что такое подача инструмента
Режимы резания при токарной обработке
При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.
Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые — это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.
Основные параметры
Одна из главных задач технологической подготовки производства при токарных работах — это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки. Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача). Поэтому основными технологическими параметрами для токарного оборудования являются:
Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые — это:
Понятие о режимах резания
Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.
Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.
При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.
Глубина
Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.
При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:
где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.
При операциях подрезки — это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке — глубина канавки.
В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.
Подача
Подача при токарной обработке — это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:
Производительность токарного оборудования напрямую связана с величиной подачи.
При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.
Скорость
Скорость резания при токарной обработке — это суммарная траектория режущей кромки резца за единицу времени. Ее размерность — в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:
Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.
Выбор режима на практике
Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке. Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников. Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:
Элементы резания при токарной обработке
Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса — это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:
При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.
Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево. При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения. Это хорошо видно на примере токарной обработки нержавейки — самого распространенного после углеродистой стали конструкционного материала.
Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.
Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.
Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.
Вычисление скорости резания
Время точения металла (tосн, основное время) — самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования. Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента. Далее приводится последовательность расчета этого показателя для самой распространенной операции — обточки цилиндрической поверхности.
Основные факторы, влияющие на скорость резания
Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:
где D — диаметр заготовки в мм; n — скорость шпинделя в об/мин.
Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:
На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.
Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:
где D — диаметр заготовки; d – конечный диаметр детали.
После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ — табличное значение скорости резания.
Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.
Корректировка vт осуществляется с помощью группы поправочных коэффициентов:
где vут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.
После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:
Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.
Формулы для токарной обработки
На последнем этапе рассчитывают фактическую скорость резания vф:
Vф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.
Элементы режима резания
Режимом резания называется совокупность элементов, определяющих условия протекания процесса резания.
К элементам режима резания относятся – глубина резания, подача, период стойкости режущего инструмента, скорость резания, частота вращения шпинделя, сила и мощность резания.
Аналитический (расчетный) метод определения режима резания менее трудоёмок и более предпочтителен при учебном проектировании технологических процессов механической обработки резанием. Он сводится к определению, по эмпирическим формулам, скорости, сил и мощности резания по выбранным значениям глубины резания и подачи.
Выбор режущего инструмента
Его следует начинать с анализа шероховатости поверхностей детали, которая задана на чертеже. В зависимости от параметра шероховатости выбирается метод обработки данной поверхности, которому соответствует свой специфический режущий инструмент. В табл. 1 приведена зависимость шероховатости поверхности от различных методов обработки.
Немаловажное значение для расчета режимов резания имеет выбор материала инструмента. При его выборе следует руководствоваться рекомендациями табл. 2. Для тонких (отделочных) методов обработки материалов с высокими скоростями резания (свыше 500 м/мин) рекомендуется применение сверхтвердых инструментальных материалов.
Наиболее распространенными среди них являются материалы, полученные на основе кубического нитрида бора.
Выбор и назначение глубины резания
Рис. 1.Схема к определению глубины резания при точении
Глубиной резания называется расстояние между обрабатываемой и обработанной поверхностями, измеренное по нормали к последней.
При черновых методах обработки назначают по возможности максимальную глубину резанияt, равную всему припуску или большей части его. При чистовом резании припуск срезается за два прохода и более. На каждом следующем проходе следует назначать меньшую глубину резания, чем на предшествующем. Глубину последнего прохода назначают в зависимости от требований точности и шероховатости обработанной поверхности.
В данной работе рекомендуются следующие глубины резания t, мм:
черновая обработка t >2;
При сверлении глубина резания t=0,5·D, при рассверливании, зенкеровании и развертывании t=0,5·(D-d) мм, где
Рис. 2.Схемы для определения глубины резания при сверлении (а) и рассверливании (б) отверстий.
При отрезании, точении канавок и фасонном точении глубина резания приравнивается длине лезвия резца (см. рис. 3).
Рис. 3. Схема к определению глубины резания при отрезании
Выбор величины подачи
Подачей называется путь, пройденный какой-либо точкой режущей кромки инструмента, относительно заготовки, за один оборот заготовки (режущего инструмента), либо за один двойной ход режущего инструмента.
Различают подачу на один зуб Sz, подачу на один оборот S и подачу минутную Sм, мм/мин, которые находятся в следующей зависимости:
(1)
При черновом точении выполняется вариантный расчёт режимов резания для нескольких значений подач в диапазоне, ограниченном чистовой (табл. 3) и максимальной подачей, допустимой прочностью режущей пластины (табл. 4).
При обработке отверстий осевым режущим инструментом выбирают рекомендуемую подачу, допустимую по прочности инструмента (табл.5).
В учебных целях рекомендуется значения подач выбирать из наиболее распространённого диапазона: 0,05- 0,5 мм/об.
Выбор значения периода стойкости
Периодом стойкости (стойкостью) режущего инструмента называется время его непрерывной работы между двумя смежными переточками.
Выбор значения периода стойкости режущего инструмента рекомендуется сделать из следующего ряда:
Меньшие значения периода стойкости следует назначать для мелких инструментов.
Подача инструмента
Условия подачи инструмента и погружения долота.Под подачей инструмента понимают его вертикальное перемещение на поверхности, которое осуществляется опусканием ведущей трубы в ротор на некоторую величину в результате ослабления (оттормажи-вания) тормоза лебедки. Под погружением долота понимают глубину внедрения долота в породу под влиянием подачи инструмента.
Не следует смешивать величину подачи, производимой сверху бурильщиком или автоматом, с глубиной погружения долота в породу, так как колонна бурильных труб не является абсолютно жесткой системой и испытывает в зависимости от возникающих в ней усилий упругие деформации, компенсирующие разницу между подачей и глубиной погружения долота. Таким образом, погружение долота всегда меньше подачи инструмента, и в то же время любое погружение долота происходит только в результате подачи инструмента. В этом состоит органическая связь и принципиальное различие этих двух понятий.
Подача инструмента, производимая бурильщиком, находящимся на поверхности, должна быть плавной, непрерывной и обеспечивающей такое удельное давление долота на забой, которое превышало бы сопротивляемость горных пород разрушению и создавало
наиболее эффективную скорость их разбуривания. Подача инструмента осуществляется при помощи подъемного механизма — буровой лебедки, оборудованной мощным тормозным устройством и талевой системой.
Механическая подача долота в бурении.Автоматизация и механизация буровых работ, являясь основным путем к облегчению труда и увеличению безопасности, приобретает особое значение в связи с увеличением глубин, мощностей буровых двигателей и внедрением форсированных режимов бурения.
В большинстве случаев передача массы инструмента на забой скважины производится бурильщиком вручную. Бурильщик должен хорошо знать условия бурения в данном районе и в соответствии с этим регулировать подачу инструмента. Выдержать равномерность подачи при помощи тормоза лебедки чрезвычайно трудно. Ручная подача сильно утомляет бурильщика, так как ему приходится одновременно внимательно следить за измерительными приборами, напрягать зрение, слух и, держась за ручку тормоза, по физическим ощущениям судить о характере работы долота на забое. Мастерство бурильщика постигается годами и требует особых физических и психических данных.
Равномерная подача в пределах заданного давления на забой достигается механизированной подачей. При этом должны быть выполнены следующие основные требования:
скорость подачи инструмента должна устанавливаться автоматически в соответствии с крепостью проходимых пород и степенью износа долота;
скорость подачи должна плавно регулироваться в широких пределах от нескольких десятков метров в 1 ч при бурении в мягких до нескольких сантиметров в крепких породах;
при остановке гидравлического забойного двигателя, а также значительных перегрузках бурового двигателя, должен быть предусмотрен реверс системы — подъем долота с забоя;
автомат должен быть прост и надежен в эксплуатации.
Все известные системы устройств для подачи долота (УПД) можно подразделить на следующие основные группы:
автоматы подачи, работающие в зависимости от величины выделяемой на бурение мощности;
автоматы подачи, работающие в зависимости от натяжения талевого каната (нагрузки на долото);
регуляторы подачи, осуществляющие равномерную подачу инструмента (регуляторы отличаются от автоматов подачи в основном тем, что у них отсутствует реверс бурильной колонны);
стабилизаторы массы (веса), осуществляющие подачу инструмента при постоянстве заданной величины осевой нагрузки на долото.
Известен целый ряд конструкций УПД. В качестве примера рассмотрим автоматический электрический регулятор подачи типа
РПДЭ-3 (рис. 7.17). Этот регулятор предназначен для поддержания режимов бурения нефтяных и газовых скважин гидравлическими двигателями и ротором (при бурении электробуром широкое применение получил автоматический регулятор типа БАР).
РПДЭ-3 обеспечивает поддержание:
заданной осевой нагрузки на долото; нагрузка задается бурильщиком с пульта управления;
постоянной скорости подъема или подачи бурильной колонны; скорость задается бурильщиком с пульта управления.
Осевая нагрузка на долото измеряется с помощью электрического датчика 6 и передается на пульт управления 5, где сравнивается с величиной Р$, задаваемой бурильщиком. Разность сигналов А/ 7 поступает на усилители, установленные на станции управления 7. Усилители действуют на обмотку возбуждения мотор-генератора 2, вращаемого асинхронным электродвигателем, питающимся от системы электроснабжения буровой. Мотор-генератор 2 питает двигатель постоянного тока 3, установленный на приводе редуктора 4 и соединенный через цепную передачу и муфты с подъемным валом лебедки.
Режим поддержания заданного значения скорости подачи (или подъема) бурильной колонны может применяться для проработки скважины, аварийного подъема бурильного инструмента при отказе главного привода и т. п.
Автоматическое поддержание заданной осевой нагрузки на долото может осуществляться при помощи стабилизаторов массы.
Рис. 7.17. Схема регулятора подачи РПДЭ-3:
.1 — станция управления; 2 — мотор-генератор; 3 — двигатель постоянного тока; 4 — привод редуктора; 5 — пульт управления; 6 — электрический датчик
|
|
В качестве примера рассмотрим устройство стабилизатора массы типа СВМ конструкции ВНИИЮТ, который можно устанавливать на буровых лебедках при наличии пневмосистемы с давлением воздуха 0,6. 0,9 МПа (рис. 7.18). Стабилизатор состоит из исполнительного пневматического поршневого механизма 5, соединяемого с рукояткой ленточного тормоза буровой лебедки; пульта управления 4с электроконтактным манометром и рукоятками для установки осевой нагрузки на долото и подачи инструмента за один импульс; механизма обратной связи 2, соединяемого с барабаном лебедки 7 с помощью фрикционного ролика; соединительного электрического кабеля.
Перед включением стабилизатора массы типа СВМ в работу по шкале прибора на пульте управления задается величина осевой нагрузки на долото, которую необходимо поддерживать в процессе бурения. Стабилизатор осуществляет импульсную подачу бурильной колонны, прерывая или возобновляя ее в процессе бурения, если фактическая нагрузка на долото отличается от заданной на величину более чем на ±3 кН по гидравлическому индикатору
Рис. 7.18. Схема стабилизатора массы типа СВМ:
/ — барабан лебедки; 2 — механизм обратной связи; 3 — гидравлический индикатор массы; 4 — пульт управления; 5 — поршневой механизм
Рис. 7.19. Схема работы забойного механизма подачи:
а — в заряженном состоянии; б — с полностью вышедшим штоком; в — вновь заряжен
массы 3. При необходимости бурильщик может в любой момент затормозить лебедку простым нажатием на тормозную рукоятку, и тем самым вывести стабилизатор из действия.
Стабилизаторы массы полностью не решают вопросов автоматизации, но зато позволяют в значительной мере облегчить труд бурильщиков.
Забойные устройства для подачи долота.Проблема автоматизации глубокого бурения может быть разрешена переносом регулирующего и исполнительных механизмов на забой. Над созданием забойных УПД усиленно работают у нас и за рубежом. Забойные УПД должны обеспечить регулирование параметров режима бурения и сделать его мало зависящим от сил трения, что особенно важно при проходке глубоких и искривленных скважин. Простейшим регулятором такого типа является забойный механизм подачи (ЗМП), который представляет собой гидравлический поршневой механизм (рис. 7.19). Во время рейса с ЗМП осевая нагрузка остается постоянной. Если нагрузку необходимо изменить, то нужно либо изменить длину УБТ, либо применить ЗМП с другим сечением поршня. Забойный механизм подачи можно использовать при бурении скважины, начиная с глубины 50 м, т.е. с момента, когда в скважину под ротор можно спустить турбобур с долотом и на-
вернутым сверху ЗМП. Это особенно важно в тех случаях, когда бурят в крепких породах и с самого начала необходимо создавать большие осевые нагрузки.
Контрольные вопросы
1.Что понимается под режимом бурения? Когда достигается рацио
нальный (оптимальный) режим бурения?
2. Как влияют различные параметры бурения на показатели работы
долот?
3. Какие способы бурения получили распространение в Российской
Федерации? Назовите критерии оценки эффективности способа бурения.
4. Расскажите об особенностях режима бурения роторным способом.
5. Какие закономерности характеризуют влияние количества бурового
раствора на работоспособность турбины?
6. Какие существуют конструктивные разновидности турбобуров? В чем
их отличия?
7. Для чего нужны редукторы-вставки? Каков принцип их работы?
8. В чем состоит основная особенность бурения при помощи турбобура?
Что называется рабочей характеристикой турбобура?
9. Каковы основные правила эксплуатации турбобуров?
10. Расскажите о винтовых (объемных) забойных двигателях. Какими
преимуществами они обладают по сравнению с турбобурами?
11.Каковы особенности режима бурения винтовыми забойными дви
гателями?
12. Расскажите об электробуре. Как подводится электрическая энергия
к электробуру? Каковы основные правила эксплуатации электробуров?
13. В чем заключаются особенности режима бурения электробурами?
14. Каковы особенности режима бурения алмазными долотами с алмаз
но-твердосплавными резцами и алмазно-твердосплавными пластинами?
15. При помощи каких приборов осуществляется текущий контроль за
параметрами режима бурения? Расскажите об индикаторе массы (веса)
(устройство, правило тарировки, чтение индикаторных диаграмм).
16. Расскажите об устройствах для выбора оптимальных параметров
режима бурения.
17. Что понимается под подачей инструмента и погружением долота?
18. В чем заключаются принципы механизированной подачи долота?
19. Расскажите об устройстве для подачи долота. Для чего служат стаби
лизаторы массы (веса)?
20. Расскажите о забойных устройствах для подачи долота.