позволяют представить картину ремонта цевья, приклада, и остальных частей ложи.
Для ремонтных вклеек берется древесина одинаковой породы и фактуры, волокна вклейки располагаются обязательно вдоль волокон ложи. Вклейки изготавливаются очень тщательно, не спеша, по принципу «семь раз отмерь, один раз отрежь». Вклейка должна очень плотно, без зазоров, помещаться в аккуратно разделанный для ее постановки паз. Место постановки вклейки визуально не должно отличаться от остальной фактуры ложи. Следует учесть, что клееная древесина всегда прочнее неклееной.
Для склеивания применяется обычный бытовой эпоксидный клей (эпоксидная смола). Прочность склеивания при этом необычайно высока. После того как ложа с проклеенным дефектом выдержана 24 часа (время, необходимое для полноценного застывания эпоксидного клея), выступающие части вклейки обрабатывают заподлицо с ложей.
Но это еще не все. Отремонтированной таким образом ложе нужно придать красивый внешний вид. Наверняка такая ложа, бывшая в длительном употреблении, ободрана, поцарапана и смотрится непрезентабельно.
Сначала ложу обдирают наждачной бумагой средней зернистости, при этом зашлифовывают царапины и снимают остатки старого лака. Затем ложу шлифуют мелкой наждачной бумагой, а затем самой мелкой, так называемой «микронкой». После окончания такой сухой шлифовки поверхность ложи смачивают водой, вытирают, высушивают и снова шлифуют «микронной» наждачной бумагой. Почему так делается? Потому что увлажнение «поднимает» мелкие заусенцы дерева, которые после высушивания остаются в «ершистом», вздыбленном состоянии, и в таком состоянии они снимаются мелкой наждачной бумагой. Иногда в зависимости от фактуры древесины такую операцию приходится повторять 2-3 раза.
Ложи, изготовленные из ореха, бука, граба, морилкой обычно не обрабатываются. Фактура древесины ореха сама по себе достаточно красива, благородна и в окраске не нуждается.