что такое пиды в квадрокоптерах

Настройка PID

Что такое PID

что такое пиды в квадрокоптерах. Смотреть фото что такое пиды в квадрокоптерах. Смотреть картинку что такое пиды в квадрокоптерах. Картинка про что такое пиды в квадрокоптерах. Фото что такое пиды в квадрокоптерах

PID (Пропорционально-интегрально-дифференциальный) регулирование является основным методом используемым для стабилизации квадрокоптера.

Пропорциональня P = немедленная коррекция: чем дальше от нас (значения), тем больше делается коррекция

Интегральная I = сверхурочная или постоянная коррекция: если мы не в состоянии добиться результата дополнительной коррекции.

Дифференциальная D = легкая коррекция: коррекция быстрая, замедлим ее немного, что бы избежать перерегулировки.

Вот видео настройки PID на контроллере CC3D в ПО OpenPilot.

Подстройка PID в поле показана на видео ниже.

А общие правила настройки PID можно сформулировать следующим образом:

Rate p — определяет сколько мощности дать на преодоления инерции рамы — угловой скорости по питчу и ролу — чем инертнее рама и меньше тяга винто-моторной группы тем больше.

Rate d — определяет дозирование энергии на раскрутку и торможение пропеллера — чем больше диаметр пропеллера и меньше тяга мотора тем параметр больше

По донастройке PID`ов (n.ybyue) есть несколько советов:

Если обнаруживаете осциляции — увеличивайте rate d.

Если аппарат ведет себя «как пьяный» то одновременно и rate p и rate d по 10%.

Раскачка бывает нескольких видов — «мелкодрожащая» когда моторы меняют свой тон многократно в течение секунды и «висит как на струне мелко дрожа» — это перекачанный rate p.

Если висит ровно, ветра нет, а он чуть чуть дергает то одним лучом, то другим, раз в секунду, то вероятно великоват rate d.

Внимание!

Не советуется ускорять процесс увеличивая пид более чем на 10% за раз очень легко пролететь нужный порог и потом уже начинаются неожиданные явления типа внезапных рывков

Источник

Теория настройки ПИД / PID

Содержание

Пропорционально-Интегрально-Дифференциальный метод [править]

Когда ориентация мультикоптера меняется по любой из осей pitch/roll/yaw (тангаж-крен-рыскание), гироскопы показывают угловое отклонение мультикоптера от начальной позиции.

Контроллер мультикоптера сохраняет информацию об исходном положении и при помощи программного ПИД-регулятора управляет моторами для того, чтобы вернуть мультикоптер в это исходное положение. Этого добиваются, используя информацию об измеренном угловом отклонении, фиксируя изменение параметров с течением времени и предсказывая следующую позицию. Эта информация используется контроллером, чтобы, управляя моторами, вернуть мультикоптер в положение равновесия.

Р – это основополагающая часть ПИД-регулятора которая является залогом хороших летных характеристик.

Базовая настройка ПИД – на земле [править]

Внимание! Запуск ненастроенного коптера с пропеллерами на моторах очень травмоопасен! Выполняйте настройку, держа коптер в руках только на свой страх и риск.

Теперь ваши установки должны годиться для дальнейшей настройки в воздухе.

Продвинутая настройка. Знакомство с воздействием P, I и D на характеристики [править]

Более высокое значение Р создаст более мощное усилие по сопротивлению любой попытке изменить положение коптера. Однако если значение Р слишком велико, то при возврате в исходное положение возникает перерегулирование и, следовательно, требуется противоположная сила, чтобы компенсировать новое отклонение. Это порождает эффект раскачки до тех пор, пока наконец не будет достигнута стабильность или, в худшем случае, коптер может стать полностью неуправляемым.

Увеличение значения Р: приводит к большей устойчивости /стабильности до тех пор, пока слишком большое значение Р не приведет к осцилляциям и потере контроля над коптером (потере управления). Вы заметите очень большую силу воздействия, противодействующую любому изменению положения коптера.

Уменьшение значения Р: приведет к дрейфу в управлении. Если Р слишком мал, коптер становится очень нестабильным. Коптер будет меньше сопротивляться любым попыткам изменить его положение.

Акро (пилотажные) полеты требуют чуть более высоких Р, аккуратные и плавные полеты – чуть более низкого Р.

I – это период времени, в течение которого записываются и усредняются угловые отклонения.

Величина силы, прикладываемой для возврата в исходное положение, увеличивается, если с течением времени угловое отклонение сохраняется, пока не будет достигнута максимальная величина усилия. Более высокое значение I способствует улучшению курсовой устойчивости.

Увеличение значения I: улучшит способность удерживать начальное положение и уменьшит дрейф, но так же увеличит задержку возврата в начальное положение. Также уменьшает влияние Р.

Уменьшение значения I: улучшит реакцию на изменения, но увеличит дрейф и уменьшит способность удерживать положение. Так же увеличивает влияние Р.

Акро режим: требует немного меньших значений I

Аккуратное плавное руление: требуются немного большие значения I

D – это скорость, с которой мультикоптер вернется в его начальное положение. Высокие D (т.к. D имеет отрицательное значение – это означает меньшее число, т.е. более близкое к нулю) означают, что мультикоптер вернется в первоначальное положение очень быстро.

Увеличение значения D (помните, это значит МЕНЬШЕЕ число, т.к. значение отрицательное) увеличивает скорость, с которой все отклонения будут скомпенсированы. Это означает так же увеличение вероятности появления перерегулирования и осцилляций. Так же увеличивается эффект от изменения Р (влияние Р-компоненты)

Уменьшение D: (помните, это значит БОЛЬШОЕ число, т.к. это отрицательно значение, т.е. дальше от нуля) уменьшает колебания при возврате в начальное положение. Возврат в начальное положение происходит медленнее. И так же уменьшает эффект от изменения Р.

Акро режим: увеличьте D (помните – меньшее число, т.е. ближе к нулю)

Аккуратные плавные полеты: уменьшите D (это означает большее число, т.е. дальше от нуля)

Продвинутая настройка – практическая реализация [править]

Для акро полетов [править]

После этого можно немного уменьшить Р.

Стабильные полеты (RC, AP, FPV) [править]

После этого можно немного уменьшить Р.

Вы должны выбрать компромисс между оптимальными настройками стабильного зависания и вашим обычным стилем полета.

Важность стабильного питания [править]

Как с бороться с этим эффектом:

FAQ [править]

Можно ли использовать «чужие» настройки PID [править]

Знание оптимальных настроек ПИД для конфигурации коптера, похожего на ваш, может помочь вам быстрее настроить свой мультикоптер, но имейте ввиду, что не бывает двух одинаковых коптеров, т.к. следующие пункты будут непременно вносить влияние в фактические значения коэффициентов ПИД:

Пиды лучше регулировать сразу с подвесом/камерой или можно после прицепить [править]

Лучше регулировать сразу с подвесом/камерой, так как вес изменяется достаточно значительно, чтобы повлиять на поведение аппарата. Нюансы:

Источник

RCDetails Blog

О коптерах и не только

ПИД для квадрокоптеров (перевод)

что такое пиды в квадрокоптерах. Смотреть фото что такое пиды в квадрокоптерах. Смотреть картинку что такое пиды в квадрокоптерах. Картинка про что такое пиды в квадрокоптерах. Фото что такое пиды в квадрокоптерах

Я написал небольшую статью, объясняющую что такое ПИД регулятор и как он влияет на коптер. После нескольких месяцев экспериментов, я бы хотел немного дополнить статью и поделиться тем, что я узнал полезного в процессе настройки ПИД для коптеров (все это применимо не только к квадрикам, но и к другим вариантам коптеров: три- и гекса-).

Про настройку ПИД простыми словами

Как я раньше и объяснял, ПИД контроллер или регулятор (Пропорционально-интегрально-дифференцирующий регулятор) это управляющий цикл с обратной связью, который очень часто используется во всевозможных управляющих системах. ПИД регулятор вычисляет значение «ошибки» как разницу между измеренным значением переменной и ее желаемым значением. Он пытается минимизировать ошибку воздействуя на управляемые входы. Серьезно, это определение полностью бесполезно для нас – не ученых :-p

В терминах коптеров это значит, что ПИД регулятор берет данные измеренные сенсорами полетного контроллера (гироскопы, акселерометры) и сравнивает их с ожидаемым значениями, чтобы изменить скорость моторов для компенсации любых отклонений и удержания баланса.

Алгоритм вычислений в ПИД регуляторе включает в себя 3 постоянных параметра, пропорциональное, интегральное и дифференцирующее значения, обозначаемые P, I и D. Эвристически эти значения могут быть интерпретированы как значения во времени: P зависит от текущей ошибки, I – от накопившихся прошлых ошибок, D – это предсказание будущих ошибок, на основании скорости изменения. В зависимости от вашего полетного контроллера ПИД регуляторы будут связаны с различными полетными режимами.

ПИД еще более простыми словами

Все еще не понятно? Не бойтесь, давайте просто попрактикуемся, все что вам нужно знать это как настраивать параметры ПИД регуляторов. Это общее описание ПИД параметров, как регулятор влияет на коптер и как это зависит реализации алгоритмов. Например, в Cleanflight есть три разных ПИД регулятора, и они работают по разному.

Что такое P?

P – это основное значение о котором нужно побеспокоиться, это число определяет стабильность. Почему я так говорю? Потому что Вы можете оставить I и D равными 0 и ваш самолет все еще будет удерживать горизонтальное положение. И вот поэтому вы всегда должны настраивать значение P до значений I и D.

Чем больше значение P, тем резче оно пытается стабилизировать коптер. Но если P слишком большое, то коптер становится слишком чувствительным и слишком резко пытается корректировать свое положение, проскакивая требуемое положение (чрезмерно резкая и быстрая реакция), в этом случае вы получите колебания с большой частотой.

Хотя и не все колебания вызываются слишком большим значением P. Вы должны снизить уровень вибраций по максимуму до того как начинать настройку ПИД; например от моторов, жесткости рамы, баланса винтов и т.д. Если коптер сам по себе не вибрирует, то вы можете установить бОльшее значение P и наслаждаться более стабильным и управляемым полетом.

Способ, при помощи которого я настраиваю P: увеличивать значение до тех порка не появятся вибрации (колебания), и затем немного уменьшить.

Что такое I?

Отлично, вы настроили P, оставив I и D значением по умолчанию (прим. переводчика, по идее они должны быть равными 0). Теперь во время полетов вы можете заметить, что должны удерживать стики рола и питча (крен и тангаж) чтобы коптер двигался, как только перестанете двигать стики – коптер сразу останавливается и выравнивается. Эта резкость управления даже может вызвать несколько колебаний или раскачиваний если вы дерните стик быстро.

Все это происходит потому, что P делает свою работу, пытаясь стабилизировать коптер. Посмотрите на значение I как на штуку которая следует позади, за стиком управления, увеличив значение I вы увидите, что полет становится более плавным. Но побочный эффект этого – когда вы бросите стики – коптер продолжить двигаться в этом же направлении. Это эффект от I – удержание предыдущей (во времени) позиции стика.

Чтобы понять это подумайте о том, что коптер пытается уменьшить ошибку в положении, но ошибка не уменьшается, она будет только пытаться уменьшиться. Это эффект от параметра I. Технически говоря это интеграл ошибки по времени, чем дольше ошибка присутствует, тем большая сила должна быть приложена. Когда I не равно 0, очень маленькая ошибка присутствует постоянно (это не обязательно плохо в реальном полете!).

Некоторые пилоты используют I чтобы полет был более плавным, в то время как другие – любят вариант поведения «следовать за стиком немедленно». Однако со слишком большим значением I, ваш коптер начнет колебаться с низкой частотой если дать газу. Когда I имеет слишком маленькое значение ваш коптер будет раскачиваться во время снижения.

Обычно значение по умолчанию для I работает вполне нормально. Но если вы видите раскачивание во время снижения, увеличение I должно помочь. Когда I будет слишком велико, то вы можете увидеть медленные колебания при резком взлете.

Что такое D?

D не очень полезно для большинства людей. Фактически вы можете полностью игнорировать значение D и коптер будет летать нормально. KK2 не позволяет настраивать значение D, потому что они хотят сделать настройку быстрой и эффективной, отсутствие D не сильно влияет на полет. Иногда D используется чтобы избавиться от рывков и дерганий в движениях.

D – это противоположность P. Если P это рука которая продолжает толкать машину в сторону стабильного положения, тогда D – это пружина между рукой и машиной, которая сглаживает резкие удары. Увеличивая D вы как бы смягчаете движения, как бы добавляете пружину в этот процесс управления. Однако слишком большое D – не очень хорошо, потому что может вызвать колебания. А еще коптер будет вялым.

В основном D меняет силу прилагаемую чтобы исправить положение, когда оно видит увеличение или уменьшение значения ошибки. Например, когда вы очень голодны, то кушаете значительно быстрее, чем когда уже почти наелись. Поэтому вы видите более плавные движения коптера когда используется D.

Когда вы видите вибрации не спешите уменьшить P, попробуйте увеличить D и посмотрите, возможно вибрации исчезнут. Также если вы видите небольшую болтанку или небольшие вибрации на больших оборотах или при выполнении флипов и роллов, увеличение D должно помочь. Цена этому – более вялое управление.

ПИД для вертикальной оси (рысканье)

Все что написано выше, в основном касалось рола и питча (крен и тангаж), но еще вам нужно отдельно настроить управление по рысканью. Значение по умолчанию обычно работают вполне нормально, но к ним применимы те же принципы что описаны выше. Этот канал управления не должен вызывать вибрации как рол и питч, и в конце концов – это всего лишь вопрос личных предпочтений.

Заключение

Я понимаю, что настройки ПИД это всего лишь поиск компромисса между моментом инерции коптера и силами которые создают моторы, на которые влияют и другие факторы, такие как: вибрации, жесткость рамы, производительность контроллера и т.д. Момент инерции зависит от того на сколько тяжелый коптер, как эта масса распределена, ну и от характеристик моторов. Следовательно, значения ПИД будут разными для каждого коптера, потому что будут иметь разные параметры, разное распределение масс и т.д. Именно по этому, полностью готовые к полету коптеры из наборов летают отлично прямо из коробки, без настройки – они все имеют одинаковые параметры и поэтому используют абсолютно одинаковые значение ПИД регулятора.

Источник

Настройка PID и регулировка

Опции темы

PID Настройки чтобы ваш квадрик не трясло и летал ровно.

I – это период времени, в течение которого записываются и усредняются угловые отклонения.
Величина силы, прикладываемой для возврата в исходное положение, увеличивается, если с течением времени угловое отклонение сохраняется, пока не будет достигнута максимальная величина усилия.
Более высокое I способствует улучшению курсовой устойчивости.
Увеличение значения I:
улучшит способность удерживать начальное положение и уменьшит дрейф, но так же увеличит задержку возврата в начальное положение. Также уменьшает влияние Р.
Уменьшение значения I:
Улучшит реакцию на изменения, но увеличит дрейф и уменьшит способность удерживать положение. Так же увеличивает влияние Р.

D – это скорость, с которой вертолет вернется в его начальное положение. Высокие D означают, что вертолет вернется в первоначальное положение очень быстро.

Увеличение значения D увеличивает скорость, с которой все отклонения будут скомпенсированы. Это означает так же увеличение вероятности появления перерегулирования и осцилляций. Так же увеличивается эффект от изменения Р (влияние Р-компоненты)
Уменьшение значения D уменьшает колебания при возврате в начальное положение. Возврат в начальное положение происходит медленнее. И так же уменьшает эффект от изменения Р.

Теперь разберем, как практически осуществлять настройку параметров PID, так сказать общие рекомендации.
Прежде всего, надо настроить систему на работу с двумя банками данных, в одном будут обычные настройки, в другом- экспериментальные. Переключатся они будут тумблером переключения режимов хвостового гиро, при этом мы теряем режим хвоста Нормал, но кто сейчас им пользуется? При желании, после настроек, можно вернуть этот режим назад. Смысл заключается в том, что при облете могут возникнуть автоколебания, при этом посадить вертолет будет очень проблемно, уж поверьте мне. А так мы щелчком тумблера включаем банк со старыми настройками, после чего безопасно приземляемся.
Примерный алгоритм подборки параметров следующий:
1. Настройка начинается с параметра P. Необходимо его постепенно увеличивать до появления колебаний. После появления колебаний немного уменьшить P (на 5 единиц). В дальнейшем при выполнении переворотов, бочек при появлении звука срыва потока на лопастях ещё уменьшить P.
2. Настройка параметра I выполняется при выполнении пируэтов при быстром полёте вперёд. Если скорость выполнения пируэта равномерна, настройка завершена.
3. Если при уже установленных параметрах P и I вертолёт немного подергивает по элеватору, необходимо немного увеличить Pitch D.

При возникновении автоколебаний ротора:
1. Быстрые колебания – завышено P,
2. Медленные колебания – завышено I.

Настройки рекомендуется производить грубо с шагом 5 единиц, затем более точно 1-2 единицы.

Мой коптер раскачивается медленно (большие движения) когда стабилизировался : понизьте значение в Stabilize Roll P.

Мой коптер раскачивается быстро (мелкие движения) когда стабилизировался : понизьте значение Rate Roll P.

Мой коптер слишком вялый : Поднимите значение Stabilize Roll P. Это значение заставляет коптер быстрее реагировать на угловые ошибки.

Мой вертолет крутит вправо или влево на 15 °, когда я взлетаю: Ваши моторы установлены не прямо или Регули не откалиброваны.

YAW используется для положения под определенным углом рыскания. Если ваш коптер хочет крутиться, естественно, вы не сможете задать точное направление.
Вы будете дрифтовать, а не поворачивать на несколько градусов, пока P получится значительно высоким, чтобы остановить вращение.

STABILIZE_YAW_P: Заданная скорость, с которой вертолет повернется к нужному направлению. Если он слишком высокой, это может вызвать колебания.
STABILIZE_YAW_I: Действует как триммирование для преодоления плохого баланса коптера. Определяет время, необходимое для достижения максимального значения. Выше = быстрее.
RATE_YAW_P: Используется в качестве контролирующего органа AC2 можно использовать для достижения нулевой скорости рыскания.
Если он слишком низкий, вы никогда не будете в состоянии остановить вращение.
Если он слишком высокий, вызовет колебания рыскания.
RATE_YAW_I: не используется
Throttle Rate используется чтобы ослабить коптер и контролировать скорость подъема.
Throttle Rate P : количество газа на выходе используется для изменения скорости подъема.
THROTTLE_I: компенсирует ошибки в достижении желаемой скорости подъема (ноль по умолчанию. мы используем Alt hold делать большую часть работы.).
THROTTLE_IMAX: Количество Throttle_I мы можем добавить или убрать для достижения желаемой скороподъемности.
Мой вертолет не остается неподвижным в воздухе.
Откалибруйте уровень на плоской поверхности (разоружаться в течение 15 секунд). Вы можете также полететь в AUTO-TRIM в безветрие (важно!).
Любой ветер вызовет изменения, которые Вы вносите, чтобы работать против Вас, когда коптер вращает 180°.
Вы можете использовать триммеры продольного и поперечного крена,
но не забыть отцентровать их, когда будете заново конфигурировать радио. Использование триммеров может иметь отрицательный эффект в SIMPLE MODE, отклоняясь от курса.
Никогда не триммируйте YAW, Ваш вертолет может начать самостоятельно вращаться.

В LOITER мой вертолет постоянно промахивается.
Попытайтесь увеличить Nav_P. Вы можете также понизить I, потому что в некоторых случаях Nav_I или
Loiter_I могут причины промахиваться. Сделайте I равным 0 в безветрие – это лучший способ настроить Nav_P.

Мой вертолет все более и более качается вверх и вниз в ALT HOLD.
Ваш THROTTLE_P слишком высок или низок. Вы не нуждаетесь в высоком P, чтобы удерживать высоту.
Думайте, сколько Вы перемещаете дроссель, чтобы держать высоту отлично. Не очень много! Это – то, что
Вы нуждаетесь в P, чтобы сделать. I будет расти, поскольку Ваша батарея понижается, чтобы составить различие.

Сначала надо крутить Rate_P, добиться того значения, чтобы его не колбасило (лучше в руках, но осторожно)
при этом чтоб rate_D был где то 0.0025, а Rate_I был в 0. А уж потом крутить в Stabilize_P, I, D.

Источник

Что такое PID, на что влияет и как настроить

что такое пиды в квадрокоптерах. Смотреть фото что такое пиды в квадрокоптерах. Смотреть картинку что такое пиды в квадрокоптерах. Картинка про что такое пиды в квадрокоптерах. Фото что такое пиды в квадрокоптерах

Многие прошивки для квадрокоптеров, такие как Betaflight и KISS, позволяют пилотам настраивать значения PID для повышения эффективности полета. В этой статье я расскажу, что такое PID, как это влияет на стабильность и обработку полёта. Также расскажу о некоторых простых методах настройки PID квадрокоптера.

Что такое PID в квадрокоптерах

К сожалению, в этом мире не все идеально, поэтому были придуманы PID (далее по тексту ПИД), чтобы приблизиться к идеалам.

PID — это функция в полетном контроллере. Эта функция считывает данные с датчиков и передает двигателям, как быстро им нужно вращаться. В конечном итоге, именно так достигается стабильность и идеальность полета квадрокоптера.

PID обозначает производную пропорционального интеграла. ПИД-регулятор представляет собой замкнутую систему управления, которая пытается получить фактический результат ближе к желаемому результату, внеся коррективы в выходные данные, которые отправляются двигателям. Если происходит ошибка, она возвращается в начало и цикл повторяется.

ПИД-регулятор вычисляет значение «ошибка» как разность между измеряемой величиной и желаемой величиной. Контроллер пытается свести к минимуму ошибку, отрегулировав поступающие значения управления.

Работает это так: в квадрокоптере PID получает данные с датчиков и сравнивает их с поступившими данными. Разница между этими данные называется «ошибка» или «error» по-английски и старается уменьшить в последующем эту ошибку. Посмотрите на схему, чтобы понять, как PID стабилизирует квадрокоптер:

В ПИД-регуляторе есть три функции: P, I и D. Эти значения могут быть интерпретированы с точки зрения времени:

Если вы сейчас ничего не поняли, то это нормально! что такое пиды в квадрокоптерах. Смотреть фото что такое пиды в квадрокоптерах. Смотреть картинку что такое пиды в квадрокоптерах. Картинка про что такое пиды в квадрокоптерах. Фото что такое пиды в квадрокоптерахВам не обязательно понимать теорию работы PID и уметь отлично настраивать PID квадрокоптера. Можете сразу перейти к главе «Простая настройка PID значений», а если все же хотите узнать подробнее о ПИДах, то читайте дальше что такое пиды в квадрокоптерах. Смотреть фото что такое пиды в квадрокоптерах. Смотреть картинку что такое пиды в квадрокоптерах. Картинка про что такое пиды в квадрокоптерах. Фото что такое пиды в квадрокоптерах

Чтобы был какой-либо контроль над квадрокоптером:

Повторюсь, не обязательно полностью понимать как работает PID, чтобы нормально летать, однако, если вам интересна более глубокая теория, то далее будет интересное объяснение, постараюсь изложить все как можно в более легкой форме.

Как работают значения PID, их изменение

Как правило, изменение значений ПИД (усиления) оказывает влияние на поведение квадрокоптера:

Усиление P

P определяет, насколько жестко контроллер полета исправляет погрешности, чтобы достичь желаемой траектории полета. Этот параметр регулирует чувствительность и отзывчивость на изменения положения стиков. Чем выше это число, тем выше чувствительность и отзывчивость.

Более высокий коэффициент Р, означает более четкое управление, в то время как низкий Р — более мягкое и плавное управление. Но если это значение слишком большое, дрон станет слишком чувствительным и начнет сам себя корректировать, а также начнутся колебания значений положения стиков.

Можно снизить P, чтобы уменьшить колебания, но тогда дрон будет нечетко выполнять ваши команды, поэтому нужно будет поиграть с I и D, чтобы это компенсировать.

Усиление I

Значение I определяет, насколько сильно он будет поддерживать квадрокоптер при воздействии внешних факторов, таких как ветер и смещение центра тяжести, например.

Это настройка жесткости при поворотах квадрокоптера.

Обычно, настройки по умолчанию вполне хорошо справляются с этим, но если вы заметили некоторый дрейф дрона без вашей команды, то увеличьте немного значение I. Если значение будет слишком низкое, вам часто придется исправлять траекторию полета дроном, особенно, если вы часто меняете уровень газа.

Если значение I будет слишком высокое, то поведение квадрокоптера будет «деревянным», он будет слабо реагировать на ваши изменения положения стика на пульте. Никакие регуляторы оборотов, двигатели и пропеллеры не одинаковы, каждый на какую-то часть, но работает по-своему, поэтому когда вы даете резкий газ, а потом резко опускаете стик газа, один двигатель будет останавливаться быстрее другого и наоборот, все это вызывает провалы в положении квадрокоптера в воздухе, один двигатель еще имеет тягу, а другой уже нет.

Таким образом, I используется для исправления таких мелких проблем.

Усиление D

D работает как демпфер (глушитель, гаситель) и уменьшает чрезмерную коррекцию и регулирование коэффициента P. Увеличивая значение D, вы смягчаете воздействие Р, как бы добавляя «пружину» и также минимизирует вибрацию пропеллеров.

Если D будет слишком маленьким, то дрон будет как бы «отскакивать» назад в конце флипов и кренов, а также у вас будет сильная вибрация, вызванная вертикальным снижением.

Слишком большое значение тоже приводит к вибрациям. В попытке стабилизировать квадркоптер, полетный контроллер будет командовать регуляторам оборотов, чтобы те то прибавляли обороты двигателям, то уменьшали с такой скоростью (в смысле быстрее-медленнее), что из-за этого двигатели перегреются и сгорят. Вибрация также будет действовать на контроллер полета и со временем ситуация будет ухудшаться.

Еще одним побочным эффектом от D является то, что квадрокоптер становится «мягким», то есть реакция на команды слишком вялая.

Нужно ли настраивать PID?

На сегодня программное обеспечение для квадрокоптеров имеет сложную фильтрацию шумов и оптимизированные алгоритмы для полетов. Квадрокоптер может хорошо летать прямо из коробки на основе стандартных значений PID, если, конечно вы не используете некачественные детали или квадрокоптер очень плохо настроен.

Сделаем вывод, что в эти значения в большинстве своем лезть не требуется, разница будет между «хорошо летающий квадрокоптер» и «идеально летающий квадрокоптер».

Настройка PID квадрокоптера

Нет правильного или неправильного способа настройки PID, все, что хорошо работает для вас — и есть правильная настройка. PID настраиваются индивидуально под каждого пилота.

Обычно я всегда начинаю летать на стандартных настройках, а настройки в прошивках Betaflight и KISS хорошо работают для большинства квадрокоптеров.

Когда я летаю и замечаю какое-нибудь нежелательное поведение, я настраиваю конкретное значение и снова проверяю в полете. Если у квадрокоптера много вибраций, можно поиграть со значением PID, предварительно уменьшив все значения до половины или более, чтобы убедиться, что они не слишком высоки для начала.

Каждый раз, когда изменяете значения ПИД, задавайтесь вопросом: «Стало лучше или хуже». Найдите значение, на котором характеристика полета будет наилучшей.

За один раз настраивайте одну ось, сначала крен, потом высоту и затем рыскание. На каждой оси я настраиваю одно значение за раз, начиная с коэффициента усиления P, затем усиления D и, наконец I. Также вам нужно будет постоянно возвращаться к тонкой настройке, потому что одно значение может влиять на другое.

Yaw (рыскание) и PID

Самая сложная часть для понимания при настройке ПИДов — ось рыскания. Но это также самая легкая часть, потому что вы можете оставить ее по умолчанию в Betaflight, и ваш квадрокоптер будет летать просто отлично.

PID могут помочь с улучшением рыскания дрона, но вы должны учитывать и многие другие факторы, которые могут привести к дестабилизация рыскания.

Одним из симптомов плохого рыскания: вы делаете быстрое рыскание и в этот момент даете резкий газ, а дрон по оси (yaw) рыскания не остается на этом же уровне.

Хорошая работа по этой оси также зависит от качества оборудования: двигателей, пропеллеров и регуляторов оборотов. Ими определяется, на сколько быстро дрон сможет перемещаться по оси рыскания (yaw).

Чтобы улучшить рыскание, вы можете попробовать следующее:

P на Roll (крен)

С хорошими настройками P квадрокоптер будет очень точно реагировать по крену на положение стика.

Попытайтесь сделать резкий поворот, если Р слишком маленький, то дрон накренится в одну сторону, если слишком большой, вы получите сильную вибрацию и дёрганье. Если Р настроен правильно, то при совершении резких кренов — никаких вибраций и дёрганья не будет.

P на Pitch ( высотa)

Наберите высоту и опустите стик газа до конца вниз, после чего начните набирать газ, обратите внимание на набор высоты. Если квадрокоптер поднимается больше, чем нужно, то вероятно, что Р слишком мал, а если слишком быстрый набор, то Р нужно уменьшить.

Настраивайте до тех пор, пока дрон не станет отзывчивым и проворным с минимальной вибрацией. Также присматривайтесь к двигателям если они дергаются, то это означает, что Р завышен и следует его немного понизить.

TPA

ТРА — это настройка для снижения эффективности усиления P при увеличении дросселя (газа). Сделайте резкий газ и посмотрите, есть ли какие-либо колебания и вибрация, если да, то увеличьте ТРА. Хорошо настроенный ТРА даст вам очень гладкий газ. Лично я не использую ТРА выше 0,4.

D на Roll и Pitch (на крен и высоту)

Когда вы делаете трюки, такие как сальто и перевороты, вы наверняка замечали своеобразные отскоки в конце. Увеличение D может помочь в уменьшении этой проблемы. Будьте осторожны, так как большие значения D могут начать перегревать двигатели, поэтому регулируйте параметр с умом, ровно до того, чтобы проблемы исчезла, не больше. Также слишком большое значение D будет вызывать колебания и вибрацию в конце этих трюков.

I на Roll (на крен)

Наклоните (в полете, естественно) свой дрон вправо и влево и посмотрите, держит ли он этот наклон после того, как вы отпустили стик (напомню, все манипуляции в АКРО режиме), если он не держит угол наклона, то увеличьте значение I на Roll.

Сделайте тоже самое для наклона вперед и назад. Это также будет зависеть и от силы ветра.

Anti Gravity Gain

Летите по прямой и дайте пару раз (быстро) газа и посмотрите, сохраняет ли дрон положение. Если он опускается, то увеличьте это значение. Для меня идеальное значение было 3.

Yaw P (Рыскание Р)

Yaw PID необходимо настроить отдельно. Значения по умолчанию обычно хорошо работают на всех дронах.

Выполните резкое и быстрое рыскание, если после остановки квадрокоптер дрожит или вибрирует — уменьшите значение Р, если он опустится на одну сторону — увеличьте Р.

Когда Р по рысканию слишком высок, то при рыскании квадрокоптер будет набирать высоту, в таком случае, Р следует уменьшить.

Yaw I (Рыскание I)

Как говорилось выше, I используется для предотвращения дрейфа, но чрезмерное рыскание по I может привести к нестабильности и фактически уменьшить отзывчивость. Yaw I никогда не должен быть выше, чем необходимое значение для предотвращения дрейфа. Если ничего не случилось, просто оставьте значение по умолчанию.

D-Term Set Point Weight

Если это значение слишком высокое, дрон будет менее отзывчивым и вести себя будет как робот, т.е. отвечать будет резко. Если значение будет низким, то отвечать на ваши действия будет более гладко и медленно. Я считаю, что хорошим значением будет 0,6.

Не все проблемы из-за плохих настроек PID

Перед настройкой PID, вы должны изучить и другие данные:

Вибрация

Не все колебания вызваны высоким значением P. Перед настройкой PID вам необходимо максимально устранить источники вибрации на вашем дроне. Например, балансировка двигателей и пропеллеров, жесткость рамы и т. д.

Центр тяжести (CG)

Центр тяжести должен быть ровно посередине, между всеми 4-мя двигателями. Плохая центровка приведет к тому, что одни двигатели будут работать больше, чем другие, отсюда перегрев моторов и плохая стабильность полета. Например, аккумулятор находится в задней части, вместо расположение по-середине и поэтому задние моторы будут работать на 100%, а передние на 80%. Вся масса на квадрокоптере должна быть отцентрована и расположена равномерно. По этой причине Х-образные рамы самые популярные.

Вопрос: «Какие у тебя ПИДы?» — неправильный вопрос!

Довольно бессмысленно использовать чужие ПИДы на своем квадрокоптере. Каждый дрон уникален, его оборудование, да даже ветер и климат влияют на корректировку PID.

Когда нужно перенастраивать PID?

Почти все компоненты квадрокоптера влияют на PID, поэтому когда вы меняете какой-нибудь компонент, проведите и настройку PID. Если в Betaflight и Cleanflight вы меняли Looptime, то тоже нужно будет подкорректировать PID.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *