что такое полиморфная структура
Полиморфизм для начинающих
Постановка задачи
Предположим, на сайте нужны три вида публикаций — новости, объявления и статьи. В чем-то они похожи — у всех них есть заголовок и текст, у новостей и объявлений есть дата. В чем-то они разные — у статей есть авторы, у новостей — источники, а у объявлений — дата, после которой оно становится не актуальным.
Самые простые варианты, которые приходят в голову — написать три отдельных класса и работать с ними. Или написать один класс, в которым будут все свойства, присущие всем трем типам публикаций, а задействоваться будут только нужные. Но ведь для разных типов аналогичные по логике методы должны работать по-разному. Делать несколько однотипных методов для разных типов (get_news, get_announcements, get_articles) — это уже совсем неграмотно. Тут нам и поможет полиморфизм.
Абстрактный класс
Грубо говоря, это класс-шаблон. Он реализует функциональность только на том уровне, на котором она известна на данный момент. Производные же классы ее дополняют. Но, пора перейти от теории к практике. Сразу оговорюсь, рассматривается примитивный пример с минимальной функциональностью. Все объяснения — в комментариях в коде.
// а этот метод должен напечатать публикацию, но мы не знаем, как именно это сделать, и потому объявляем его абстрактным
abstract public function do_print ();
>
Производные классы
Теперь можно перейти к созданию производных классов, которые и реализуют недостающую функциональность.
Теперь об использовании
Суть в том, что один и тот же код используется для обьектов разных классов.
Вот и все. Легким движением руки брюки превращаются в элегантные шорты :-).
Основная выгода полиморфизма — легкость, с которой можно создавать новые классы, «ведущие себя» аналогично родственным, что, в свою очередь, позволяет достигнуть расширяемости и модифицируемости. В статье показан всего лишь примитивный пример, но даже в нем видно, насколько использование абстракций может облегчить разработку. Мы можем работать с новостями точно так, как с объявлениями или статьями, при этом нам даже не обязательно знать, с чем именно мы работаем! В реальных, намного более сложных приложениях, эта выгода еще ощутимей.
Немного теории
Наследование и полиморфизм
Полиморфизм
Переходя к программистскому примеру: из того, что «любое такси является транспортным средством», следует возможность присваивания между переменными и выражениями этих двух типов. Пусть объявлены переменные:
Структура наследования, рассмотренная выше, делает допустимым присваивание :
В эффекте присваивания нет ничего нового. Все, что мы изучили о присваивании, сохраняется, если не считать изменений в типе объектов. Предполагая, что обе переменные первоначально присоединены к объектам, и картинка, отображающая эффект «до-после» присваивания, полностью сохраняется:
Определения
Нам нужна подходящая для этой ситуации терминология.
Определения: полиморфизм
Присоединение (присваивание или передача аргумента) является полиморфным, если целевая переменная и выражение источника имеют различные типы.
Контейнерная структура данных является полиморфной, если она может содержать ссылки на объекты различных типов.
Напоминаю, что «сущности» включают переменные (атрибуты, локальные переменные), а также формальные аргументы методов и Result.
«Полиморфизм» лежит в основе этих возможностей. Его часто путают с динамическим связыванием, изучаемым ниже. Динамическое связывание необходимо для реализации полиморфизма, но это разные концепции.
Тогда вызов этого метода является вполне корректным:
Несмотря на свое имя — от греческого словосочетания «множественность форм» — полиморфизм не является причиной изменения во время выполнения объектом своей «формы» (изменением типа). Полиморфное присоединение применимо только к ссылочным типам с эффектом, показанным на последнем рисунке, — изменяются ссылки, но сами объекты не меняют тип.
Мы не будем более останавливаться на механизмах преобразования. Если необходимо его использовать, то можно проанализировать для начала класс REAL32 в EiffelBase (смотри предложение convert ), этого будет достаточно для понимания основных идей трансформации.
Что же касается нашего обсуждения, то следует понимать, что трансформация и полиморфизм являются взаимоисключающими механизмами: если применяется один из них, то второй не применяется. Так что, когда вы видите присваивание a:=b или когда речь идет о передаче аргумента при вызове метода, то никогда не возникает неопределенность, из контекста всегда ясно, с каким случаем мы имеем дело.
Полиморфные структуры данных
Особый интерес представляет последний случай в определении полиморфизма — полиморфная структура данных, называемая также полиморфным контейнером. Рассмотрим типичный контейнер — список, предназначенный для хранения транспортных средств:
Полиморфный контейнер является результатом последовательности подобных вставок c возможностью различных фактических типов в каждом случае. После нескольких вызовов extend наш список fleet может выглядеть, например, так:
Я могу услышать от вас: это несправедливо! Просто взгляните на последний рисунок, ведь последний объект — такси. Почему же я не могу выполнить операцию, вполне допустимую для этого объекта?
Во-первых, жизнь полна несправедливостей, и нужно уметь принимать ее такой, какой она есть.
И третье: все будет хорошо — и это настоящий ответ! Существуют способы проверки того, чем является полученный объект, является ли он в самом деле такси в данном конкретном выполнении, и если да, то вызов take можно сделать законным. Но прежде чем узнать, как это делается, придется прочесть еще несколько десятков страниц. Разве я не говорил вам, что жизнь полна несправедливостей?
Введение в наследование
Полиморфизм
Полиморфное присоединение
«Полиморфизм» означает способность обладать несколькими формами. В ОО-разработке несколькими формами обладают сущности (элементы структур данных), способные во время выполнения присоединяться к объектам разных типов, что контролируется статическими объявлениями.
Предположим, что для структуры наследования на рисунке вверху объявлены следующие сущности:
Тогда допустимы следующие присваивания:
Такие присваивания, в которых тип источника (правой части) отличен от типа цели (левой части), называются полиморфными присваиваниями. Сущность, входящая в полиморфное присваивание слева (в примере это p ), является полиморфной сущностью.
До введения наследования все присваивания были мономорфными (не полиморфными): можно было присваивать точку точке, книгу книге, счет счету. С появлением полиморфизма возможных действий становится больше.
Кроме присваивания, полиморфизм имеет место и при передаче аргументов, например в вызовах вида f (r) или f (t) при условии объявлении компонента f в виде:
Напомним, что присваивание и передача аргументов имеют одинаковую семантику, и оба называются присоединением (attachment). Когда источник и цель имеют разные типы, можно говорить о полиморфном (polymorphic) присоединении.
Что на самом деле происходит при полиморфном присоединении?
Полиморфные структуры данных
Рассмотрим массив многоугольников:
Когда некоторое значение x присваивается элементу этого массива, как в вызове
(для некоторого допустимого значения индекса some_index ), то спецификация класса ARRAY указывает, что тип присваиваемого значения должен быть согласован с типом фактического родового параметра:
и, создав соответствующие объекты, можно выполнить операции
которые присвоят элементам массива ссылки на объекты различных типов.
На этом рисунке графические объекты представлены соответствующими геометрическими фигурами, а не обычными диаграммами объектов с набором их полей. |
Полиморфные структуры данных реализуют цель, сформулированную в начале лекции: объединение порождения и наследования для достижения максимальной гибкости и надежности. Имеет смысл напомнить рис. 10.1, иллюстрирующий эту мысль:
Такая комбинация универсальности и наследования является весьма сильным средством. Оно позволяет описывать структуру объектов с нужной степенью общности. Например,
LIST [RECTANGLE] : может содержать квадраты, но не треугольники.
LIST [POLYGON] : может содержать квадраты, прямоугольники, треугольники, но не круги.
LIST [ANY] : может содержать объекты любого типа.
Варьируя место класса, выбираемого в качестве фактического родового параметра, в иерархии, можно точно установить границы типов объектов, допустимых в определяемом контейнере.
Основные принципы ООП: инкапсуляция, наследование, полиморфизм
Contents
Абстракция [ ]
Абстра́кция — в объектно-ориентированном программировании это придание объекту характеристик, которые отличают его от всех объектов, четко определяя его концептуальные границы. Основная идея состоит в том, чтобы отделить способ использования составных объектов данных от деталей их реализации в виде более простых объектов, подобно тому, как функциональная абстракция разделяет способ использования функции и деталей её реализации в терминах более примитивных функций, таким образом, данные обрабатываются функцией высокого уровня с помощью вызова функций низкого уровня.
Такой подход является основой объектно-ориентированного программирования. Это позволяет работать с объектами, не вдаваясь в особенности их реализации. В каждом конкретном случае применяется тот или иной подход: инкапсуляция, полиморфизм или наследование. Например, при необходимости обратиться к скрытым данным объекта, следует воспользоваться инкапсуляцией, создав, так называемую, функцию доступа или свойство.
Абстракция данных — популярная и в общем неверно определяемая техника программирования. Фундаментальная идея состоит в разделении несущественных деталей реализации подпрограммы и характеристик существенных для корректного ее использования. Такое разделение может быть выражено через специальный «интерфейс», сосредотачивающий описание всех возможных применений программы [1].
С точки зрения теории множеств, процесс представляет собой организацию для группы подмножеств своего множества. См. также Закон обратного отношения между содержанием и объемом понятия.
Инкапсуляция [ ]
Инкапсуляция — свойство программирования, позволяющее пользователю не задумываться о сложности реализации используемого программного компонента (что у него внутри?), а взаимодействовать с ним посредством предоставляемого интерфейса (публичных методов и членов), а также объединить и защитить жизненно важные для компонента данные. При этом пользователю предоставляется только спецификация (интерфейс) объекта.
Пользователь может взаимодействовать с объектом только через этот интерфейс. Реализуется с помощью ключевого слова: public.
Пользователь не может использовать закрытые данные и методы. Реализуется с помощью ключевых слов: private, protected, internal.))
Инкапсуляция — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с абстракцией, полиморфизмом и наследованием).
Сокрытие реализации целесообразно применять в следующих случаях:
предельная локализация изменений при необходимости таких изменений,
прогнозируемость изменений (какие изменения в коде надо сделать для заданного изменения функциональности) и прогнозируемость последствий изменений.
Наследование [ ]
Наследование — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с инкапсуляцией, полиморфизмом и абстракцией), позволяющий описать новый класс на основе уже существующего (родительского), при этом свойства и функциональность родительского класса заимствуются новым классом.
Другими словами, класс-наследник реализует спецификацию уже существующего класса (базовый класс). Это позволяет обращаться с объектами класса-наследника точно так же, как с объектами базового класса.
Простое наследование: [ ]
Класс, от которого произошло наследование, называется базовым или родительским (англ. base class). Классы, которые произошли от базового, называются потомками, наследниками или производными классами (англ. derived class).
В некоторых языках используются абстрактные классы. Абстрактный класс — это класс, содержащий хотя бы один абстрактный метод, он описан в программе, имеет поля, методы и не может использоваться для непосредственного создания объекта. То есть от абстрактного класса можно только наследовать. Объекты создаются только на основе производных классов, наследованных от абстрактного. Например, абстрактным классом может быть базовый класс «сотрудник вуза», от которого наследуются классы «аспирант», «профессор» и т. д. Так как производные классы имеют общие поля и функции (например, поле «год рождения»), то эти члены класса могут быть описаны в базовом классе. В программе создаются объекты на основе классов «аспирант», «профессор», но нет смысла создавать объект на основе класса «сотрудник вуза».
Множественное наследование [ ]
При множественном наследовании у класса может быть более одного предка. В этом случае класс наследует методы всех предков. Достоинства такого подхода в большей гибкости. Множественное наследование реализовано в C++. Из других языков, предоставляющих эту возможность, можно отметить Python и Эйфель. Множественное наследование поддерживается в языке UML.
Множественное наследование — потенциальный источник ошибок, которые могут возникнуть из-за наличия одинаковых имен методов в предках. В языках, которые позиционируются как наследники C++ (Java, C# и др.), от множественного наследования было решено отказаться в пользу интерфейсов. Практически всегда можно обойтись без использования данного механизма. Однако, если такая необходимость все-таки возникла, то, для разрешения конфликтов использования наследованных методов с одинаковыми именами, возможно, например, применить операцию расширения видимости — «::» — для вызова конкретного метода конкретного родителя.
Попытка решения проблемы наличия одинаковых имен методов в предках была предпринята в языке Эйфель, в котором при описании нового класса необходимо явно указывать импортируемые члены каждого из наследуемых классов и их именование в дочернем классе.
Большинство современных объектно-ориентированных языков программирования (C#, Java, Delphi и др.) поддерживают возможность одновременно наследоваться от класса-предка и реализовать методы нескольких интерфейсов одним и тем же классом. Этот механизм позволяет во многом заменить множественное наследование — методы интерфейсов необходимо переопределять явно, что исключает ошибки при наследовании функциональности одинаковых методов различных классов-предков.
Полиморфизм [ ]
Полиморфи́зм — возможность объектов с одинаковой спецификацией иметь различную реализацию.
Язык программирования поддерживает полиморфизм, если классы с одинаковой спецификацией могут иметь различную реализацию — например, реализация класса может быть изменена в процессе наследования[1].
Кратко смысл полиморфизма можно выразить фразой: «Один интерфейс, множество реализаций».
Полиморфизм — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с абстракцией, инкапсуляцией и наследованием).
Полиморфизм позволяет писать более абстрактные программы и повысить коэффициент повторного использования кода. Общие свойства объектов объединяются в систему, которую могут называть по-разному — интерфейс, класс. Общность имеет внешнее и внутреннее выражение:
Формы полиморфизма [ ]
Используя Параметрический полиморфизм можно создавать универсальные базовые типы. В случае параметрического полиморфизма, функция реализуется для всех типов одинаково и таким образом функция реализована для произвольного типа. В параметрическом полиморфизме рассматриваются параметрические методы и типы.
Параметрические метод [ ]
Если полиморфизм включения влияет на наше восприятие объекта, то параметрический полиморфизм влияет на используемые методы, так как можно создавать методы родственных классов, откладывая объявление типов до времени выполнения. Для во избежание написания отдельного метода каждого типа применяется параметрический полиморфизм, при этом тип параметров будет являться таким же параметром, как и операнды.
Параметрические типы. [ ]
Вместо того, чтобы писать класс для каждого конкретного типа следует создать типы, которые будут реализованы во время выполнения программы то есть мы создаем параметрический тип.
Полиморфизм (программирование)
Полиморфи́зм (от греч. πολὺ- — много, и μορφή — форма) в языках программирования — возможность объектов с одинаковой спецификацией иметь различную реализацию.
Кратко смысл полиморфизма можно выразить фразой: «Один интерфейс, множество реализаций».
Полиморфизм позволяет писать более абстрактные программы и повысить коэффициент повторного использования кода. Общие свойства объектов объединяются в систему, которую могут называть по-разному — интерфейс, класс. Общность имеет внешнее и внутреннее выражение:
Содержание
Примеры
Класс геометрических фигур (эллипс, многоугольник) может иметь методы для геометрических трансформаций (смещение, поворот, масштабирование).
Класс потоков имеет методы для последовательной передачи данных. Потоком может быть информация, вводимая пользователем с терминала, обмен данными по компьютерной сети, файл (если требуется последовательная обработка данных, например, при разборе исходных текстов программ).
В объектно-ориентированных языках
В объектно-ориентированных языках класс является абстрактным типом данных. [Прим. 1] Полиморфизм реализуется с помощью наследования классов и виртуальных функций. Класс-потомок наследует сигнатуры методов класса-родителя, а реализация, в результате переопределения метода, этих методов может быть другой, соответствующей специфике класса-потомка. Другие функции могут работать с объектом как с экземпляром класса-родителя, но если при этом объект на самом деле является экземпляром класса-потомка, то во время исполнения будет вызван метод, переопределенный в классе-потомке. Это называется поздним связыванием. [Примером использования может служить обработка массива, содержащего экземпляры как класса-родителя, так и класса-потомка: очевидно, что такой массив может быть объявлен только как массив типа класса-родителя и у объектов массива могут вызываться только методы этого класса, но если в классе-потомке какие-то методы были переопределены, то в режиме исполнения для экземпляров этого класса будут вызваны именно они, а не методы класса-родителя.]
Класс-потомок сам может быть родителем. Это позволяет строить сложные схемы наследования — древовидные или сетевидные.
Абстрактные (или чисто виртуальные) методы не имеют реализации вообще (на самом деле некоторые языки, например C++, допускают реализацию абстрактных методов в родительском классе). Они специально предназначены для наследования. Их реализация должна быть определена в классах-потомках.
Класс может наследовать функциональность от нескольких классов. Это называется множественным наследованием. Множественное наследование создаёт известную проблему (в C++), когда класс наследуется от нескольких классов-посредников, которые в свою очередь наследуются от одного класса (так называемая «Проблема ромба»): если метод общего предка был переопределён в посредниках, неизвестно, какую реализацию метода должен наследовать общий потомок. Решается эта проблема путём отказа от множественного наследования для классов и разрешением множественного наследования для полностью абстрактных классов (то есть интерфейсов) (C#, Delphi, Java), либо через виртуальное наследование (C++).
В функциональных языках
Полиморфизм в функциональных языках будет рассмотрен на примере языка Haskell.
В Haskell существует два вида полиморфизма — параметрический (чистый) и специальный, (на основе классов [Прим. 2] ). Специальный называют еще ad hoc (от лат. ad hoc — специально). Их можно отличить следующим образом:
Параметрический полиморфизм
В случае параметрического полиморфизма функция реализована для всех классов одинаково, и, таким образом, реализована вообще для произвольного типа данных. Например, функция сортировки одинакова для данных любого типа, если функция сравнения данных задана отдельно. См. также Метапрограммирование.
Специальный полиморфизм
Специальный (или лат. ad hoc ) полиморфизм допускает специальную реализацию для данных каждого типа. Например, используемая в нашем примере функцией сортировки функция сравнения должна быть определена по-разному для чисел, кортежей, списков, т. е. она является специально полиморфной. [источник не указан 931 день]
В Haskell есть деление на классы и экземпляры (instance), которого нет в ООП. Класс определяет набор и сигнатуры методов (возможно, задавая для некоторых или всех из них реализации по умолчанию), а экземпляры реализуют их. Таким образом, автоматически отпадает проблема множественного наследования. Классы не наследуют и не переопределяют методы других классов — каждый метод принадлежит только одному классу. Такой подход проще, чем сложная схема взаимоотношений классов в ООП. Некоторый тип данных может принадлежать нескольким классам; класс может требовать, чтобы каждый его тип обязательно принадлежал к другому классу, или даже нескольким; такое же требование может выдвигать экземпляр. Это аналоги множественного наследования. Есть и некоторые свойства, не имеющие аналогов в ООП. Например, реализация списка, как экземпляра класса сравнимых величин, требует, чтобы элементы списка также принадлежали к классу сравнимых величин.
Программистам, переходящим от ООП к ФП, следует знать важное отличие их системы классов. Если в ООП класс «привязан» к объекту, т. е. к данным, то в ФП — к функции. В ФП сведения о принадлежности к классу передаются при вызове функции, а не хранятся в полях объекта. Такой подход, в частности, позволяет решить проблему метода нескольких объектов (в ООП метод вызывается у одного объекта). Пример: метод сложения (чисел, строк) требует двух аргументов, причем одного типа.
Неявная типизация
В некоторых языках программирования (например, в Python и Ruby) применяется так называемая утиная типизация [2] (другие названия: латентная, неявная), которая представляет собой разновидность сигнатурного полиморфизма. Таким образом, например, в языке Python полиморфизм не обязательно связан с наследованием.
Формы полиморфизма
Статический и динамический полиморфизм
(упоминается в классической книге Саттера и Александреску, которая является источником).
Полиморфизм может пониматься как наличие точек кастомизации в коде, когда один и тот же написанный программистом фрагмент кода может означать разные операции в зависимости от чего-либо.
В другом случае конкретный смысл фрагмента определяется только на этапе исполнения и зависит от того, как именно и где именно был построен данный объект. Это обычный, динамический полиморфизм, реализуется через виртуальные методы.
Полиморфизм включения
Этот полиморфизм называют чистым полиморфизмом. Применяя такую форму полиморфизма, родственные объекты можно использовать обобщенно. С помощью замещения и полиморфизма включения можно написать один метод для работы со всеми типами объектов TPerson. Используя полиморфизм включения и замещения можно работать с любым объектом, который проходит тест «is-A». Полиморфизм включения упрощает работу по добавлению к программе новых подтипов, так как не нужно добавлять конкретный метод для каждого нового типа, можно использовать уже существующий, только изменив в нем поведение системы. С помощью полиморфизма можно повторно использовать базовый класс; использовать любого потомка или методы, которые использует базовый класс.
Параметрический полиморфизм
Используя Параметрический полиморфизм можно создавать универсальные базовые типы. В случае параметрического полиморфизма, функция реализуется для всех типов одинаково и таким образом функция реализована для произвольного типа. В Параметрическом полиморфизме рассматриваются параметрические методы и типы.
Если полиморфизм включения влияет на наше восприятие объекта, то параметрические полиморфизм влияет на используемые методы, так как можно создавать методы родственных классов, откладывая объявление типов до времени выполнения. Для избежания написания отдельного метода каждого типа применяется параметрический полиморфизм, при этом тип параметров будет являться таким же параметром, как и операнды.
Вместо того, чтобы писать класс для каждого конкретного типа следует создать типы, которые будут реализованы во время выполнения программы то есть мы создаем параметрический тип.
Полиморфизм переопределения
Абстрактные методы часто относятся к отложенным методам. Класс, в котором определен этот метод может вызвать метод и полиморфизм обеспечивает вызов подходящей версии отложенного метода в дочерних классах. Специальный полиморфизм допускает специальную реализацию для данных каждого типа.
Полиморфизм-перегрузка
Это частный случай полиморфизма. С помощью перегрузки одно и то же имя может обозначать различные методы, причем методы могут различаться количеством и типом параметров, то есть не зависят от своих аргументов. Метод может не ограничиваться специфическими типами параметров многих различных типов.
Сравнение полиморфизма в функциональном и объектно-ориентированном программировании
Система классов в ФП и в ООП устроены по-разному, поэтому к их сравнению следует подходить очень осторожно.
Полиморфизм является довольно обособленным свойством языка программирования. Например, классы в C++ изначально были реализованы как препроцессор для C. Для Haskell же существует алгоритм трансляции программ, использующих специальный полиморфизм, в программы с исключительно параметрическим полиморфизмом.
Несмотря на концептуальные различия систем классов в ФП и ООП, реализуются они примерно одинаково — с помощью таблиц виртуальных методов.Используется часто в Java.