что такое подъем и осадка нескального основания
Расчет осадки основания. Общие положения
Проектирование основания следует выполнять на основе существующих нормативных документов в частности СНиП 2.02.01-83* «Основания зданий и сооружений» или СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений». Ниже мы рассмотрим, на основании каких положений можно определить осадку основания.
При этом существенного изменения структуры грунтов не происходит и потому такую деформацию можно условно считать упругой. Это означает, что давление на основание (нагрузка от фундамента) должно быть меньше расчетного сопротивления грунта.
Если давление на грунт будет больше расчетного сопротивления грунта, то деформация грунтов будет уже пластической, т.е. не восстанавливаемой со временем даже после снятия нагрузки (например, сноса здания) и приведет к существенному изменению структуры грунтов (как минимум тех, которые находятся ближе всего к подошве фундамента). Такая деформация называется просадкой и будет она значительно больше чем осадка, вот только рассчитать просадку из-за пластической деформации даже приблизительно не возьмется никто (просадка при замачивании просадочных грунтов и по другим возможным причинам, здесь не рассматривается).
Методы уплотнения грунтов перед началом строительства здесь также не рассматриваются. Тем не менее уплотнение грунта перед началом устройства фундамента позволит уменьшить итоговую осадку основания, определить которую мы и собираемся.
Основные положения, принимаемые при расчете осадки основания:
Теоретически для расчета осадки основания достаточно просто знать закон Гука, согласно которому
σ = ЕΔh/h или Δh = σh/E (391.1)
Примечание: нормальные напряжения при рассмотрении оснований часто называются вертикальными нормальными, а потом и просто вертикальными. Сути дела это не меняет, однако позволяет лучше представить направление действия напряжений.
При расчете осадки основания используется модель линейно деформируемого полупространства под подошвой фундамента.
Примечание: в СНиПе 2.02.01-83 нагрузка на основание обозначается литерой р, в теоретической механике нагрузка чаще обозначается литерой q и мне такое обозначение ближе. Впрочем принципиального значения это не имеет.
Помимо давления от фундамента на нижележащие слои грунтов давят вышележащие слои грунтов. Это давление обозначается как σγ и определяется, как вертикальное напряжение от собственного веса грунта. Предполагается, что вертикальное напряжение от собственного веса грунта прямо пропорционально рассматриваемой глубине и объемному весу грунта
σγ = γh
Так как по мере заглубления вертикальные напряжения от фундамента уменьшаются, а от вышележащих слоев грунта увеличиваются, то соответственно и деформации, вызываемые этими напряжениями, изменяются. Т.е. чем глубже, тем меньше будет влияние нагрузки от фундамента на осадку основания, к тому же на больших глубинах основание и так уже осело под постоянно действующей нагрузкой от вышележащих грунтов, конечно в том случае, если эти грунты находятся в таком состоянии достаточно давно, желательно тысячи или даже миллионы лет. Таким образом нет необходимости рассматривать толщу грунтов бесконечно большой высоты. Нижняя граница сжимаемой толщи принимается на глубине z = Hc, где выполняется условие σzq = 0.2σzγ (см. рис. 391.1).
Примечание: если нижняя граница сжимаемой толщи находится в грунте с модулем деформации Е 2 ) или такой слой залегает непосредственно ниже определенной глубины z = Hc, то нижняя граница сжимаемого слоя определяется, исходя из условия σzq = 0.1σzγ.
При этом изменение значения вертикальных напряжений в зависимости от глубины принимается согласно следующей расчетной схеме:
Рисунок 391.1 Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве
d и dn глубина заложения фундамента соответственно от уровня планировки и от поверхности природного рельефа;
Так как на значение дополнительного вертикального напряжения кроме рассматриваемой в п.3 глубины также влияет ширина фундамента и рассматриваемая точка подошвы фундамента, то значение нагрузки от фундамента на рассматриваемой глубине z рекомендуется определять по следующим формулам:
σ zq = aq o (391.2.1)
Таблица 391.1
Примечания к таблице 391.1:
2. Для фундаментов, имеющих подошву в форме правильного многоугольника с площадью F, значения a принимаются как для круглых фундаментов радиусом r = √ F/п .
3. Для промежуточных значений x и η коэффициент a определяется по интерполяции.
Согласно вышеизложенному определение значения дополнительного вертикального напряжения в начале и конце рассматриваемого слоя грунта не представляет большой проблемы и в итоге определение осадки s выполняется методом послойного суммирования по следующей формуле:
(391.3)
Чтобы определить высоту сжимаемого слоя грунта Нс, как правило составляется таблица, в которую вносятся значения дополнительного вертикального напряжения и напряжения от собственного веса грунта в начале и в конце рассматриваемого слоя (пример составления подобной таблицы приводится отдельно).
Суммарная осадка, определенная по формуле 391.3, не должна превышать предельных значений, приведенных в таблице 391.2, т.е s ≤ šu:
Таблица 391.2
Вот в принципе и все основные положения, принимаемые при расчете осадки основания (и соответственно фундамента дома). Пример практического использования этих достаточно абстрактных формул и положений приводится отдельно.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
hi и Еi- соответственно толщина и модуль ДЕФОРМАЦИИ i-го слоя грунта;
Все верно, модуль деформации. Тем не менее, смысл я думаю, был и так понятен.
А если я рассчитываю одноэтажный дом 10х10, то какая у меня средняя осадка?
Это зависит от нагрузки на основание и физико-механических характеристик основания. В целом для одноэтажного дома осадка должна быть относительно небольшой.
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
Осадка фундамента
У жильцов частных домов может возникнуть одна очень неприятная проблема: в фундаменте за долгое время могут появиться дефекты в виде трещин, из-за чего он начинает смещаться. Этот сдвиг или смещение имеет название «осадка фундамента». Это происходит вследствие сжатия почвенного покрова. Причины появления осадки фундамента, методы проведения диагностики осадки, расчет осадки разных видов фундамента, решение этой проблемы – все это будет обсуждаться в этой статье. Важно помнить, что при появлении трещин в основании, не нужно бояться, просто продолжайте следить за этим, пока осадка фундамента не дошла до критического состояния.
Причины появления осадки фундамента
Состав грунта – это одна из самых главных причин, из-за которой возникает осадка основания дома. Почва делится на виды и каждый обладает своей прочностью. Самыми прочными видами почвенного покроя являются скальный грунт и дисперсная почва. По-другому эти почвы называют несвязными, так как они не сохранят в себе влагу.
Определение типа грунта вручную
В основе первого вида почвы лежат монолиты, а второй вид состоит из минерального зерна различного размера. Но существуют связные виды почву, они поглощают и сохраняют в себе влагу, поэтому основной составляющей этих типов почвенного покроя является глина, из-за чего слой грунта приобретает свойство подвижности и деформации. В холодное время года, содержащаяся в таких типах почвы влага, замерзает и слой грунта расширяется. Первая причина – связный слой грунта почвы. Вторая причина – особенности конструкции основания дома. Третья причина – неправильно распределенное давление стен на фундамент. При строительстве дома следует учитывать все эти факторы, чтобы в будущем не столкнуться с данной проблемой.
Методы проведения диагностики осадки фундамента
Чтобы выявить или устранить дефекты, возникшие в основании дома, требуется определить процесс смещения фундамента и наблюдать за осадкой. Методов проведения диагностики (осадки фундамента) существует много. Какой именно использовать метод, зависит от строения дома и его составляющих.
Описание свайного фундамента
Свайные фундаменты строятся на просадочных слоях грунта, потому что они имеют очень маленькую несущую способность (факторы, которые влияют на этот параметр грунта, будет обсуждаться далее). Сваи используют для того, чтобы передать все давление здания на почву, тем самым исключая большую нагрузку на основание помещения. Бывает такое, что сваи не достают до слоя грунта, для этого используются висячие сваи. Они являются связью между грунтом и обыкновенными сваями.
Свайный фундамент может состоять из различного материала. Они могут быть сделаны из дерева, железобетона, стали. Способы погружения свай бывают разные. Сваи забиваются, набиваются и завинчиваются. На сегодняшний день чаще всего используются сваи, сделанные из железобетона. Их длина начинается с 4 метров и заканчивается 12 метрами. Такие сваи, которые сделаны из железобетона, можно встретить в индустриальной сфере. Типов свай бывает несколько:
Сваи используют в тех местах, где слой грунта очень слабый. Они также применимы для строительства многоэтажных зданий. Но главным минусом этого материала является то, что он имеет усадку, что может привести к осадке основания помещения.
Осадка свайного фундамента
Причина осадки свайного фундамента – это нагрузка на само основание дома. Если смещение будет продолжаться, это может привести к полному разрушению конструкции. Во избежание этого, проводится расчет осадки свайного фундамента. Полученное значение сравнивают со значением осадки, которая допускается. Если оно превышает его, то фундамент нужно подвергнуть коррекции. Чтобы совершить коррекцию свайного фундамента необходимо увеличить длину свайных установок. Концы свай должны иметь опору на более прочные слои грунта. Сваи распределяют давление по всему грунту. На давление влияют несколько факторов: свойства грунта, длина свай и пространство между сваями.
Расчет осадки методом послойного суммирования
Один из способов расчета осадки свайного фундамента имеет название «послойное суммирование». Существует формула: Si = h * m * P. Из этой формулы видно, что осадка фундамента равняется сумме сжатий слоев грунта. Делается схема для расчета осадки свайного фундамента. На ней изображаются нагрузка и давление стен. Свайное основание дома делится на два вида: однослойные и двухслойные. Для обоих видов требуется грунт со средней прочностью. Для расчета осадки свайного основания дома необходимо определить характеристики грунта, сюда входит коэффициент сжимаемости и деформация (модуль). Расчет осадки можно проводить одной сваи, нескольких или всего основания здания. Но можно сделать свайный фундамент правильным. Для этого нужно знать вес и длину сооружения, а также вес всего грунта.
Следующий метод – это расчет осадки фундамента способом эквивалентного слоя. Он применяется, если невозможно провести боковое расширение. Толщина слоя грунта имеет название эквивалентный слой. Согласно этому способу, сначала необходимо определить мощность эквивалентного слоя, существует формула для ее нахождения: hэ =A· ω· b. A – это коэффициент, и он имеет зависимость от типа грунтового слоя, ω – тоже коэффициент, значение которого зависит от основания дома, его формы и жесткости, b – значение ширины основания здания. Произведение первых множителей (A и ω) составляют коэффициент эквивалентного слоя. Найдя мощность эквивалентного слоя, можно найти значение и самой осадки: S =Po· hэ · mv. Главным преимуществом способа расчета осадки эквивалентного слоя является то, что можно определить коэффициент эквивалентного слоя для каждого вида грунта в отличии от метода послойного суммирования.
Метод эквивалентного слоя
Описание ленточного монолитного фундамента
Ленточный фундамент – это основание под стенами здания, давление которых распределяется по всему фундаменту. Ленточный фундамент заливается в тех местах, где конструкция идет вместе с несущими стенами. Ленточный фундамент – прочное и твердое основание. Данный вид фундамента имеет два вида основания: один – сборный, другой – свайный. У сборного фундамента все давление идет на слой грунта. У второго вида ленточные ростверки, сделанные из железобетона, дают нагрузку на сваи. Наиболее распространены два материала, из которого делается ленточный фундамент: железобетон и бетон. Монолитные ленточные фундаменты используются чаще всего, когда требуется провести расширение подушки фундамента. Расширение необходимо тогда, когда слой почвенного покроя обладает невысокой несущей способностью, а также при наличии в почве подземных вод.
Уменьшить давление на ленточный монолитный фундамент очень просто. Чрезмерная нагрузка на основание дома, в дальнейшем может привести к его осадке. Чтобы этого избежать, достаточно высоту фундамента сделать в полтора больше, чем ширину. После этой процедуры, нагрузка остальной конструкции и предметов, находящихся внутри дома, значительно снизится.
Для более прочного основания необходимо, чтобы стенки фундамента были гораздо шире, чем стены конструкции здания, примерно на 15 сантиметров.
Как избежать осадки ленточного монолитного основания помещения
Причины возникновения осадки ленточного фундамента могут быть разные:
Последствия осадки ленточного фундамента
Весь расчет постройки ленточного основания дома можно разделить на три этапа:
Соблюдение всех этих условий поможет вам избежать осадки ленточного фундамента на несколько десятков лет.
Подведем итог. Осадку фундамента лучше всего избежать, чем бороться с ней в будущем. Важно соблюдать несколько правил при строительстве основания дома. При допущенной осадке, следует пользоваться двумя методами по ее расчету: послойное суммирование и способ эквивалентного слоя. Формулы этих способов помогут вам избавиться от осадки фундамента.
Осадка оснований
§ 21. Виды деформаций оснований
Под воздействием нагрузки от сооружения его основание деформируется и дает осадку, а в некоторых случаях — просадку.
Осадкой основания (или осадкой фундамента) называют вертикальное перемещение поверхности грунта под подошвой фундамента, связанное с передачей на основание нагрузки от сооружения.
Различают осадку основания равномерную и неравномерную. При равномерной осадке перемещения точек поверхности грунта под всей площадью фундамента одинаковы, а при неравномерной — неодинаковы. Равномерная осадка основания, как правило, не является опасной; неравномерная же осадка часто становится причиной нарушения условий нормальной эксплуатации сооружений, а иногда и их аварий.
Для уплотнения грунта под нагрузкой требуется определенное время, в течение которого наблюдается рост осадки основания. Осадку, соответствующую окончательному уплотнению грунта, называют полной, конечной или стабилизированной.
Большую быстро протекающую осадку, сопровождающуюся коренным изменением сложения грунта, называют просадкой. Просадка наблюдается, например, при выпирании грунта из-под подошвы фундамента и при замачивании макропористых грунтов под нагрузкой.
§ 22. Методы расчета осадки
Расчет осадки уплотнения ведется в предположении, что грунт подчиняется законам линейно деформируемой среды, когда деформации линейно зависят от давлений. Теоретически максимальное давление на грунт, при котором существует линейная зависимость, определяется отсутствием под подошвой фундамента пластических зон. Однако наблюдения за сооружениями показывают, что небольшое развитие зон пластических деформаций под гранями фундамента может быть допущено.
Для определения конечной осадки основания широко применяют метод послойного суммирования. При этом считают, что осадка основания происходит в результате уплотнения некоторой толщи грунта ограниченной толщины, называемой активной зоной. Нижнюю границу активной зоны принимают на той глубине da от подошвы фундамента, на которой дополнительное давление (под центром тяжести подошвы) от передаваемой фундаментом нагрузки составляет 20% бытового (природного) давления.
При фундаменте, расположенном на поверхности грунта, дополнительные давления рz, кПа, определяют по формуле (2.7), а при заглубленном в грунт фундаменте — по формуле
Рz=а(р0-рg), (4.1)
где а — коэффициент, принимаемый по табл. 2.1; р0 — нормальные напряжения по подошве фундамента, кПа; pg — бытовое давление на глубине заложения подошвы фундамента, кПа.
Устройство опор в русле реки вызывает стеснение русла и может приводить к интенсивному размыву грунта, в особенности у опор. В результате этого бытовое давление в грунте уменьшается. В формулу (4.1) подставляют бытовое давление, подсчитанное без учета размыва грунта, т. е. давление, которым грунт был обжат до возведения сооружения. Это связано с тем, что после разгрузки грунта деформации его при повторном нагружении сначала весьма малы; они начинают заметно возрастать, лишь когда напряжения в грунте достигнут величин, имевшихся до разгрузки.
Активную зону грунта разбивают на горизонтальные слои толщиной не более 0,4b, где b — наименьший размер фундамента в плане, м. Если в пределах активной зоны имеется напластование разных грунтов, то их границы принимают за границы выделенных слоев. Осадку s основания определяют суммированием деформаций отдельных слоев. Деформацию si м, каждого i-го слоя подсчитывают в предположении, что уплотнение грунта происходит в условиях отсутствия бокового расширения (в условиях компрессионного сжатия) при постоянном давлении рz кПа; последнее принимают равным среднему дополнительному давлению рг, кПа, из давлений, возникающих в точках под центром тяжести подошвы фундамента в пределах рассматриваемого слоя.
Используя формулу (1.29) для определения деформации грунта при компрессионном сжатии, можем написать:
si=eiti=(piβi/Ei)li (4.2)
где ei — относительная деформация грунта i- го слоя; ti — толщина i-го слоя грунта, м; βi — коэффициент, принимаемый по табл. 1.3
в зависимости от вида грунта i-го слоя; Ei — модуль деформации грунта i-го слоя, кПа, определяемый по формуле (1.28) на основе результатов испытаний образцов грунта на компрессионное сжатие.
Грунтовые основания: проектирование без ошибок и без чрезмерных запасов прочности
Текст: Ирхин В.Д. инженер-строитель
Среди специфических грунтов особую категорию составляют лессовые просадочные грунты. Просадочные грунты почти сплошным покровом лежат на большей части территории юга европейской части России (Нижний Дон, Предкавказье, Заволжье и др.), а также на юге Западной Сибири и в ряде других степных районов.
Просадочные грунты (рис.1) отличаются от грунтов непросадочных лишь тем, что они пронизаны макропорами, по которым поверхностные и грунтовые воды свободно перемещаются во всех направлениях. Находясь в напряженном состоянии от веса зданий и/или собственного веса при замачивании водой, просадочные грунты дают дополнительные осадки, называемыми просадками.
Механизм просадки может быть представлен следующим образом. Вода, проникая в маловлажную высокопористую лессовую породу, разрушает водонеустойчивые структурные связи, при этом происходит ее доуплотнение, плотность увеличивается и приходит в соответствие с напряженным состоянием.
В практике строительства часты случаи, когда здания, просуществовавшие значительное количество лет на лёссовом основании без деформаций, вдруг внезапно начинали разрушаться (рис.2). Причина – непреднамеренное замачивание лесса, отсюда и его неравномерная просадка.
О том, что здание будет возводиться на просадочном основании, проектировщик узнает из Технического отчета об инженерно-геологических изысканиях площадки проектируемого строительства. Целью изысканий является построение инженерно-геологической модели основания для разработки проекта, но Технический отчет не является документом, цифровая и графическая информация которого достоверны. В этом легко убедиться, если сделать заказ на выполнение еще одного или двух дополнительных независимых в исполнении Технических отчетов по застраиваемой площадке. Результаты Технических отчетов, и качественные и количественные, всегда будут разные, и порой разные существенно.
Проектировщик не может заранее знать о направлении и силе воздействия грунтовых вод на подфундаментные грунты, поэтому в его проекте отсутствуют расчеты с точным прогнозом возможного деформирования здания, а значит и с точным прогнозом усилий в его конструкциях. Эксплуатация зданий по проектам с неточными расчетами чем-то напоминает национальную игру «Русская рулетка».
Избежать ошибок при проектировании и строительстве зданий на просадочных основаниях можно лишь уплотнением просадочных грунтов до непросадочного состояния, то есть уплотнять грунт до такого уровня, чтобы объемный вес скелета грунта pd равнялся или превышал значение 16 кН/м3. Именно при таком значении объемного веса скелета грунта нежелательные макропоры, по экспериментальным данным, будут находиться в сплющенном, водонепроницаемом состоянии.
Для решения задач по сплющиванию вредоносных макропор иногда применяется технология уплотнения грунтов тяжелыми трамбовками (рис.3). Уплотнение грунтов осуществляется с поверхностей дна котлована путем свободного сбрасывания тяжелых трамбовок, массой 2-7 т, на уплотняемую площадь. Уплотнение грунтов осуществляется ударной нагрузкой, которая по эффективности воздействия на грунт и достижения заданного объемного веса скелета грунта по принятому методу стандартного уплотнения соответствует статической нагрузке 0.85-1.0 МПа.
Если посмотреть результат воздействия ударной нагрузки на поверхность уплотняемого грунта (рис.4), то можно увидеть, что значительная часть энергии ударной нагрузки потрачена на перемещение минеральных частиц в наклонных и горизонтальных направлениях. Поэтому, для увеличения глубины уплотнения грунтов приходится увеличивать либо массу трамбовки, либо высоту сбрасывания трамбовки, либо количество ударов трамбовкой по одному месту, что экономически не оправдано.
Экономическое оправдание присуще другому способу уплотнения основания (рис. 5). Если основание обособить, и к обособленной части приложить ударную нагрузку статически, то вся нагрузка будет направлена только на вертикальное перемещение грунтовых частиц. Обособленные основания (патент Р.Ф. № 2170305: «Способ увеличения прочности нескальных оснований») – это основания, в которых вертикальными тонкими щелями, заполненными пластичным материалом, исключают вертикальное сжатие просадочных грунтов за периметром прилагаемой нагрузки. В качестве пластичного материала можно применять, например, смесь глинопорошка с отработанным машинным маслом. В данном примере обособленное основание представляет собой грунтовый столб круглого сечения, опорой которому служит грунт непросадочный.
Обособленные основания должны найти широкое применение в современном проектировании и строительстве. Они могут быть грунтовыми стенами, под фундаментами ленточными и грунтовыми массивами, под плитными фундаментами. Для того чтобы грунтовые стены и массивы эксплуатировались без скрытых дефектов, проектировщик должен знать только один параметр: давление на грунт, соответствующее снижению относительной просадки до нуля. Давление на грунт, при котором относительная просадка равна нулю, в научном мире называют вторым порогом просадочности, и это давление чаще всего изменяется в пределах 1-2 МПа.
Убежден, что проектировщик, прочитавший последний абзац, непременно покрутит пальцем у виска. И этот жест будет оправдан, потому что нагружение поверхностей оснований таким уровнем давлений противоречит требованиям Строительных Норм и Правил, п.2.41, и потому, что Технический отчет об инженерно-геологических изысканиях принуждает проектировщиков в проектных решениях использовать поверхностные давления без превышения значения 0.3 МПа.
Изменить требования к нагружениям просадочных оснований могут только фундаменты, включающие в себя клавишные блоки. Клавишный блок – это элемент фундамента, предназначенный для создания определенного зазора над его оголовком после снятия домкратных усилий.
Заметим: если в данном фрагменте ленточного фундамента (рис.6) создать зазор над правым клавишным блоком, то крен начнет развиваться в правую сторону, ну а потом, если потребуется устранить крен, то соответствующий зазор нужно установить и над левым блоком. А для того чтобы увеличить равномерную осадку фрагмента, нужно создать одинаковые зазоры над всеми, тремя клавишными блоками. Отсюда и правило: если соответствующими зазорами по ходу строительства горизонтировать подошву подвальных стен (патент Р.Ф. № 2167243: «Способ посадки зданий на нескальные основания»), то при осадках, даже соизмеримых с ростом человека, любое здание придет к своему деформационному финишу без чрезмерных наклонов, выгибов и прогибов. Для информации: такой уровень деформаций оснований не противоречит требованиям подпункта 2* Примечания к пункту 3.12* СНиП 2.02.01-83* «Основания зданий и сооружений».
С применением клавишных блоков можно конструировать и плитные фундаменты. На фрагменте (рис.7) показаны клавишные блоки, размещенные под наружной стеной, но клавишные блоки можно устанавливать и под стены внутренние. Плитные фундаменты с клавишными блоками должны применяться преимущественно в строительстве высотных зданий.
Инструменты для проектирования бездефектных оснований:
Эти показатели должен отражать Технический отчет об инженерно-геологических изысканиях площадки проектируемого строительства.
Инструменты для производства:
Инструменты для определения высоты необходимого зазора:
Этими инструментами выявляется блок с максимальной осадкой и текущее отставание от него любого клавишного блока, что позволяет определять клавишные блоки для домкратного вдавливания в грунт и необходимые для них высоты зазоров.
Выводы:
Непросадочные основания: использование таинственных возможностей СНиП 2.02.01-83*
Клавишные фундаменты и клавишные технологии по своей эффективности станут незаменимыми при проектировании зданий и на обычных, непросадочных грунтах. В этом случае проектирование глубокоосадочных оснований должно осуществляться по требованиям пунктов СНиП 2.02.01-83* в следующей последовательности:
п. 2.1 (абзац 4) → п. 2.70 (подпункт г) → п. 3.12* (подпункт в и п. 2* Примечания) → п. 1.1 (подпункт в) → п.2.62 (формула 16) → п. 2.58 (формула 11).
Необходимо обратить внимание на то, что разработчик СНиП 2.02.01-83*, НИИОСП им. Н.М. Герсеванова, своими требованиями принуждает проектировать грунтовые основания только с линейным мелкоосадочным деформированием, к которым относятся линейно деформируемое полупространство и линейно деформируемый слой, п. 2.40.
О том, что СНиП позволяет проектировать глубокоосадочные основания с нелинейным деформированием институту известно с 2000 года, но до сих пор новые возможности СНиПа им не афишированы, и лишь потому, что применение нелинейно деформируемых оснований вскрывает недальновидность тех ученых, которые непосредственно участвовали в разработке СНиП.
Но новая расчетная схема в п. 2.40 не может прописаться и в наши дни, потому что в новом алгоритме, предназначенном для проектирования нелинейно деформируемых оснований, не предусмотрено традиционное выполнение деформационных расчетов.
Уважаемый Виктор Дмитриевич! В соответствии с обращением МИНСТРОЯ России НИИОСП им. Н.М. Герсеванова рассмотрел Ваши предложения от 05.05.2015 г. № 5161 по вопросу внесения изменений в нормативно-технические документы в области строительства, в частности, в СП 22.13330.2011 «Основания зданий и сооружений».
Информирую Вас о том, что в соответствии с Постановлением Правительства Российской Федерации от 26.12.2014 г. № 1521 «Об утверждении перечня национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений» выполнение ряда пунктов подраздела 5.6, равно как и подраздела 5.7 СП 22.13330.2011 «Основания зданий и сооружений» является обязательным для обеспечения требований безопасности зданий и сооружений. Выполнение на обязательной основе требований только подраздела 5.7 СП 22.13330.2011 «Основания зданий и сооружений» без выполнения требований подраздела 5.6 не является достаточным для обеспечения соблюдения требований Федерального закона «Технический регламент о безопасности зданий и сооружений». В силу этого Ваши предложения о внесении изменений в указанный свод правил не могут быть приняты.
Пояснение: СП 22.13330.2011 выпускался взамен СНиП 2.02.01-83*, но сегодня его действие приостановлено, хотя различий по требованиям к проектированию оснований у них нет, только требования к выполнению расчетов оснований по деформациям сосредоточены в подразделе 5.6, а требования к расчетам по прочности – в подразделе 5.7
Письмо НИИОСПа – это образец непрофессиональной отписки, что доказывается нижеследующим.
На рис. 8 показана диаграмма, отражающая зависимость осадки основания от величины поверхностного давления, где линия, выделенная красным цветом, отражает нелинейное деформирование.
Механика грунтов является одним из разделов строительной механики. Она имеет два подраздела: Линейная и Нелинейная. В современном проектировании оснований используются решения только Линейной механики грунтов. Нелинейная механика грунтов развивается только теоретически и до сегодняшнего дня не нашла практического применения. Поэтому под современными фундаментами отсутствуют нелинейные зависимости, обозначенные на диаграмме красной линией, чем создаются резервы несущей способности оснований до 80%. Зависимости, обозначенные красной линией, могли бы формироваться под каждым фундаментом, если бы применялись клавишные фундаменты и подраздел 5.6 не ограничивал бы под ними поверхностные давления на основания.
Известно, что за последние 80 лет ВИОС – НИИОСП принимал участие в разработке 7-ми СНиПов, и что ни один из этих СНиП не приспособил требования, которые изложены в подразделе 5.6, к проектированию нелинейно деформируемых оснований.
Разработка рабочих методик для деформационных расчетов нелинейно деформируемых оснований при ограничении осадок была, есть и всегда будет для ученых неисполнимой мечтой.
Реальное освоение нелинейно деформируемых оснований будет тогда, когда основания начнут проектировать по требованиям, изложенным в подразделе 5.7. При этом требования подраздела 5.6 были и должны оставаться действующими только для линейно деформируемых оснований, т.е. оснований, которые работают в фазе сжатия.
НИИОСП – это институт, научная деятельность которого направлена на освоение только линейно деформируемых оснований, поэтому в своих нормативных документах он сознательно многие годы, своими ограничениями давлений на грунтовые основания, скрывает возможность проектирования оснований с нелинейным деформированием.
Очевидно, без сторонней помощи в публичном пространстве усовершенствовать СНиП 2.02.01-83*, отменой ограничений давлений на нелинейные основания и введением новой расчетной модели, не представляется возможным.
Что касается практического применения нового алгоритма в проектировании оснований, то применять его нужно со дня прочтения этой статьи, потому что действующие СНиПы не дают прямых запретов на его применение, как по частям, так и в целом, а это подпадает под российский закон: «Что не запрещено, то разрешено».
Для руководителей строительным бизнесом: с применением нового алгоритма, квадратные метры вашей строительной продукции станут значительно дешевле!