что такое полиморфизм аллотропия металлов

Разница между полиморфизмом и аллотропией

Ключевое различие между полиморфизмом и аллотропией заключается в том, что полиморфизм возникает в химических соединениях, тогда как аллотропия возникает в химических элементах.

Полиморфизм — это наличие нескольких разных форм у одного и того же твердого материала. Это означает, что соединения этого типа могут иметь более одной кристаллической структуры. Аллотропия, с другой стороны, является аналогичной химической концепцией, но она описывает наличие нескольких различных форм одного и того же химического элемента.

Содержание

Что такое полиморфизм?

Полиморфизм — это способность твердого материала существовать в нескольких формах с различной кристаллической структурой. Увидеть эту характеристику можно в любом кристаллическом материале, таком как полимеры, минералы, металлы и д.р. Наиболее яркий пример демонстрирует минерал — карбонат кальция (СаСО3). Он демонстрирует полиморфизм при кристаллизации в Арагонит и Кальцит.

Существует несколько типов полиморфизма:

Изменение условий во время процесса кристаллизации является главной причиной, которая ответственна за возникновение полиморфизма в кристаллических материалах. Эти переменные условия следующие:

Что такое аллотропия?

Аллотропия — это существование двух или более различных физических форм химического элемента. Эти формы существуют в одном физическом состоянии, в основном в твердом состоянии. Следовательно, это разные структурные модификации одного и того же химического элемента. Аллотропы содержат атомы одного и того же химического элемента, которые связывается друг с другом по-разному.

Кроме того, эти разные формы могут иметь разные физические свойства, поскольку они имеют разную структуру, и химическое поведение также может меняться. Один аллотроп может превращаться в другой, при изменении некоторых факторов, таких как давление, свет, температура и т.д. Эти физические факторы влияют на стабильность этих соединений. Некоторые общие примеры для аллотропов следующие:

В чем разница между полиморфизмом и аллотропией?

Полиморфизм — это способность твердого материала существовать в более чем одной форме или кристаллической структуре. Полиморфизм происходит только в химических соединениях. Кроме того, он описывает различия в кристаллических структурах соединений. Аллотропия — это существование двух или более различных физических форм химического элемента. Аллотропия происходит только в химических элементах. В дополнение к этому, она описывает различия в атомном расположении соединений, имеющих атомы одного и того же химического элемента.

Заключение — Полиморфизм против Аллотропии

Полиморфизм и аллотропия — два связанных термина в неорганической химии. Разница между полиморфизмом и аллотропией заключается в том, что полиморфизм возникает в химических соединениях, а аллотропия — в химических элементах.

Источник

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Общее понятие

Аллотропия проявляется, благодаря разному составу микрочастиц простой материи и координируется вариантом размещения молекул и атомов в кристаллической решетке. Вещество кристаллизуется в нескольких модификациях, при этом два параметра простой ячейки совпадают. Изменение состояния происходит из-за отличия третьего показателя, который учитывает расстояние между сопредельными слоями.

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Явление часто обнаруживается в структурах, которые равнозначны гексагональному и кубическому расположению атомов. Соседняя атомная среда представляет эквивалентное окружение, а различия проявляются на удаленных сферах. Энергетические характеристики решеток приблизительно равны, поэтому физические свойства разных состояний одного элемента остаются похожими.

Первые примеры аллотропных модификаций показал шведский минералог и химик Берцелиус середине XIX века для выделения различных форм нахождения элемента. Через 2 десятка лет была принята гипотеза итальянского химика А. Авогадро о многоатомных молекулах и стало видно, что от строения частиц зависит проявление элемента в материи. Например, О3 — озон, а О2 — кислород.

В 1912 году ученые определили, что различия в структуре простых элементов, например, фосфора или углерода, относятся к первопричинам существования двух и более состояний. В настоящее время аллотропией называется видоизменение простых материй, независимо от агрегатного вида. Изменения в твердых состояниях сложных и простых веществ имеет название полиморфизма. Два определения совпадают, если речь идет о простых материалах в твердом виде (железо, сера в кристаллах, фосфор).

Реорганизация веществ

Продолжаются открытия видов простых материалов, способных к аллотропии, несмотря на то, что список образовательных веществ уже превышает 400 материалов. Типы химических связей в элементарных частицах зависят от строения атома, вместе эти характеристики определяют возможность вещества образовывать разные аллотропные формы.

Компоненты, которые могут изменять показатель координационного числа и стадии окисления, образовывают большее количество аллотропных состояний. Важным фактором разнообразия форм является способность элемента к образованию гомоцепных решеток (состоящих из однотипных атомов).

Преобразование простых элементов

Более выраженными являются аллотропные модификации неметаллов, но среди веществ этой группы имеются исключения, например, благородные газы и галогены. Некоторые состояния отличаются температурной стабильностью, другие характеризуются фазовой динамикой. Такие различия объясняются затратами некоторой энергии при изменении кристаллической решетки в результате плавления.

Примеры реорганизации неметаллов:

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Разные состояния одного компонента обозначаются строчными литерами греческой латиницы для написания в формулах. Низкотемпературные формы отмечаются буквой α, следующие состояния по показателям обозначаются β и дальше по такому принципу.

Модификации полупроводников

К этой группе относятся элементы, располагающиеся в таблице на переходе от металлов к неметаллам. У материалов присутствует кристаллическая ковалентная решетка, чаще они характеризуются проводимостью по типу металлов. Иногда материалы работают как полупроводники.

Примеры трансформации неметаллов:

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

К особенностям относится слабое сочетание зоны проводимости и валентной области. Это обеспечивает электропроводность до того времени, пока температура не снизится до 0ºС. Нагревание способствует увеличению электронных дырок (обладателей тока), но видоизменение идет слабо. Положительные квазичастицы в полуметаллах активно двигаются при малой полезной массе. По этой причине материалы больше других веществ подходят для изготовления фазовых переходов в магнитных полях большой силы, наблюдения квантовых и классических размерных эффектов.

Особенности видоизменения металлов

Металлы образовывают различные состояния при увеличении давления или в случае технологической обработки. Аллотропной модификацией металлов называется возможность материала в твердой форме образовывать различные виды кристаллических решеток. Процесс перехода от одной структуры к другой рассматривается в виде превращения.

Обследование структуры производится способом микроанализа, делается ультразвуковая, магнитная и рентгеновская дефектоскопия.

Микроанализ проводится на основе снятия микрошлифов, которые перед исследованием полируются до блеска. Вывод о структуре делается после рассмотрения срезов под микроскопом после травления. Шлифы показывают границы зерен из-за неодинаковой обработки основного слоя и рельефных выступов. Анализ выявляет форму и размеры частиц, инородные включения.

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Рентген дает понятие об атомном строении материала, типе кристаллической структуры, дефектах решеток. Для исследования используется свойство рядов отражать гамма-лучи. При магнитном способе поверхность металла намагничивается и покрывается железным порошком. После размагничивания слой показывает очертания решетки.

Ультразвук применяется для эффективного обнаружения качественного преобразования металла в требуемую аллотропную модификацию. Волновое излучение распространяется внутрь и отражается от элементов решетки.

Примеры аллотропии

При нагревании металлов в процессе превращения поглощается тепло, при этом изменение решеточной конструкции происходит при одной и той же температуре. Аллотропным модификациям подвергаются многие металлы, например, титан, железо, олово и др. Железо при нагревании до +1390ºС характеризуется гранецентрированной решеткой. Повышение температуры до +1540ºС ведет к перестройке до центрировано-кубической структуры.

Аллотропные модификации металлов:

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Определенные свойства твердых элементов зависят не только от строения решетки и дефектов, но и от структуры микрочастиц, их состава, размера и формы. Конструкция кристаллов оказывает влияние на физические характеристики тела и предопределяет пределы деформационной пластики, твердость материала.

Обратимые и непоправимые переходы

В случае изменения температурных показателей и параметров давления твердые материалы переходят из одной структуры в другую без перемены количественного состава элементов. Предпосылками является подвижность частиц решетки и перенос некоторого количества вещества, вызванный дефектами строения твердого состояния.

Примеры переходов:

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Проводят разработанную методику трехфазной реакции для направленного получения требуемой решеточной структуры. Выбор нагревательного режима и продолжительность повышения температуры ускоряет рост кристаллов до больших зерен, что улучшает качество. Изменение способа обработки направляется иногда на снижение активности катализаторов в результате процесса рекристаллизации.

Энантиотропное видоизменение возникает при нулевой температуре и выбранном давлении. Иногда аллотропное преобразование относится к необратимым и одно из состояний материала является неустойчивым в термическом плане. Эта фаза сохраняется на всем температурном интервале от абсолютного нуля и называется монотропным. При получении серого олова из белого происходит обратимое преобразование, а превращение алмаза в графит становится необратимым.

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Отличие этих типов превращений — в технологических особенностях проведения. Энантиотропные переходы модификации А чаще получаются методом постепенного охлаждения сплава. Сначала масса кристаллизуется в виде состояния Б, которое затем видоизменяется в устойчивую фазу к низким температурам.

При монотропном переходе в случае охлаждения сплава образуется только вещество в состоянии А. Требуется особый технологический режим со строгим дозированием понижения температуры и давления для получения модификации Б. Примером служит получение стабильного черного фосфора из белого путем нагревания до + 200ºС и повышения давления до 1,25 ГПа. После помещения полученного образца в нормальные условия обратного преобразования не происходит.

Источник

Презентация по химии на тему «Аллотропия металлов»

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Описание презентации по отдельным слайдам:

Аллотропия- явление существования в виде 2-х или нескольких простых веществ, различных по строению и свойствам Причины аллотропии: 1. Разные типы кристаллических решеток (белый фосфор Р4 – молекулярная, красный фосфор Р – атомная). 2. Разная структура кристаллической решетки (алмаз – тетраэдрическая, графит – слоистая). 3. Разный состав молекул аллотропных модификаций (О2 и О3 )

Аллотропия свойственна не менее чем двенадцати металлам, Ряд из которых имеют важнейшее техническое значение (Sn, Ti, Zr. Сг, Mn, Fe, Co, Ni, V, Np, Pu). Величина является степенью переохлаждения. Это переохлаждение зависит от природы металла, степени его загрязненности различными включениями и скорости охлаждения. У некоторых металлов оно может быть значительным, например для сурьмы достигает 41 °С (кристаллизация начинается при 631 °С-41 °С = 590 °С). При переохлаждении процесс кристаллизации начинается бурно, в результате чего температура металла скачкообразно повышается.

Олово Олово существует в трех аллотропных модификациях. Серое олово (α-Sn) мелкокристаллический порошок, полупроводник, имеющий алмазоподобную кристаллическую решётку, существует при температуре ниже 13,2 °С. Белое олово (β-Sn) — пластичный серебристый металл, устойчивый в интервале температур 13,2—161 °С. Высокотемпературное гамма-олово (γ-Sn), имеющее ромбическую структуру, отличается высокой плотностью и хрупкостью, устойчиво между 161 и 232 °С (температура плавления чистого олова).

Железо Для железа известны четыре кристаллические модификации: до 769 °C (точка Кюри) существует α-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика; в температурном интервале 769—917 °C существует β-Fe, который отличается от α-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика; в температурном интервале 917—1394 °C существует γ-Fe (аустенит) с гранецентрированной кубической решёткой; выше 1394 °C устойчиво δ-Fe с объёмоцентрированной кубической решёткой

Лантаноиды Церий, самарий, тербий, диспрозий и иттербий имеют по три аллотропических модификации; празеодим, неодим, гадолиний и тербий — по две.

Актиниды Для всех актиноидов, кроме актиния, характерен полиморфизм. Кристаллические структуры протактиния, урана, нептуния и плутония по своей сложности не имеют аналогов среди лантаноидов и более похожи на структуры 3d-переходных металлов. Плутоний имеет семь полиморфных модификаций (в том числе, при обычном давлении — 6), а уран, прометий, нептуний, америций, берклий и калифорний — три. Лёгкие актиниды в точке плавления имеют объёмно-центрированную решётку, а начиная с плутония — гранецентрированную.

Спасибо за внимание

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Курс профессиональной переподготовки

Методическая работа в онлайн-образовании

Ищем педагогов в команду «Инфоурок»

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Номер материала: ДБ-1222715

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Минобрнауки разработало концепцию преподавания истории российского казачества

Время чтения: 1 минута

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Руководители управлений образования ДФО пройдут переобучение в Москве

Время чтения: 1 минута

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Спортивные и творческие кружки должны появиться в каждой школе до 2024 года

Время чтения: 1 минута

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Pereosnastka.ru

Обработка дерева и металла

Многие твердые тела способны существовать при различных условиях температуры и давления в нескольких кристаллических разновидностях (модификациях). О таких телах говорят, что они полиморфны или обладают полиморфизмом. Углерод, например, может существовать в двух полиморфных формах или модификациях: в виде алмаза с весьма сложной кристаллической решеткой (решетка типа алмаза) и графита (гексагональная решетка). Применительно к простым кристаллическим образованиям, типичным для металлов, принято говорить не о полиморфизме, а об аллотропии и об аллотропических модификациях.

Аллотропия свойственна не менее чем двенадцати металлам, Ряд из которых имеют важнейшее техническое значение (Sn, Ti, Zr. Сг, Mn, Fe, Co, Ni, V, Np, Pu).

Аллотропические модификации, число которых в некоторых случаях доходит до пяти, принято обозначать греческими буквами а, р, у, 8, « с добавлением символа элемента, например a-Sn, y-Fe, e-Pu и т. д.

Железо при разных температурах способно кристаллизоваться в кубической объемноцентрированной и в кубической гране-центрированной решетках. Оно находится в виде аллотропической модификации альфа (объемноцентрированный куб) в пределах от абсолютного нуля до 910°, модификации гамма (гране-центрированный куб) в пределах от 910 до 140Г и от 1401 до точки плавления 1539° — вновь в виде модификации альфа.

При нагревании и охлаждении чистого железа на кривых температура—время (рис. 1) при переходе одной аллотропической модификации в другую наблюдаются температурные точки скачкообразного превращения в виде горизонтальных участков.

На кривой нагревания заметны две такие остановки: первая наблюдается при 910°, где а-железо переходит в у-железо, и вторая при 1401°, где Т-железо вновь превращается в a-железо. Остановки при 768° и при 1539° не являются точками аллотропических превращений, так как первая остановка сопровождается не перестройкой решетки, а лишь потерей железом магнитных свойств. Вторая остановка при 1539° характеризует не перестройку решетки, а ее разрушение, т. е. переход металла в жидкое состояние.

Из изложенного следует, что на кривой нагревания имеется четыре критические точки:
1) при 768° точка магнитного превращения, при которой железо в процессе нагревания утрачивает магнитность (международное обозначение Асг);
2) при 910° точка аллотропического превращения а-железа немагнитного в т-железо (обозначение Ас3);
3) при 1401° точка аллотропического превращения у-железа вновь в a-железо немагнитное (Ас4);
4) при 1539° точка плавления.

При охлаждении превращения идут в обратном порядке. Критическими точками окажутся: точка затвердевания при 1539°; точка Аг4 при 1401°, точка Аг3 при 898° вместо 910° вследствие температурного отставания или гистерезиса и точка Агг при 768°.

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Кобальт при температурах до 419° имеет гексагональную решетку (а-Со), а от 419 и до точки плавления 1492° — гране-центрированную кубическую (р-Со). Олово при комнатных и более высоких температурах существует в виде модификации fi-Sn (белое олово) с тетрагональной решеткой, а при температурах ниже 13,2° — в виде модификации a-Sn (серое олово) со сложной пространственной решеткой типа решетки алмаза.

Полиморфизм (аллотропия) присущ всем химическим элементам, с изменением температуры изменяющим свою валентность, т. е. способным отдавать в среду электронного газа переменное число электронов.

Такое изменение электронного газа сопровождается перестройкой пространственной решетки, причем новая модификация, как обладающая меньшим запасом свободной энергии, оказывается в данной температурной области более устойчивой по сравнению с прежней.

Источник

Аллотропия металлов

Аллотропическое превращение как процесс перехода из одной кристаллической формы в другую. Исследование строения металлов методами макроскопического анализа. Рассмотрение физических и механических свойств металла. Оценка твердости металлов в малых объемах.

РубрикаХимия
Видреферат
Языкрусский
Дата добавления11.10.2012
Размер файла45,3 K

что такое полиморфизм аллотропия металлов. Смотреть фото что такое полиморфизм аллотропия металлов. Смотреть картинку что такое полиморфизм аллотропия металлов. Картинка про что такое полиморфизм аллотропия металлов. Фото что такое полиморфизм аллотропия металлов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Аллотропия металлов

аллотропический физический свойство металл

Методы изучения строения металлов

Изучение строения металлов и сплавов производится методами макро- и микроанализа, рентгеновского, а также дефектоскопии (рентгеновской, магнитной, ультразвуковой).

С помощью рентгеновского анализа изучают атомную структуру металлов, типы и параметры кристаллических решеток, а также дефекты, лежащие в глубине. Этот анализ, основанный на дифракции (отражении) рентгеновских лучей рядами атомов кристаллической решетки, позволяет обнаружить дефекты (пористость, трещины, газовые пузыри, шлаковые включения и т. д.), не разрушая металла. В местах дефектов рентгеновские лучи поглощаются меньше, чем в сплошном металле, и поэтому на фотопленке такие лучи образуют темные пятна, соответствующие форме дефекта.

Для исследования структуры металла и дефектов изделий широко применяют гамма-лучи, которые проникают в изделие на большую глубину, чем рентгеновские.

Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.

Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м 3 ) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.

Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416° С, тантал 2950°С, титан 1725°С. и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводностью называют, способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро. медь, алюминий обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей тeплопpoводностью. В единицах СИ теплопроводность имеет размерность Вт/ (м*К).

Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалине-образованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.

В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2 % от расчетной длины образца: у 0,2 = P 0,2 / F 0.

Пластичность, т.е. способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь, характеризуется относительным удлинением и относительным сужением.

Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.

Ударная вязкость, т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м 2 ) в месте надреза KC=W/F.

Для испытания изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.

Определение ударной вязкости особенно важно для некоторых металлов, работающих при минусовых температурах и проявляющих склонность к хладноломкости. Чем ниже порог хладноломкости, т. е. температура, при которой вязкое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость-снижение ударной вязкости при низких температурах.

Твердостью называют способность материала сопротивляться проникновению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10).

За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диаметром d и глубиной t, который образуется при вдавливании силой Р шарика диаметра D (см. рис. 10,а).

Числовое значение твердости определяют так: измеряют диаметр отпечатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла. В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная величина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм. Испытание проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Ро равна 100 H.

При испытании металлов с высокой твердо-стью применяют, алмазный конус и общую нагрузку P = Po + P 1= 1500 H. Твердость отсчитывают по шкале «С» и обозначают HRC.

Если при испытании берется стальной шарик и общая нагрузка 1000 H, то твердость отсчитывается по шкале «В» и обозначается HRB.

Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в которых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения и состоящий из двух разных по внешнему виду частей. Одна часть 1 излома с ровной (затертой) поверхностью образуется вследствие трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая часть 2 с зернистым изломом возникает в момент разрушения образца.

Технологические и эксплуатационные свойства

Эти свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическими свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.

Литейные свойства металлов характеризуют способность их образовывать отливки, без трещин, раковин и других дефектов. Основными литейными свойствами являются, жидкотекучесть, усадка и ликвация.

Размещено на Allbest.ru

Подобные документы

Исследование физических и химических свойств металлов, особенностей их взаимодействия с простыми и сложными веществами. Роль металлов в жизни человека и общества. Распространение элементов в природе. Закономерность изменения свойств металлов в группе.

презентация [1,7 M], добавлен 08.02.2013

Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

реферат [19,2 K], добавлен 05.12.2003

Атомно-кристаллическое строение металла. Размещение атомов в кристаллографической плоскости. Исследование процесса перехода металла из жидкого состояния в твердое. Изучение роли точечного несовершенства кристаллической решетки в диффузионных процессах.

реферат [863,9 K], добавлен 19.09.2013

Химическая характеристика и свойства металлов, их расположение в периодической системе элементов. Классификация металлов по различным признакам. Стоимость металла как фактор возможности и целесообразности его применения. Наиболее распространенные сплавы.

контрольная работа [13,4 K], добавлен 20.08.2009

Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

реферат [76,2 K], добавлен 18.05.2006

Методы определения металлов. Химико-спектральное определение тяжелых металлов в природных водах. Определение содержания металлов в сточных водах, предварительная обработка пробы при определении металлов. Методы определения сосуществующих форм металлов.

курсовая работа [24,6 K], добавлен 19.01.2014

Строение металлов в твердом состоянии. Энергетические условия взаимодействия атомов в кристаллической решетке вещества. Атомно-кристаллическое строение. Кристаллические решетки металлов и схемы упаковки атомов. Полиморфные (аллотропические) превращения.

лекция [1,5 M], добавлен 08.08.2009

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *