что такое пго у самолета

Что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

почему на Су 34 и кажеться нек-рых 33 и 30 есть ПГО?

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

Мне всегда казалось ПГО это самое простое,но не самое лучшее решение. В плане логики управления.

«почему на Су 34 и кажеться нек-рых 33 и 30 есть ПГО?»

Я уже писал,но пусть Владимир «проверит» правильно ли я понял))

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

Логика как раз подсказывает что рули высоты+ПГО всяко сложнее система чем только рули.

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

«Логика как раз подсказывает что рули высоты+ПГО всяко сложнее система чем только рули.»

Если взять вариант только рули на су-33,то тут надо очень тонко настроить СДУ,очень чувствительно,с программной точки зрения,легче ПГО,но не лучше. Это моё мнение поэтому спорить дальше не стоит.

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

\\ В общем, к ПГО надо относиться как к некоему пройденному этапу.\\

как к крыльям с изменяемой геометрией?

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

>как к крыльям с изменяемой геометрией?

Источник

Оперение (авиация)

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

Опере́ние (оперение летательного аппарата, стрелы, ракеты) — аэродинамические поверхности, обеспечивающие устойчивость, управляемость и балансировку самолёта в полёте. Оно состоит из горизонтального и вертикального оперения. К оперению обычно относят и элероны — органы поперечной управляемости и балансировки.

Содержание

Общие сведения

Основные требования к оперению:

Горизонтальное оперение (ГО)

Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности — стабилизатора и шарнирно подвешенного к нему руля высоты. У самолетов с хвостовым расположением горизонтальное оперение устанавливается в хвостовой части самолета — на фюзеляже или на верху киля (T-образноя схема).

В схеме «утка» оперение располагается в носовой части самолета перед крылом. Возможна комбинированная схема, когда у самолета с ховстовым оперением ставится дополнительное переднее оперение — схема с ПГО (переднее горизонтальное оперение), позволяющая использовать преимущества обеих указанных схем. Схемы «бесхвостка», «летающее крыло» горизонтального оперения не имеют.

Неподвижный стабилизатор обычно имеет фиксированный угол установки относительно продольной оси самолета. Иногда предусматривается регулировка этого угла на земле. Такой стабилизатор называется переставным.

На тяжёлых самолетах для повышения эффективности продольного управления угол установки стабилизатора с помощью дополнительного привода может изменяться в полете, обычно на взлете и посадке, а также для балансировки самолета на заданном режиме полета. Такой стабилизатор называется подвижным.

На сверхзвуковых скоростях полета эффективность руля высоты резко падает. Поэтому у сверхзвуковых самолетов вместо классической схемы ГО с рулем высоты применяется управляемый стабилизатор (ЦПГО), угол установки которого регулируется летчиком с помощью командного рычага продольного управления или бортовым компьютером самолета. Руль высоты в этом случае отсутствует.

Вертикальное оперение (ВО)

Обеспечивает самолету путевую устойчивость, управляемость и балансировку относительно вертикальной оси. Оно состоит из неподвижной поверхности — киля и шарнирно подвешенного к нему руля направления.

Цельноповоротное ВО применяется весьма редко. Эффективность ВО можно повысить путем установки форкиля — передний наплыв в корневой части киля и дополнительным подфюзеляжным гребнем. Другой способ — применение нескольких (обычно не более двух одинаковых) килей.

Формы оперения

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

Формы поверхностей оперения определяются теми же параметрами, что и формы крыла: удлинением, сужением, углом стреловидности, аэродинамическим профилем и его относительной толщиной. Как и в случае с крылом различают трапецевидное, овальное, стреловидное и треугольное оперение.

Схема оперения определяется числом его поверхностей и их взаимным расположением. Наиболее распространены следующие схемы:

Требуемая эффективность оперения обеспечивается правильным выбором форм и расположения его поверхностей, а также численных значений параметров этих поверхностей. Чтобы избежать затенения органы оперения не должны попадать в спутную струю крыла, гондол и других агрегатов самолета. Не меньшее влияние на эффективность оперения оказывает и применение компьютерных пилотажных систем. Например до появления достаточно совершенных самолетных бортовых компьютеров V-образное оперение почти не применялось, из-за его сложности в управлении.

Более позднее наступление волнового кризиса на оперении достигается увеличенными по сравнению с крылом углами стреловидности и меньшими относительными толщинами. Избежать флаттера и бафтинга можно известными мерами устранения этих явлений аэроупругости.

Нагрузки оперения

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

На органы оперения в полете действуют распределенные аэродинамические силы, величина и закон распределения которых задаются нормами прочности или определяются продувками. Массовыми инерционными силами оперения ввиду их малости обычно пренебрегают. Рассматривая работу элементов оперения при восприятии внешних нагрузок, по аналогии с крылом следует различать общую силовую работу агрегатов оперения как балок, в сечениях которых действуют перерезывающие силы, изгибающие и крутящие моменты, и работу местную от воздушной нагрузки, приходящейся на каждый участок обшивки с подкрепляющими ее элементами.

Конструктивно-силовые схемы оперения

Различные агрегаты оперения отличаются друг от друга назначением и способами закрепления, что вносит свои особенности в силовую работу и влияет на выбор их конструктивно-силовых схем.

Рассмотрим отдельно особенности устройства и силовой работы основных агрегатов оперения (стабилизатора, киля, управляемого стабилизатора, руля и элерона).

Стабилизаторы и кили

Имеют полную аналогию с крылом, как по составу и конструкции основных элементов — лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже, из-за определенных конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа.

У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолета, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется ещё одна силовая нервюра в плоскости симметрии самолета.

Рули и элероны

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью применимо и к элеронам. Основным силовым элементом руля (и элерона, естественно), работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

Основная нагрузка рулей — воздушная аэродинамическая, возникающая при балансировке, маневрировании самолета или при полете в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

Аэродинамическая компенсация рулей

В полете при отклонении рулевых поверхностей возникают шарнирные моменты, которые уравновешиваются усилиями летчика на командных рычагах управления. Эти усилия зависят от размеров и угла отклонения руля, а также от скоростного напора. На современных самолетах усилия управления получаются слишком большими, поэтому приходится в конструкции рулей предусматривать специальные средства для уменьшения шарнирных моментов и уравновешивающих их усилий управления. С этой целью используется аэродинамическая компенсация рулей, суть которой заключается в том, что часть аэродинамических сил руля создают момент относительно оси вращения, противоположный основному шарнирному моменту.

Наибольшее распространение получили следующие виды аэродинамической компенсации:

Углы отклонения и эффективность работы такого компенсатора пропорциональны углам отклонения руля, что не всегда оправдывает себя, т.к. усилия управления зависят не только от углов отклонения руля, но и от скоростного напора. Более совершенным является пружинный сервокомпенсатор, у которого за счет включения в кинематику управления пружины с предварительной затяжкой углы отклонения пропорциональны усилиям управления руля, что наилучшим образом отвечает назначению сервокомпенсатора — уменьшать эти усилия.

Средства аэродинамической балансировки самолета

Любой установившийся режим полета самолета, как правило, выполняется с отклоненными рулями, что обеспечивает уравновешивание — балансировку — самолета относительно его центра масс. Возникающие при этом усилия на органах управления в кабине принято называть балансировочными. Чтобы зря не утомлять летчика и избавить его от этих ненужных усилий на каждой рулевой поверхности устанавливается триммер, позволяющий полностью снимать балансировочные усилия.

Следует добавить, что триммер может использоваться лишь в таких системах управления, в которых усилия на командных рычагах напрямую связаны с шарнирным моментом руля — системы механического безбустерного управления или системы с обратимыми бустерами. В системах с необратимыми бустерами — гидроусилителями — естественные усилия на огранах управления очень малы, и для имитации лётчику «механического управления» дополнительно создаются пружинными загрузочными механизмами и от шарнирного момента руля не зависят. В таком случае триммеры на рулях не ставятся, а балансировочные усилия снимаются специальными устройствами — механизмами эффекта триммирования, установленными в проводке управления.

Другим средством балансировки самолета в установившемся режиме полета может служить переставной стабилизатор. Обычно такой стабилизатор крепится шарнирно на задних узлах подвески, а передние узлы соединяются с силовым приводом, который, перемещая носовую часть стабилизатора вверх или вниз, изменяет углы его установки в полете. Подбирая нужный угол установки, летчик может уравновесить самолет при нулевом шарнирном моменте на руле высоты. Этот же стабилизатор обеспечивает и требуемую эффективность продольного управления самолета на взлете и посадке.

Средства устранения флаттера рулей и элеронов

Причиной возникновения изгибно-элеронного и изгибно-рулевого флаттера является их массовая несбалансированность относительно оси шарниров. Обычно центр масс рулевых поверхностей расположен позади оси вращения. В результате при изгибных колебаниях несущих поверхностей силы инерции, приложенные в центре масс рулей, за счет деформаций и люфтов в проводке управления отклоняют рули на некоторый угол, что приводит к появлению дополнительных аэродинамических сил, увеличивающих изгибные деформации несущих поверхностей. С ростом скорости раскачивающие силы растут и при скорости, называемой критической скоростью флаттера, происходит разрушение конструкции.

Радикальным средством устранения данного вида флаттера является установка в носовой части рулей и элеронов балансировочных грузов с целью перемещения их центра масс вперед.

100-процентная весовая балансировка рулей, при которой центр масс располагается на оси вращения руля, обеспечивает полное устранение причины возникновения и развития флаттера.

Источник

Самолёт с аэродинамически смещённой центровкой

«Учёные объясняют то, что уже есть;
инженеры создают то, чего никогда не было»
А. Эйнштейн

Изобретатель предкрылка Густав Лахманн в конце тридцатых годов прошлого века предложил оснастить бесхвостку свободно плавающим крылышком, размешенным впереди крыла. Это крылышко было снабжено серворулем, с помощью которого регулировалась его подъемная сила. Оно служило для компенсации дополнительного пикирующего момента крыла, возникающего при выпуске щитка. Поскольку Лахманн был сотрудником фирмы Хэндли-Пэйдж, то она являлась собственником патента на это техническое решение и под этим брендом указанная идея упоминается в технической литературе. Но практического воплощения этой идеи нет до сих пор! В чем причина?

Потери на балансировку

Крыло самолета, создающее подъемную силу, обладает сопутствующим, можно сказать, негативным побочным продуктом в виде пикирующего момента, стремящегося ввести самолет в пикирование. Чтобы самолет не пикировал, на его хвосте присутствует маленькое крылышко – стабилизатор, который этому пикированию препятствует, создавая направленную вниз, то есть отрицательную, подъемную силу. Такая аэродинамическая схема самолета именуется «нормальной». Поскольку подъемная сила стабилизатора отрицательна, она суммируется с силой тяжести самолета, и крыло должно иметь подъемную силу, превышающую силу тяжести.
Разность этих сил называют потерями на балансировку, которые могут доходить до 20%.
Но первый летающий самолет Братьев Райт не имел таких потерь, потому, что маленькое крылышко — дестабилизатор, препятствующее пикированию, размещалось не позади крыла, а впереди него. Такая аэродинамическая схема самолета называется «уткой». И для того, чтобы препятствовать пикированию самолета дестабилизатор должен создавать направленную вверх, то есть положительную, подъемную силу. Она суммируется с подъемной силой крыла, и эта сумма равна силе тяжести самолета. В результате крыло должно создавать подъемную силу, меньшую, чем сила тяжести. И никаких потерь на балансировку!

Стабилизатор и дестабилизатор объединены в один термин – горизонтальное оперение или ГО.
Однако, с массовым развитием в начале тридцатых годов прошлого века взлетно-посадочной механизации крыла, «утка» утратила указанное преимущество. Основным элементом механизации является закрылок – отклоняемая вниз задняя часть крыла. Он примерно в два раза увеличивает подъемную силу крыла, за счет чего можно уменьшить скорость на посадке и взлете, тем самым сэкономив на массе шасси. Но побочный продукт в виде пикирующего момента при выпуске закрылка возрастает до такой степени, что дестабилизатор не может с ним справиться, а стабилизатор – справляется. Ломать – не строить, в данном случае положительную силу.

Чтобы крыло создало подъемную силу, его необходимо сориентировать под углом к направлению встречного потока воздуха. Этот угол называется углом атаки и с его ростом растет и подъемная сила, но не бесконечно, а до критического угла, который находится в пределах от 15 до 25 градусов. Поэтому полная аэродинамическая сила направлена не строго вверх, а наклонена к хвосту самолета. И ее можно разложить на составляющую, направленную строго вверх – подъемную силу, и направленную назад – силу аэродинамического сопротивления. По отношению подъемной силы к силе сопротивления судят об аэродинамическом качестве самолета, которое может составлять от 7 до 25.

В пользу нормальной схемы работает такое явление, как скос потока воздуха за крылом, заключающееся в отклонении вниз направления потока, тем большего, чем больше подъемная сила крыла. Поэтому при отклонении закрылка из-за аэродинамики автоматически возрастает действительный отрицательный угол атаки стабилизатора и, следовательно, его отрицательная подъемная сила.

Кроме того, в пользу «нормальной» схемы по сравнению с «уткой» работает и такое обстоятельство, как обеспечение продольной устойчивости полета самолета. Угол атаки самолета может претерпевать изменения в результате вертикальных перемещений воздушных масс. Самолеты проектируются с учетом этого явления и стремятся противостоять возмущениям. У каждой поверхности самолета имеется аэродинамический фокус – точка приложения приращения подъемной силы при изменении угла атаки. Если рассматривать равнодействующую приращений крыла и ГО, то фокус есть и у самолета. Если фокус самолета находится позади центра масс, то при случайном увеличении угла атаки приращение подъемной силы стремится так наклонить самолет, чтобы угол атаки уменьшился. И самолет возвращается к прежнему режиму полета. При этом в «нормальной» схеме крыло создает дестабилизирующий момент (на увеличение угла атаки), а стабилизатор создает стабилизирующий момент (на уменьшение угла атаки) и последний превалирует примерно на 10%. В «утке» дестабилизирующий момент создает дестабилизатор, а стабилизирующий, и он примерно на 10% больше – крыло. Поэтому увеличение площади и плеча горизонтального оперения приводит к увеличению устойчивости в нормальной схеме и к ее уменьшению в «утке». Все моменты действуют и считаются относительно центра масс самолета (см. рис. 1).

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета)

Если фокус самолета находится впереди центра масс, то при случайном небольшом увеличении угла атаки он увеличивается еще больше и самолет будет статически неустойчив. Такое взаиморасположение фокуса и центра масс используют в современных истребителях, чтобы загрузить стабилизатор и получать на нем не отрицательную, а положительную подъемную силу. А полет самолета обеспечивается не аэродинамикой, а четырежды дублированной автоматической системой искусственной устойчивости, которая «подруливает» при уходе самолета от требуемого угла атаки. При выключении автоматики самолет начинает разворачиваться хвостом вперед, на этом основана фигура «Кобра Пугачева», в которой летчик намеренно отключает автоматику и при достижении требуемого угла разворота хвоста выпускает ракету в заднюю полусферу, а затем снова включает автоматику.
В дальнейшем мы рассматриваем только статически устойчивые самолеты, поскольку только такие самолеты могут использоваться в гражданской авиации.

Взаимное расположение фокуса самолета и центра масс характеризует понятие «центровка».
Поскольку фокус находится позади центра масс независимо от схемы, то расстояние между ними, называемое запасом устойчивости, увеличивает плечо ГО в нормальной схеме и уменьшает в «утке».

Соотношение плеч крыла и ГО в «утке» таково, что подъемная сила дестабилизатора при максимальном отклонении рулей высоты используется полностью при выводе самолета на большие углы атаки. И ее будет не хватать при выпуске закрылков. Поэтому все «утки» знаменитого американского конструктора Рутана не имеют никакой механизации. Его самолет «Вояджер» впервые в мире облетел без посадки и дозаправки земной шар в 1986 году.

Исключение составляет Бичкрафт «Старшип», но там с целью использования закрылков была применена весьма сложная конструкция с изменяемой геометрией дестабилизатора, которую не удалось довести до серийно воспроизводимого состояния, ввиду чего проект был закрыт.
Плечо крыла в большой мере зависит от того, на сколько прирастает подъемная сила дестабилизатора при увеличении его угла атаки на один градус, этот параметр называют производной по углу атаки коэффициента подъемной силы или просто производная дестабилизатора. И, чем меньше эта производная, тем ближе к крылу можно разместить центр масс самолета, следовательно, тем меньше будет плечо крыла. Для снижения указанной производной автор 1992 году предложил выполнять дестабилизатор по бипланной схеме (2). Это дает возможность настолько уменьшить плечо крыла, что устраняет препятствие в использовании на нем закрылка. Однако возникает побочный эффект в виде увеличения сопротивления ГО из-за бипланности. Кроме того, налицо усложнение конструкции самолета, поскольку приходится изготавливать фактически два ГО, а не одно.

Коллеги указывали, что признак «бипланный дестабилизатор» в наличии на самолете Братьев Райт, но в изобретениях патентуется не только новый признак, но и новая совокупность признаков. У Райтов отсутствовал признак «закрылок». Кроме того, если совокупность признаков нового изобретения известна, то для признания этого изобретения, хотя бы один признак должен использоваться в новых целях. У Райтов бипланность использовалась для уменьшения веса конструкции, а в описываемом изобретении – для уменьшения производной.

«Флюгерная утка»

Почти два десятилетия назад вспомнили про идею «флюгерной утки», упомянутую в начале статьи.

В ней в качестве дестабилизатора используется флюгерное горизонтальное оперение — ФГО, которое состоит из собственно дестабилизатора, шарнирно размещенного на оси, перпендикулярной фюзеляжу, и связанного с дестабилизатором серворуля. Этакий самолетик нормальной схемы, где крыло самолетика – дестабилизатор ФГО, а стабилизатор самолетика – серворуль ФГО. И этот самолетик не летает, а размещен на оси, и он сам ориентируется относительно встречного потока. Меняя отрицательный угол атаки серворуля, мы изменяем угол атаки дестабилизатора относительно потока и, следовательно, подъемную силу ФГО при управлении по тангажу.

При неизменном положении серворуля относительно дестабилизатора, ФГО не реагирует на порывы вертикального ветра, т.е. на изменения угла атаки самолета. Поэтому его производная равна нулю. Исходя из наших предыдущих рассуждений – идеальный вариант.

При испытании первого самолета схемы «флюгерная утка» конструктора А. Юрконенко (3) с эффективно загруженным ФГО было выполнено более двух десятков успешных подлетов. Вместе с тем обнаружились явные признаки неустойчивости самолета (4).

«Сверхустойчивость»

Как это не парадоксально, но неустойчивость «флюгерной утки» является, следствием ее «сверхустойчивости». Стабилизирующий момент классической утки с фиксированным ГО образуется из стабилизирующего момента крыла и противодействующего ему дестабилизирующего момента ГО. У флюгерной утки ФГО не участвует в формировании стабилизирующего момента, и он образуется только из стабилизирующего момента крыла. Таким образом, стабилизирующий момент у «флюгерной утки» примерно в десять раз больше, чем у классической. При случайном увеличении угла атаки самолет под действием чрезмерного стабилизирующего момента крыла, не возвращается в прежний режим, а «проскакивает» его. После «проскока» самолет приобретает уменьшенный угол атаки по сравнению с прежним режимом, поэтому возникает стабилизирующий момент другого знака, также чрезмерный, и таким образом возникают автоколебания, погасить которые летчик не в состоянии.

Одним из условий устойчивости является способность самолета нивелировать последствия возмущения атмосферы. Поэтому при отсутствии возмущений возможен удовлетворительный полет неустойчивого самолета. Этим объясняются успешные подлеты самолета ЮАН-1. В далекой юности у автора был случай, когда новая модель планера налетала по вечерам в безветрие в общей сложности не менее 45 минут, демонстрируя вполне удовлетворительные полеты и проявила яркую неустойчивость — кабрирование чередовалось с пикированием в первом же полете при ветреной погоде. Пока погода была спокойная и возмущений не было, планер демонстрировал удовлетворительный полет, но регулировка у него была неустойчивой. Просто не было причин проявить эту неустойчивость.

Описанное ФГО в принципе может использоваться в «псевдоутке». Такой самолет по существу является схемой «бесхвостка» и имеет соответствующую центровку. А ФГО у него используется только для компенсации дополнительного пикирующего момента крыла, возникающего при выпуске механизации. В крейсерской конфигурации нагрузка на ФГО отсутствует. Таким образом, на основном эксплуатационном режиме полета ФГО фактически не работает, а потому его использование в данном варианте является малопродуктивным.

«КРАСНОВ-УТКА»

«Сверхустойчивость» может быть ликвидирована посредством повышения производной ФГО с нуля до приемлемого уровня. Поставленная цель достигается за счет того, что угол поворота ФГО существенно меньше угла поворота серворуля, вызванного изменением угла атаки самолета (5). Для этого служит весьма несложный механизм, изображенный на рис. 2. ФГО 1 и серворуль 3 шарнирно размещены на оси ОО1. Тяги 4 и 6 посредством шарниров 5,7, 9,10 связывают ФГО 1 и серворуль 3 с качалкой 8. Муфта 12 служит для изменения длины тяги 6 летчиком с целью управления по тангажу. Поворот ФГО 1 осуществляется не на весь угол отклонения серворуля 3 относительно ЛА при изменении направления встречного потока, а лишь на его пропорциональную часть. Если пропорция равна половине, то при действии восходящего потока, приводящего к увеличению угла атаки ЛА на 2 градуса, действительный угол атаки ФГО увеличится всего на 1 градус. Соответственно и производная ФГО будет в два раза меньше по сравнению с фиксированным ГО. Штриховыми линиями отмечено положение ФГО 1 и серворуля 3 после изменения угла атаки ЛА. Изменение пропорции и, тем самым, определение величины производной, легко осуществить выбором соответствующих расстояний шарниров 5 и 7 до оси ОО1.

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета)

Снижение производной ГО за счет флюгирования позволяет в любых пределах размещать фокус, а за ним и центр масс самолета. В этом заключается понятие аэродинамического смещения центровки. Таким образом снимаются все ограничения на использование современной механизации крыла в схеме «утка» при сохранении статической устойчивости.

«КРАСНОВ-ФЛЮГЕР»

https://www.youtube.com/watch?v=3Hrphi2s_Do
Все прекрасно! Но, недостаточек имеется. Для того, чтобы на ФГО 1 возникла положительная подъемная сила, на серворуле 3 должна действовать отрицательная подъемная сила. Аналогия – нормальная схема самолета. То есть, в наличии потери на балансировку, в данном случае балансировку ФГО. Отсюда и путь устранения этого недостаточка – схема «утка». Размещаем серворуль впереди ФГО, как показано на рис. 3.
что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета)
ФГО работает следующим образом (6). В результате действия аэродинамических сил на ФГО 1 и серворуль 4, ФГО 1 самопроизвольно устанавливается под определенным углом атаки к направлению встречного потока. Углы атаки ФГО 1 и серворуля 4 имеют один и тот же знак, следовательно, и подъемные силы этих поверхностей будут иметь одинаковое направление. Т. е. аэродинамическая сила серворуля 4 не уменьшает, а увеличивает подъемную силу ФГО 1. Для увеличения угла атаки самолета летчик смещает тягу 6 вперед, вследствие чего серворуль 4 на шарнире 5 поворачивается по часовой стрелке и угол атаки серворуля 4 увеличивается. Это приводит к увеличению угла атаки ФГО 1, т. е. к увеличению его подъемной силы.
Кроме управления по тангажу, связь, осуществляемая тягой 7 обеспечивает увеличение с нуля до необходимой величины производной ФГО.
Флюгерные свойства ФГО, т.е. самопроизвольное ориентирование ФГО по потоку обеспечиваются размещением шарнира 3 впереди аэродинамического фокуса системы серворуль 4 – дестабилизатор 1.
Предположим, что самолет вошел в восходящий поток и его угол атаки увеличился. В этом случае балка 2 поворачивается против часовой стрелки и шарниры 9 и 8 в случае отсутствия тяги 7 должны были бы сближаться. Тяга 7 препятствует сближению и поворачивает серворуль 4 по часовой стрелке и тем самым увеличивает его угол атаки.

Таким образом, при изменении направления встречного потока, изменяется угол атаки серворуля 4, и ФГО 1 самопроизвольно устанавливается уже под иным углом по отношению к потоку и создает иную подъемную силу. При этом величина указанной производной зависит от расстояния между шарнирами 8 и 3, а также от расстояния между шарнирами 9 и 5.

Предложенное ФГО проверено на электрокордовой модели схемы «утка», при этом его производная по сравнению с фиксированным ГО была уменьшена в два раза. Нагруженность ФГО составляла 68% от таковой для крыла. Задачей проверки не было получение равных нагруженностей, а получение именно меньшей загруженности ФГО по сравнению с крылом, поскольку если получить ее, то не составит труда получить равные. В «утках» с фиксированным ГО, нагруженность оперения обычно на 20 – 30 % превышает нагруженность крыла.

«Идеальный самолет»

Если сумма двух чисел – неизменная величина, то сумма их квадратов будет наименьшей при равенстве этих чисел. Поскольку индуктивное сопротивление несущей поверхности пропорционально квадрату ее коэффициента подъемной силы, то наименьший предел сопротивления самолета будет в том случае, когда эти коэффициенты обеих несущих поверхностей равны между собой при крейсерском режиме полета. Такой самолет следует считать «идеальным». Изобретения «краснов-утка» и «краснов-флюгер» позволяют в реальности воплотить понятие «идеальный самолет» не прибегая к искусственному поддержанию устойчивости автоматическими системами.

Сравнение «идеального самолета» с современным самолетом нормальной схемы показывает, что можно получить 33% выигрыша в коммерческой нагрузке с одновременной экономией горючего в 23%, что в результате дает экономическую эффективность в 38%.

ФГО создает максимальную подъемную силу на углах атаки, близких к критическому и такой режим характерен для посадочного этапа полета. При этом обтекание несущей поверхности частичками воздуха приближено к границе между нормальным и срывным. Срыв потока с поверхности ГО сопровождается резкой потерей подъемной силы на нем и, как следствие, интенсивному опусканию носа самолета, так называемому, «клевку». Показательным случаем «клевка» является катастрофа Ту-144 в Ле Бурже, когда он разрушился при выходе из пикирования именно после клевка. Использование предложенного ФГО позволяет легко решить указанную проблему. Для этого необходимо, всего лишь, ограничить угол поворота серворуля относительно ФГО. В этом случае действительный угол атаки ФГО будет ограничен и никогда не станет равным критическому.

«Флюгерный стабилизатор»

Представляет интерес вопрос использования ФГО в нормальной схеме. Если не снижать, а наоборот, увеличивать угол поворота ФГО по сравнению с серворулем, как это представлено на рис. 4, то производная ФГО будет гораздо выше по сравнению с фиксированным стабилизатором (7).
![image](что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета)
Это позволяет значительно сместить фокус и центр масс самолета назад. В результате крейсерская нагрузка ФГО-стабилизатора становится не отрицательной, а положительной. Кроме того, если центр масс самолета оказывается смещенным за фокус по углу отклонения закрылка (точка приложения приращения подъемной силы за счет отклонения закрылка), то флюгерный стабилизатор и в посадочной конфигурации создает положительную подъемную силу.

Но все это, возможно, справедливо до тех пор, пока мы не принимаем во внимание влияние торможения и скоса потока от передней несущей поверхности на заднюю. Понятно, что в случае «утки» роль этого влияния значительно меньше. А с другой стороны, если на военных истребителях стабилизатор «несет», то почему он перестанет «нести» на гражданке?

«Краснов-план» или «псевдофлюгерная утка»

Шарнирное крепление дестабилизатора, хотя и не кардинально, но все — таки усложняет конструкцию самолета. Оказывается, что снижение производной дестабилизатора можно достичь гораздо более дешевыми средствами.

что такое пго у самолета. Смотреть фото что такое пго у самолета. Смотреть картинку что такое пго у самолета. Картинка про что такое пго у самолета. Фото что такое пго у самолета

На рис. 5 представлен жестко связанный с фюзеляжем (на чертеже не показанном) дестабилизатор 1 предлагаемого летательного аппарата. Он снабжен средством изменения его подъемной силы в виде руля 2 высоты, который с помощью шарнира 3 укреплен на кронштейне 4, жестко связанном с дестабилизатором 1. На этом же кронштейне 4 с помощью шарнира 5 размещена штанга 6, на заднем конце которой жестко закреплен серворуль 7. На переднем конце штанги 6, рядом с шарниром 5 жестко закреплен рычаг 8, верхний конец которого посредством шарнира 9 связан с тягой 10. На заднем конце тяги 10 размещен шарнир 11, связывающий ее с рычагом 12 триммера 13 руля 2 высоты. При этом триммер 13 с помощью шарнира 14 укреплен на задней части руля 2 высоты. Муфта 15 изменяет длину тяги 10 под управлением летчика для управления по тангажу.

Представленный дестабилизатор работает следующим образом. При случайном увеличении угла атаки летательного аппарата, например, при входе его в восходящий поток, серворуль 7 отклоняется вверх, что влечет за собой смещение тяги 10 влево, т.е. вперед и приводит к отклонению триммера 13 вниз, в результате чего руль 2 высоты отклоняется вверх. Положение руля 2 высоты, серворуля 7 и триммера 13 в описанной ситуации представлено на чертеже штриховыми линиями.

В итоге увеличение подъемной силы дестабилизатора 1 вследствие увеличения угла атаки будет до некоторой степени снивелировано отклонением вверх руля 2 высоты. Степень этого нивелирования зависит от соотношения углов отклонения серворуля 7 и руля 2 высоты. И это соотношение задается длиной рычагов 8 и 12. При уменьшении угла атаки руль 2 высоты отклоняется вниз, и подъемная сила дестабилизатора 1 увеличивается, нивелируя уменьшение угла атаки.

Таким образом достигается снижение производной дестабилизатора по сравнению с классической «уткой».

В связи с тем, что серворуль 7 и триммер 13 кинематически связаны между собой, они балансируют друг друга. Если этой балансировки недостаточно, то необходимо включить в конструкцию балансировочный груз, который необходимо разместить либо внутри серворуля 7, либо на продолжении штанги 6 впереди шарнира 5. Руль 2 высоты также должен быть отбалансирован.

Поскольку производная по углу атаки несущей поверхности примерно в два раза превышает производную по углу отклонения закрылка, то при двукратном превышении угла отклонения руля 2 высоты по сравнению с углом отклонения серворуля 7 возможно достичь значения производной дестабилизатора близкого к нулю.

Серворуль 7 по площади равен триммеру 13 руля 2 высоты. То есть, добавления в конструкцию самолета весьма малы по размерам и пренебрежимо мало ее усложняют.

Таким образом, вполне возможно получить такие же результаты, как и у «флюгерной утки» используя лишь традиционные технологии производства самолетов. Поэтому самолет с таким дестабилизатором можно назвать «псевдофлюгерной уткой». На данное изобретение получен патент с названием «Краснов-план» (8).

«Игнорирующий турбулентность самолет»

Весьма целесообразно выполнить самолет, у которого передняя и задняя несущие поверхности в сумме имеют производную, равную нулю.

Такой самолет будет практически полностью игнорировать вертикальные потоки воздушных масс, и его пассажиры не будут ощущать «болтанки» даже при интенсивной турбулентности атмосферы. И, поскольку, вертикальные потоки воздушных масс не приводят к перегрузке самолета, то его можно рассчитывать на существенно меньшую эксплуатационную перегрузку, что положительно скажется на массе его конструкции. В связи с тем, что в полете самолет не испытывает перегрузок, то его планер не подвержен усталостному износу.

Уменьшение производной крыла такого самолета достигается так же, как и для дестабилизатора в «псевдофлюгерной утке». Но серворуль воздействует не на рули высоты, а на флапероны крыла. Флаперон – часть крыла, функционирующая, как элерон и закрылок. При этом в результате случайного изменения угла атаки крыла приращение его подъемной силы происходит в фокусе по углу атаки. А отрицательное приращение подъемной силы крыла в результате отклонения флаперона серворулем возникает в фокусе по углу отклонения флаперона. И расстояние между указанными фокусами практически равно четверти средней аэродинамической хорды крыла. В итоге действия указанной пары разнонаправленных сил формируется дестабилизирующий момент, который необходимо компенсировать моментом дестабилизатора. В этом случае дестабилизатор должен иметь небольшую отрицательную производную, а значение производной крыла должно быть немного более нуля. На такой самолет получен патент РФ №2710955.

Совокупность изложенных изобретений представляет собой, наверное, последний неиспользованный информационный аэродинамический ресурс для увеличения на треть и более экономической эффективности дозвуковой авиации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *